
27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
 

 

THE SYNTHESIS OF WORST–CASE DISTURBANCES FOR 
CRITICAL FLIGHT CONDITIONS GENERATION 

 
Alexander S. Filatyev, Olga V. Yanova 

Central Aerohydrodynamic Institute (TsAGI), RUSSIA 
e-mail: filatyev@yandex.ru

 
Keywords: random worst-case disturbances, Bliss formula, influence functions 

 
Abstract  

The method for determination of worst-case 
profiles of random disturbances distributed 
along the trajectory (at a given event 
probability) is described. The analytical 
synthesis of the worst-case disturbances profiles 
is obtained. The method allows to effectively 
build attainability domains, to analyze specific 
effects of various disturbances on the criterion 
under consideration, to significantly reduce the 
necessary calculations as compared to the 
Monte-Carlo technique. 

1  Introduction 
For the maximum efficiency, reliability and 
safety of aircraft flights in atmosphere it is 
necessary to define the influence of random 
disturbances. For real problems the number of 
accountable random factors can be very large. 
Only the dispersion of atmospheric 
thermodynamic parameters defined by 
canonical decompositions contains some tens of 
random parameters. 

The Monte-Carlo method of statistic 
simulation [1] is a traditional engineering 
approach for the investigation of aircraft 
trajectories dispersion under effect of random 
disturbances. However, investigation of 
complex dynamic systems by a given method to 
obtain an estimate of probability  of 
some parameter z exceeding its permissible 
boundary  with required accuracy 

( )*zzP >

∗z ε  can 
require an unacceptably large number of 

realizations 2
1

εP
PN −>  [2]. 

The so-called "guaranteed" approach or the 
"sandwich" method, used in some cases as the 

last resort, is reduced to the application of 
combinations of limit values of random 
parameters. Although such approach allows to 
sharply decrease the amount of computation, the 
obtained estimates of parameter scatter are 
greatly exaggerated. Methods based on the 
minimax approach [2]-[4] allow the estimations 
of output parameters of the problem to move 
closer to the reality. In this case the game 
problem is considered where the player, 
specifying values of unknown random factors, is 
nature. Application of these methods is 
particularly effective if it is possible to 
synthesize an optimal control of nature.  

The method developed in this paper is 
ideologically close to the minimax approach. On 
one hand, assumptions used do not go beyond 
frames accepted in practical applications. On the 
other hand, they allow to obtain an analytical 
synthesis of "optimal" distribution of the 
random disturbances, leading to the maximal 
(worst) deviation of the functional from the 
nominal value. In contrast to a "sandwich" 
method, a probability of the combination of 
random factors is given. 

The following assumptions are made: 
• random disturbances are small, so it is 

possible to use the Bliss formula [5], 
linking the functional variation with 
disturbances of the right parts of the 
equations of motion and the solution of 
the conjugate system; 

• distributions of random factors and the 
probability of an aggregate of random 
events are given. 

At the same time 
• the number of random factors can be 

arbitrary; 
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• the amount of computation and 
complexity of the method are minimal - 
the trajectory simulation is carried out 
only once in nominal terms (without 
disturbances); 

• any simplification of the equations of 
motion is not required; 

• the solution of the conjugate system of 
equations does not require an iterative 
procedure, because of its linearity for a 
stated phase trajectory; so the 
transversality conditions can be easily 
transferred to the left trajectory end, 
reducing the boundary problem to the 
Cauchy one. 

Note that in the case of constructing the 
nominal trajectory with the help of the 
maximum principle, the "ready" solution of the 
conjugate system can be used for purposes of 
this study.  

The developed technique has been realized 
within the program complex ASTER of the 
through optimization of branching aircraft 
trajectories [6], [7]. 

An example of the critical disturbance 
profiles is given for two widespread problems: 
the launch of a space vehicle (SV) and the 
dispersion of the fall points of the separated part 
(SP) of the first stage of this SV under the 
influence of random atmospheric disturbances 
including wind. A comparison of the results 
obtained with estimates of statistical modeling 
by the Monte Carlo is given. The possibility of 
significant (several orders of magnitude) 
reduction in the amount of computation, needed 
to evaluate the effect of random disturbances on 
the functional and the trajectory, is 
demonstrated. 

2  The Problem Statement 

The aircraft motion is described by a normal 
system of ordinary differential equations in the 
noninertial start frame of reference [8], [9]:  

( ,t,,,
dt
d εuxfx

= )   (1) 

where  is the state vector, r is 
the radius vector, v is the velocity vector, m is 
the mass,  is the right part vector, ( )  is the 

transposition, 

{ } Xvrx ∈= Tm,,

f T

Uu ∈  is the control vector, 
εεε Δ+= sys  is the disturbance vector-function 

with systematic  and random sysε εΔ  
components, [ ]fi t,tt ∈  is the time. 

Let's name the aircraft control and 
trajectory without random disturbances 
( 0=εΔ ) as nominal ones.  

The effect of random disturbances is 
specified by the vector  of random factors:  ξ

( )ξεε ΔΔ = . 
It is required to find the worst combination 

of random factors , where the maximal (the 
worst) change 

wrstξ
Φδ  of a functional ( )

ft
FФ x≡  is 

realized:  
( )ξξ

Iξ
Φδ

σ∈
= maxargwrst ,        (2) 

where  is the set defined by the given event 
probability . 

σI

kP
A functional variation Φδ , caused by a 

random disturbances influence, could be 
presented with the Bliss formula [5]:  

.dt
f

i

t

t
i ∫+= fΨxΨ ξδδΦδ TT  (3) 

Here { }T
mP,,SPΨ =  is the conjugate vector with 

components, corresponding to , , and  
respectively, 

r v m
fξδ is the f  variation, caused by 

the . The conjugate vector  is obtained from 
the solution of the Cauchy problem: 
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where  is the condition of implicit 
determination of the right end of the phase 
trajectory.  

0))(( =ftG x

The conjugate variables , defined 
according (3), (4), are the influence functions on 
the functional 

Ψ

Φ  of variations of phase 
variables in each trajectory point. 

The vectors  in (3), (4) correspond to 
the nominal trajectory without random 
disturbances (

ux,

0=εΔ ). 
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3  The Disturbances Model 
There are considered disturbances of: an 
atmosphere density ρ , an atmosphere pressure 
p , and a horizontal wind with the velocity 

vector : W
{ }
{ }
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,,p,

,,p,

syssyssyssys

ϕϕλλ ΔΔΔ

ΔΔρΔΔ
ρ
ρ

eeW
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=
=
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TT

}   (5) 

where  is a longitude projection (in the east 
direction),  is a lateral projection (to the 
north),  and  are unit vectors in 
corresponding directions.     

λΔW

ϕΔW

λe ϕe

Random components are defined in the 
form of a canonical decomposition: 
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where номном p,ρ  are standard atmosphere 
density and pressure,  is a date of flight, tn

( ) ( ) ( ) ( ) ( )xbxbxb Wp
tt ,,,nk,nk ρ

21  are known 
vector functions, ξ  is a vector of independent 
random numbers distributed under the central 
normal law with the unit dispersion with the 
dimension .  mkn 2+=ξ

4  The Synthesis of Worst-Case Disturbances 
From (3) in view of (5), (6) a functional 

variation Φδ  could be written down as 
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Let the set  of random factors ξ  is a 
hypersphere with the radius 

σI

σκ , limited to a 
surface with equal probability: 

⎪⎭
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In this case  is defined from the solution of 
the system 
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where ξλ  is the Lagrange coefficient. 
From (9) the synthesis of a vector  is 

obtained: 
wrstξ
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=
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The hypersphere radius σκ  is defined by 
the given event probability  of a performance 
of a (8) condition. The  is equal to the 
product of probabilities  of hitting 
independent components of the vector  into 

kP
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kjP

wrstξ
[ ]σσ κκ ,− : 

( )∏
=

≤=
ξ

σκξ
n

j
jkjk PP

1
.  (11) 

It is follows from (11): 
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whence with the help of function tables of the 
normal distribution the hypersphere radius σκ  
is defined for given  and . kP ξn

5  Critical Atmospheric Disturbances for the 
Space Vehicles Launch 
In accordance with the developed technique, the 
influence of random disturbances is evaluated 
on the active trajectory phase of a three-stage 
SV with vertical start in the disturbed 
atmosphere. Initial masses of stages are as 1: 
0.3516: 0.1078. Initial thrust-to-weight ratios of 
stages are 1,374, 1.000 and 0,826 respectively 
on the nominal trajectory. Mass ratios of 
separated parts to the initial SV mass are 
0.0431, 0.0202 and 0.0052 respectively. SV is 
injected to the circular satellite orbit with the 
altitude  and the inclination 

 from the Baikonur launch site in 
January. 

км200=orbh

o651.iorb =

Figure 1 shows the nominal ( 0=εΔ ) 
branching injection trajectory and optimal time-
history of the pitch angle of SV. The main 
trajectory branch corresponds to the insertion 
trajectory, side branches correspond to passive 
SP trajectories. 

The vector ξ  (6) has dimension of 39=εn  
( 1215 == m,k ). The level of events probability 
is 

99730.Pk = .  (12) 
The vector of random factors  that 

determines the maximal (in absolute value) 
decrease of the SV injected mass 

wrstξ

0=

=
εΔ

Δ
Δ

f

f
___

f m

m
m  is calculated.  

The corresponding worst disturbances 
profiles of atmospheric density and pressure are 
shown in Fig. 2. To obtain these profiles in 
accordance with the developed method is 
sufficient to calculate the SV nominal trajectory. 

For comparison, a statistical simulation of 
N=104 SV injected trajectories is performed 
under disturbances of atmospheric density and 

Fig.1 The optimal time-history of the pitch angle and 
optimal trajectory of the space vehicle considered.  
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Fig. 2 The worst-case profiles of random disturbances
of an atmospheric density ρ and pressure p for the
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pressure (5), (6). The histogram obtained of the 
probability distribution of injected mass 
variations is shown in Fig. 3. The estimation of 
the maximal change of injected mass (with a 
given events probability (12)), obtained in 
accordance with (7), (10), is shown. As seen 
from the comparison, estimates obtained using 
the two methods practically coincide, while the 
amounts of computation related as 1: 10000. 

6  Critical Atmospheric Disturbances for the 
analysis of a dispersion of Separated Parts 
Fall Points 

-0.008 -0.004 0 0.004
0

0.02

0.04

0.06

Fig. 3  Distribution bar chart for variations of injected 
mass fmΔ  due to disturbances of atmospheric density and 

pressure. 
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To calculate a boundary of a dispersion ellipse 
of the first-stage SP fall points it is required to 
find such combination of random factors, which 
results in the maximal deviation of the fall point 
in various directions  (see Fig. 4): Le

LLmax ΔΔ
ξ

max= . 

The 3D critical profile of a random wind 
( )wrst,W ξxΔ  for the probability (12) of a 

combination of all random events for the 
January atmosphere conditions is shown in 
Fig. 5. Such wind profile provides the maximum 
longitudinal deviation of the first-stage SP fall 
point. This profile represents the hodograph of 
the horizontal wind velocity vector depending 
on the flight altitude h. 

Rotating the unit vector  around the 
nominal aiming point  in a local horizontal 
plane, the vector  circumscribes 
the boundary of the dispersion area of SP fall 
points D (see Fig. 6). Note that the calculation 
of this boundary in accordance with the 
developed method is carried out without 
integration of disturbed trajectories. It is still 
enough to have one nominal trajectory. 

Le

0r

LmaxL eΔL Δ=

The dispersion ellipse boundary, calculated 
in accordance with the developed method, and 
fall points, obtained as a result of the statistic 
simulation of 104 falling trajectories by the 
Monte-Carlo engineering method, are compared 
in Fig. 6. The results are in a good agreement. 
At the same time the developed method is 
10,000 times more efficient.  

7  Conclusions 
The analytical synthesis of the "optimal 

control" for random disturbances, which causes 
the worst trajectory deviations from rated 
conditions, is obtained. It allows to reduce the 
necessary calculations for an estimation of the 
random disturbances effect in ~105–107 times in 
comparison with the widespread Monte-Carlo 
method.  

| corresponds to the injected mass estimation in 
accordance with (7), (10). 

___

fmΔ

r0

m
ain

 bran
ch

side branches

nominal trajectory 
perturbed trajectory

Fig. 4. 

5  



Alexander S. Filatyev, Olga V. Yanova 

 

8  Acknowledgments 

Fig. 5 The 3D profile of the critical random
disturbances, providing the maximal fall point
longitudinal deviation for SV launch in January. 
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Fig. 6 The comparison of the boundary of the
dispersion ellipse, calculated by the developed
method (––), with the ellipse evaluation by
integration of 104 trajectories in the frame of Monte-
Carlo method ( + ).  
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