
27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCE S 
 

1 

 

 

 
Abstract  

The design of new geometries for one 
aerodynamic conception leads to difficulties of 
CPU costs when discrete methods are used (one 
run per configuration). Strategies of 
simplification must be chosen either to restrict 
the number of calculations, or to limit the CPU 
time associated with each run. The approach 
proposed here consists in associating two 
strategies: using a meta-model and adjusting 
the limits of the parameters domain. A 
continuous database is so built of which size 
varies according to the number of parameters. 

The meta-model is based on high-order 
derivatives of flow variables (Turb’OptyTM 

solver). These are obtained by automatic 
differentiation of the discretized averaged 
Navier-Stokes 3D equations around a reference 
solution. The equations are therefore like those 
of conventional solvers (like SC/Tetra, Fluent, 
Star CD), but the unknown factors are here the 
derivatives of order 1, 2, ..., N of the field with 
respect to the parameters of operation or shape. 
These successive derivatives are stored in a 
database and their exploitation makes it 
possible to instantaneously obtain the new 
solution fields corresponding to the 
configurations sought by the user. 

The limits of the exploration domain depend on 
the derivatives order, the possible evaluation of 
the coupled terms, imposed constraints and 
physical high non-linearities. A continuous 
database can then be explored directly or 

coupled with other physics solvers, as well as 
with optimization tools. 

Some simplified applications show the validity 
of this approach. As an illustration, the 
database is coupled with a multi-objective 
Genetic Algorithm (GA) in order to solve large 
scale global optimization problems. 

It was found that high-order reconstruction 
leads to a drastic reduction in the number of 
design iterations, shortens the design cycle, 
lowers the cost and improves the quality. 

1  General introduction on optimization in 
aerodynamics 

Design in aeronautics is quite challenging due to 
the large parameter space to be explored. Using 
high fidelity CFD to resolve multi-objectives 
optimization problems demands large 
computing resources, numerous software 
licenses, hardware for massive parallelism and 
significant human power. Under stringent time 
scales and costs, advanced optimization 
techniques are therefore needed to achieve a 
practical design.  

The ideal data for a designer is the set of 
optimal points, defined as the Pareto frontier, in 
order to find the compromise that best fits the 
application. 

The classical industrial optimization approach is 
to minimize a pseudo-objective function, which 
is a weighted sum of each single objective, with 
a gradient-based method [1] [2]. By operating 
this way, the designer only finds a single point 
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of the Pareto front determined by the weights 
given to each objective. Therefore, he has to run 
multiple optimizations with different sets of 
weights to get the entire Pareto front. Besides, 
when the Pareto front features a concave zone, 
the optimizer is not able to find optimal 
solutions in this particular zone. An additional 
drawback is that the obtained optimum is local, 
therefore its quality strongly depends on the 
chosen baseline. Gradient-based optimization 
supported by the adjoint approach is more 
efficient when the number of design variables is 
large [3] [4]. However, the adjoint equation 
depends on the objective function, so that 
changing the objectives is not quite flexible. To 
summarize, gradient-based methods are not very 
efficient for solving multi-modal and multi-
objective optimization problems. One can also 
point out that they have a high level of coupling 
between the search and the evaluation. 

An interesting alternative to gradient-based 
methods is the family of meta-model assisted 
Evolutionary Algorithms [5]. We focus here on 
Genetic Algorithms (GA) [6] such as SPEA2, 
NSGA2. GAs are global algorithms that are 
uncoupled with the objective evaluation 
process. Moreover, they handle multi-objective 
optimization problems quite well. Their 
drawback is the very large number of required 
objective evaluations. Even if these evaluations 
can be easily distributed on a computer cluster, 
the process is still slow and  implying to buy as 
many CFD software licenses as computer nodes. 
One way of alleviating this computational 
burden is by using a meta-model, which are 
described in the following section. 

2  Meta-Model 

A major issue in CFD is the prohibitive 
simulation time required to get an accurate flow 
solution: some problems can require weeks of 
computation on high-performance computers, as 
well as Gigabytes of storage memory. On the 
other hand, multi-objective optimization 
techniques always require the evaluation of 
numerous candidate solutions in order to build 
the Pareto-optimal frontier, and become 
therefore out-of-reach if a single CFD 

simulation is expensive. Based on 
approximation theory, meta-models address this 
challenge by quickly evaluating the objective 
functions for any given set of parameters, only 
using a sample database and some mathematical 
analytical functions. Optimization algorithms, 
such as the costly evolutionary ones, will then 
evaluate the candidates without calling the CFD 
solver but the meta-model, which “engenders” a 
substitute for the desired design point. We 
underline here that the meta-model building 
procedure is completely independent from the 
choice of the optimization algorithm. Besides 
drastically saving CPU time, the approximation 
process of the meta-models also allow the 
designer to have access to the smoothed 
continuous objectives space and thus really 
apprehend the sensitivity of the parameters over 
a large domain. In other words, the benefit of 
the meta-models is twofold: they give engineers 
a better perception of the physical issues while 
they offer optimization algorithms an efficient 
way to locate the Pareto-optimal frontier when 
several concurrent objectives are targeted by the 
designer. 

2.1  The General approach 

There is a broad variety of meta-model 
techniques such as Response Surface 
Methodology, Artificial Neural Network (ANN) 
[7], Radial Basis Functions [8] or Kriging [9] 
(reference [10] presents a good survey of these 
different techniques). The main drawback of all 
these meta-models is that the parameters space 
has to be scarcely sampled while each point 
corresponds to a high-fidelity CFD solution. 
This step is crucial as the resulting transfer 
function from the input to the output of the 
meta-model strongly depends on which sample 
CFD points have been brought to it. Although 
these latter points can be chosen at random, 
Design of Experiments [11] is the most popular 
method to discretize the parameters space while 
preserving the maximum of information. Note 
that for every sampling methods, the number of 
CFD computations required to fill the sample 
database grows exponentially with respect to the 
number of design parameters. If each of these 
methods have their own advantages and 
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disadvantages regarding the complexity of 
internal setting parameters, robustness, 
efficiency or accuracy, it can be said that using 
any of them is a complex and critical task for 
the engineer. For example, when using ANN, 
the set of already evaluated design points needs 
to be divided by the user into some training and 
test sets. The latter set contains the samples 
needed to evaluate the capability of the ANN to 
predict unknown points different from the 
training set. Usually, one tries to stop the ANN 
procedure when the error on the test samples is 
no longer decreasing, to avoid over-learning. 

The meta-model approach presented in the 
following is fairly different since we do not 
sample the parameter space to build the meta-
model: a single design point is used, which is 
the reference design point. 

2.2  Turb’Opty TM  and Turb’PostTM  

In the meta-model described here, the flow field 
for a given set of parameters is approached 
using high-order derivatives of the discretized 
flow variables with respect to the design 
parameters at the reference point. This 
parametrization method could be viewed as a 
high-order extension of the first- and second-
order sensitivity equations methods described in 
references [12], [13], and [14] by Pelletier et al., 
where the method is applied to standard but 
complex cases. However, here the derivatives 
are not computed analytically but thanks to 
direct mode Automatic Differentiation (AD) of 
Turb'FlowTM, a Reynolds-averaged Navier-
Stokes flow solver based on the finite-volume 
method (see [15] for an example of AD tools 
applied to a CFD industrial code). This AD 
methodology is similar to the one commonly 
used in the adjoint-state method in order to 
evaluate the first-order derivative, except that 
reverse mode is used in that latter case. By also 
generating the high-order derivatives, 
Turb'OptyTM [16] makes possible the highly 
accurate parametrization of the flow field in the 
region neighboring the reference design point. 
Indeed, the derivatives being discretized over 
the fluid mesh, the generation of a complete 
flow field is performed for any given design 

parameters with Turb'PostTM using Taylor Series 
expansion or some other functions such as 
Fourier series [17]. As shown in Fig. 1, the 
meta-model consists in the combination of both 
Turb'OptyTM and Turb'PostTM: the former 
generates the derivatives database once, then the 
latter constructs as many flow fields as required 
by the designer or the optimization tool, each of 
these evaluations being almost instantaneous. 
We note that the derivatives can be either with 
respect to operation or shape parameters. 

 
Fig. 1 Diagram of the parametrization  process 

Another advantage of this meta-model is that 
the complete flow fields are generated for each 
design points so that objectives can be defined 
in an independent step, unlike most other meta-
models, which require a new training process 
when an objective is changed or a new one is 
introduced. The meta-model can be generated 
first by the CFD engineers and the objectives 
formulated later by the designers, with a total 
freedom. Also, new parameters can be 
introduced afterwards, and combined with the 
old ones, without having to start from scratch. 
Regarding the computational cost of the 
method, Turb'OptyTM implies linear system 
resolutions such as the ones resulting from the 
adjoint-state method, while Turb'PostTM cost is 
not significant. 

We now give an example of application, with a 
standard CFD case. 

3  Validation example: the NLR 7301 two-
element airfoil 

The geometry is the 2D NLR 7301 airfoil/flap 
configuration [18]. Freestream Mach number is 
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M=0.185, chord Reynolds number is 2.51 106 
and far-field pressure is 101227 Pa. The 
parametrization is done with respect to the angle 
of attack α, with unchanging boundary 
conditions. Results are compared with 
experimental data and reference computations 
(see [19] and [20]).  

As explained in the previous section, one 
reference design point needs to be simulated 
first, in order to build the derivative database. 

3.1 Reference flow field, angle of attack α=6° 

The reference flow field is evaluated with 
Turb’FlowTM for the angle of attack α=6°. 
Jameson’s centered convective scheme along 
with Kok’s turbulence model are used in the 
computation (see Fig. 2 for the Mach number 
around the airfoil).  

 

Fig. 2 Mach number contours, angle of attack α=6° 

The calculated wall pressure coefficient  agrees 
well with experimental data, both on the airfoil 
and flap. Also, the calculated lift coefficient is 
2.372 while the measured one is 2.4. Thus, this 
aerodynamic field is shown to be good enough 
to be used in Turb’OptyTM. 

3.2 Extrapolated flow fields 

Using the reference solution at α=6°, first- and 
second-order derivatives of the flow field, with 
respect to α, are computed by Turb’OptyTM. 
Afterwards, a flow field corresponding to any 
value of angle of attack can be generated by 
Turb'PostTM, and some local and global flow 

coefficients can then be evaluated from that 
extrapolated field. For example, Fig. 3 and Fig. 
4 show the wall pressure coefficients at α=10° 
and α=13° compared to experimental data. We 
observe on both figures that plus signs 
(experimental data) are almost matching with 
the solid curve (numerical results from 
Turb’OptyTM/ Turb’PostTM). 

Fig. 3 Wall pressure coefficient, angle of attack 
α=10° (ref. α=6°) 

 

Fig. 4 Wall pressure coefficient, angle of attack 
α=13° (ref. α=6°) 

In Fig. 5, the lift coefficient is evaluated for an 
angle of attack spanning the interval 0° to 16°. 
We observe that the error between the results 
from Turb’OptyTM and experimental data 
remains small over a large domain of the 
parameter α, where the error is actually close to 
the one measured at the reference point α=6°. If 
experiments show that massive stall occurs 
suddenly when α reaches about 15°, the drop of 
lift coefficient is not correctly evaluated either 
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on the extrapolated flow field or on the solution 
issued from Turb’FlowTM at α=16°. However, 
both solvers predict a large flow separation on 
suction side before the main body trailing edge, 
as shown on Fig. 6 (Turb’OptyTM results). This 
highly non-linear flow feature seems to be 
unpredicted by RANS simulations, as reported 
by Abalakin et al. [20]. 

 

Fig. 5 Lift coefficient with respect to angle of attack 
(ref. α=6°) 

 
Fig. 6 Velocity modulus and velocity vectors 

extrapolated at α=16° (ref. α=6°) 

We now look at an optimization example. 

4  Exploitation example of extrapolated flow 
fields for optimal design 

By coupling Turb'PostTM with a GA, the 
parameter space is thoroughly explored. When 
the treated problem is “friendly”, a single 
optimization may be enough: the designer just  
has to choose on the Pareto front the optimal 

solution that best suits his industrial 
specifications. However, some other 
optimization problems in fluid mechanics can 
be highly complex: achieving just one 
optimization loop may not be enough to reach 
the “perfect” design. To get more insight into 
the problem, the designer has to run multiple 
optimizations for which the objectives remain 
the same, but the active parameters vary from 
one run to another. By comparing the resulting 
Pareto fronts, the designer understands the 
effect of the parameters on the objectives in a 
better way. To achieve this kind of comparative 
study with a classical surrogate model such as 
ANN, the designer has to re-train the meta-
model for each choice of parameters. When 
using  Turb'OptyTM, once the derivative 
database has been built, the designer can run 
optimizations based on any sets of parameters in 
an efficient way, and also grasp the coupling 
effects of parameters by activating the second 
order cross-derivatives of the flow field. 
Although these cross-derivatives may not be 
prevailing in some optimization problems, they 
can make a crucial difference in other cases. 

The test case presented here is a 2D low-speed 
fan profile optimization, which has four 
objectives: 

• maximization of static pressure 
difference 

• maximization of the static efficiency 

• minimization of the loss coefficient 

• minimization of the torque 

The designer can choose to use any sets of 
parameters among the following: 

• stagger angle (C) 

• tangent of angle at the leading edge 
(Tba) 

• tangent of angle at the trailing edge 
(Tbf) 

• maximum camber (with respect to the 
chord) (d) 

• position of maximum camber (with 
respect to the chord) (Xd) 
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Only two objectives (static pressure difference 
and static efficiency), are presented in this paper 
for clarity reasons, which implies that the fronts 
in Fig. 7 and Fig. 8 are projections. Fig. 7 shows 
the results of four different optimizations 
without using the cross-derivatives. The 
reference solution in the vicinity of which was 
constructed the derivative database is 
represented as a green square and referred as 
“optimA”. This reference solution corresponds 
to a previous optimization, which explains why 
all the Pareto fronts are close to it.  Regarding 
Fig. 7, three optimizations were performed 
using a set of only four parameters, while the 
last one took into account all five parameters. 
Here, the parameter “Xd” is responsible for the 
little improvement in the population. Indeed, at 
fixed static pressure difference, little growth of 
efficiency is achieved and the same can be said 
in the other way around. Now, if the designer 
activates the cross-derivatives and performs the 
same optimizations as for Fig. 7, he obtains the 
results shown in Fig. 8. Although Fig. 7 shows 
that some parameters have no effect on the 
objectives, Fig. 8 highlights that the best 
compromises are obtained when all parameters 
are activated and coupled by the cross-
derivatives. The comparison of the red, the pink 

 
Fig. 7 Pareto fronts, without cross-derivatives 

 
Fig. 8 Pareto fronts, with cross-derivatives 

and the blue Pareto front projections shows that 
all the cross-derivatives involving the parameter 
“Xd” lead to significant enhancement in the 
population. Moreover, the cyan Pareto front 
projection shows that cross-derivatives 
involving “Tba” and “Tbf” enable to achieve a 
little more improvement. The optimum referred 
as “optimB” is an interesting solution: it has 
maximum efficiency and static pressure 
difference. Fig. 9 and Fig. 10 show the static 
pressure field for the design points “optimA” 
(the reference point) and “optimB” respectively.  

 

 

 

Fig. 9 “optimA” design point, static pressure 
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Fig. 10 “optimB” design point, static pressure 

5 Conclusion 

The authors presented here a meta-model based 
on high-order derivatives of the discretized flow 
field with respect to shape or operation 
parameters. This requires to perform a single 
CFD simulation, while demonstrating a high 
level of extensibility and flexibility regarding 
the definition of parameters and objectives. 
Once the derivative database has been built, the 
objective evaluation process for a given design 
point is almost instantaneous, making GAs 
optimization algorithm particularly efficient for 
exploring the parameter space. We have shown 
an example of the extrapolation technique with 
the standard NLR 7301 two-element airfoil, and 
then presented an example of 2D low-speed fan 
profile optimization using GAs coupled with 
our meta-model. We found with this analysis 
that significant improvements can be achieved 
mainly by changing locally the camber line of 
the profile. 
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