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Abstract  

A test stand named ANIPROP∗RL3**is intro-
duced. The device allows the simultaneous 
recording of dynamic and kinematic quantities 
like thrust, lift and speed of components for 
biologically-inspired flight. The models are 
suspended from a boom and rotate around a hub 
on a circular path of about 6 m diameter. Thrust 
is described by an ordinary nonlinear differen-
tial equation for the components’ velocity. The 
repeated solution of a system of nonlinear 
equations for various values of the velocity over 
the recorded period of time leads to a prediction 
of the thrust and all unknown coefficients. 

 1  Introduction  
The thrust generated by the flapping-flight 
mechanism of a coupled bending/torsional 
motion is a complex matter for both the theo-
retical prediction and its measurement.  Almost 
all current flapping-flight devices rest on a pure 
active plunge mechanism which – according to 
theoretical prediction – is said to be sufficient 
for generating thrust. A closer look at the 
location of this well known “suction force” 
accompanying the plunging motion reveals that 
it originates from the nose region of a profile 
within the first 2-3 % of the chord length. A less 
well known experimental work by Windsor [1] 
shows the decay of this force at angles of 
incidence larger than about 6 degrees (Fig. 2).    
Thus, the designers of flapping-flight devices 
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are forced to admit a certain structural flexibility 
which results in a passive torsion of the wings.  
For this coupled bending/torsional motion the 
location of the suction force now stretches from 
the leading edge to the trailing edge as 
desirable. However, the aerodynamic efficiency 

of active bending combined with passive torsion 
never exceeds 35-40 % and is very sensitive to 
the structural properties. It is the additional 
small amount of power driving an active torsion 
which raises the aerodynamic efficiency up to 
80-90 %. The theoretical background may be 
found, among others, in earlier papers by Send 
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Fig. 1. The various parts of the device.  
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[2, 3, 4]. A basic introduction is summarized in 
chapter 3. These predictions were compared 
with experimental results gained from the RL3 
using the simple artificial bird in Fig. 1 with a 
passive torsion [5].    
     The goal of the authors’ current research is to 
identify the benefits from an active torsion 
predicted by all theoretical models ranging from 
classical potential theory to modern viscous 
flow CFD-solutions  on an experimental basis 
using the test stand ANIPROP RL3.       

2 Notation in the theoretical part  

H0α  Amplitude of )(/)( txtz && for small angle 

0α  Amplitude pitch [rad] 

Sα  Steady angle of incidence [rad] 

0h  Amplitude plunge [m] 
c Chord length [m] 
S Planform area of the wing 

λ, cλ  Amplitude ratio =
2/0

0

c
h
⋅α

, cλ =λ/2 

x, y, z Space-fixed coordinates [m] 
∗∗ zyx ,, *  Body-fixed coordinate system [m] 

f  Frequency [Hz] of periodic motion 

ω Circular frequency = fπ2 [1/s] 
T Period of cyclic motion =1/f  [s] 
t Physical time [s] 

0u  Kinematic x-velocity [m/s] 
X Degree of freedom (DOF) {g, h, α} 
ρ Density of the fluid [kg/m³] 

Xa  Dimensionless amplitude of DOF X 
)2//(0 chah = ,  0αα =a  

FD(t) Drag force [N] 
0q  Dynamic pressure = 2

02
1 u⋅⋅ ρ  [N/m²] 

0F  Force constant = Sq ⋅0  

)(tFN
∗  Force normal to the wing planform [N] 

FL(t) Lift force [N] 
g(t)  Motion, gliding: g(t) = tu ⋅0 [m] 
x(t) Motion, in x-direction  = -g(t) [m] 
z(t) Motion, in z-direction  = -h(t) [m] 

)(tHα  Motion, apparent inflow angle [rad]  
)(tPα  Motion, pitch  = tS ωαα cos0+  [rad] 

h(t) Motion, plunge  = )cos(0 κω +th  [m]  
κ Phase shift of plunge versus pitch  [rad] 

Lx  Centre of steady pressure distribution  
Px  Pitch axis, absolute position  

)(tPX  Power at DOF X  [W] 
)(, tc XΠ  Power coefficient of DOF X   

= )/()( 2
000 α⋅⋅uFtPX  

>< Π Xc ,  Power coefficient averaged over T 
ηaero Aerodynamic (propulsive) efficiency  

ηmech Electro-mechanical efficiency 

ηtotal Total efficiency ηtotal = ηaero · ηmech 

 ∗ω , ∗
cω  Reduced frequency 

0

2/
u
c⋅ω , ∗

cω = ∗ω2  

     The notation of the kinematics follows the 
notation in the classical papers [6,7,8]. For t = 0 
the pitch angle is maximum positive. Without 
any phase shift (κ = 0°), the wing starts at the 
bottom in its lowest position. 3 shows a phase 
shift of κ = 90°, for which the highest pitch 
angle and the largest plunge velocity during 
upstroke coincide. The same phase shift leads to 
the interesting features in the centre of the 
graphs in Fig. 4. 
     For XP > 0 power is consumed at DOF X and  
therefore is required for supplying the motion.  

Fig. 2. Flat plate theory, unsteady mean drag 
coefficient c(2)x . Experimental data selected 
from Windsor’s results. The negative suction 
force reduces the mean drag, if it is present. 
Theory includes (blue line) or ignores (red 
line) this second order term.       
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     For XP < 0 power is released at DOF X. 
Power is gained by the motion and has to be 
consumed for keeping the motion balanced.    

3 The Focus of Interest in Brief  
The translational motion (x(t),z(t)) of the 2D 
wing section (profile) in 3 leads to the angle 

)(tHα of the slope 

0

0 )sin(
)(
)()(tan

u
th

tx
tztH −

+⋅⋅
==

κωω
α

&

& . (1) 

 For small angles the tangent may be linearized 
by )()(tan tt HH αα ≅ . With this assumption the 
amplitude of the angle of incidence due to the 
plunging motion can be expressed relatively to 
the pitch amplitude by the two coefficients λ 
and ∗ω :  

∗⋅=∗⋅=
⋅

=
⋅ ccu

hH ωλωλ
ω

α

α

α
00

0

0

0  (2) 

The fluid’s effect on the profile is 
like it would be rotated by the 
angle )(tHα . Moving in the fluid the 
profile experiences periodic normal 
forces due to the both motions pitch 
and plunge. While the normal force 
due to plunge does not rotate the 
profile geometrically, the pitch so 
does.  

The normal force in the body-fixed 
coordinate system (3) can be estimated 
from the 2D lift formula for the 
inclined plate 

.)()()(

),(2)(*
0

ttt

tFtF

HP

N

ααα

πα

+=

⋅≈  
(3) 

The force in Eqn. (3) now is transformed into 
the reference system of the averaged trans-
lational motion, the direction of  0u .    
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(4) 

For small pitch angles αα ≅sin  and 
1cos ≅α  are applied, which gives the well 

known result that an unsteady harmonic motion 
produces a harmonically varying lift force and a 
drag force with the double period. As a 
consequence, the drag force averaged over one 
period of motion leads to a non-vanishing term, 
the mean thrust. In a more elaborate theory, the 
term in Eqn. (3) for the normal force is replaced 
by functions for the unsteady motion in which 
the shedding vortices lead to delayed or 
advancing reactions of the forces relative to the 
kinematic motion. The corresponding powers 
are given by force × velocity  

[ ]zxP kinkintrans && ,0,−=⋅= v,vF  (5) 

and moment × angular velocity 

 
Fig. 3. 2D Kinematics and normal force ∗

NF . 
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[ ] ( )LPNPPProt xxtFtMttMP −⋅=−⋅= ∗ )()(,)()( α& . (6) 

The force F in the preceding equations is the 
reaction force of the fluid on the moving body. 
Thus, the velocity in the formulas has to be the 
kinematic motion of the fluid relative to the 
body, which is the negative value of the body’s 
velocity in the fluid. The fluid is at rest.  

If the centre of the pressure distribution Lx  
is close to or even coincides with the centre of 
rotation Px , the power due to rotation is neg-
ligible in the quasi-steady case.  

The basic mechanism of thrust generation 
is understood after evaluating Eqn. (5). The 
translational power is split into the contributions 
from the DOFs g and h: 

zFxFPPP LDhgtrans && ⋅−⋅−=+=  (7) 

A straightforward calculation leads to )(tPg  
and )(tPh . From the mean value during one cycle 
of motion  

dttPP
T

XTX ⋅=>< ∫0
1 )(  (8) 

the power coefficients are computed, given by 

2
000

, α⋅⋅
><

=>< Π uF
Pc X

X
. (9) 

In the simplified approach, results for the trans-
lational motions read 

[ ]1sin, −⋅⋅−=>< ∗
Π κλωπgc , (10)

[ ]κλωλωπ sin, −⋅+=>< ∗∗
Π hc . (11)

For the favourable case κ = 90° thrust is gained 
for λω∗ >1. From the definition in Eqn. (2) 
propulsion is effected by a large plunging 
motion for which the amplitude of the apparent 
inflow angle )(tHα is larger than the amplitude 
of the geometric pitch angle )(tPα . The pro-
pulsive or aerodynamic efficiency Tη  is given 
by 

0, ,
,,

, <><
><+><

><−
= Π

ΠΠ

Π
g

h

g
T c

cc
c

 
α

η . (12)

4 Efficiencies  
The overall or total efficiency ηtotal of a flapping-
flight component is given by the thrust power 
gained from the engine, the output, compared to 
the energy input. The thrust power balances the 
drag and the weight of the device. The 
efficiency of this process is composed of at least 
two different constituents, the electro-mechan-
ical efficiency ηmech and the propulsive or aero-
dynamic efficiency ηaero , i.e. Tη  in Eqn. (12). 

ηtotal = ηaero · ηmech (13)

     The aerodynamic efficiency is a theoretical 
prediction, which needs to be checked in an 
appropriate experiment. Eqn. (12) is the pre-
dicted efficiency of a 2D pitching and plunging 
thin plate. The result for the well known 
analytical solution in incompressible flow is 
shown in Fig. 4. The four graphs in the figure 
display the basic features of animal flight. 
Whereas the power coefficients in Eqns. (10) 
and (11) solely are based on the kinematic 
relations, the physical model behind these for 
graphs also includes the unsteady wake field of 
the vortices travelling downstream. Their 
influence causes the phase shifts between the 
motion and the resulting forces and moments. In 
particular, the power coefficient of the pitching 
motion reveals a fundamental property of 
animal flight, over and above that, of the 
mechanism of coupled bending and torsional 
motion in general. The motion becomes 
extremely efficient for an active torsion and 
then converts almost all input power into thrust. 
Active torsion takes place in the circled area in  
Fig. 4. The graph shows, that the torsion acts 
like a catalyst for the mechanism. It requires 
hardly any power, but needs to be present.  

Historic remark. In 1929, at the time 
Alexander Lippisch made his famous experi-
ments with flapping-flight airplanes, the theo-
retical background of aerodynamic efficiency 
predicting the importance of active torsion was 
not yet developed. The very first paper on 
unsteady experiments in a wind tunnel had 
appeared a couple of years ago. The experi-
ments had been carried out by Katzmayr [9] in 
Vienna. Lippisch refers to Katzmayr’s work in 
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the paper in which he describes years later his 
experiments with flapping-flight drives [10]: 

.. After testing the ship a few times in gliding, 
Hans Werner [Krause] tried the first flapping-
wing flights. The result was quite disappointing, 
since we could not see any improvement of the 
glide angle. At least the effect was so small that 
the measured Katzmayr effect did not show up, 
and the twisting of the wings, even with this 
light construction, did not occur. At first we did 
not know what to do next. 

To find out how to improve things I made 
some tests with a model wing, and I clearly 
observed that a stiff wing in flapping motion 
did not produce any forward thrust.1 I then 
remembered that some of the stories from early 
years told about a flexible trailing edge. I 
therefore enlarged the outer portion of the wing 
by the addition of a flexible (single bamboo 
sticks) Zanonia-like rear surface as shown in 
the sketch. The piece was not very large but 
what a difference in propulsive action was 
caused by this change! … 

5 Concept of the Test Stand ANIPROP RL3  
The rotating boom of the test stand consists of 
two rods, which are connected to each other by 
a hinge named joint-head Gk with one degree of 
freedom. The inner boom Ri remains horizontal 
during the motion, the outer boom Ra is in a 
vertical position for the boom at rest. The angle 
enclosed by the outer boom and the horizontal is 

                                                 
1 Phrase highlighted by the author. Thrust by a pure 
plunging motion still is a very controversial issue among 
aerodynamicists.  

denoted as centrifugal angle β. Fig. 5 shows the 
side view of the geometric relations.  

The distance Rβ  of the centre of gravity of 
the model M investigated to the axis of rotation 
is given by       

ββ cos⋅+= ai RRR  (14)
The model experiences three forces, the 

gravitational force FG, the centrifugal force FC, 
and the lift force FL. The decomposition of the 
three forces into a horizontal component and a 
vertical component immediately leads to a 
formula for the lift force  

[ ]βωβ β tancos 2 ⋅⋅−⋅⋅= RgMFL  (15)

The inner part of the square bracket is the 
relation for the circular motion of a mass on a 
rotating string. ω is the circular frequency of the 
rotation and g the gravitational acceleration.  
The expression vanishes for a point mass which 
experiences no further force. In the presence of 
a lift force the angle β either decreases for 
positive lift or increases for negative lift.      

• Thus, the measurement of the lift force 
on the model M is carried out by deter-
mining the centrifugal angle β and the 
angular velocity ω.       

For a non-uniform motion the angular velo-
city is given by the time derivative of ϕ(t).   

The boom is towed by a lever which is driven 
by an electric motor. The point of origin of the 
towing force FS is distant to the axis of rotation 

 
Fig. 5. Geometry of the boom - side view. 

 
Fig. 6. Geometry of the boom - top view. 
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by the length Rf (the moment arm). The spring 
scale symbolizes the force measurement, and is 
located between the lever and the boom. For the 
purpose of demonstrations, the measurement 
indeed is carried out using a spring scale. The 
elongation of the scale is available as an electric 
signal. For more accurate measurements, the 
spring scale is replaced by a force sensor. 

The total drag of the boom including the 
aerodynamic drag of the boom and the friction 
of the bearings is given by 

SfD FRRF ⋅= )/( β  (16)

It is worth mentioning that this concept is not 
entirely new. Otto Lilienthal designed a test 

stand for the measurement of lifting 
surfaces [12]. Even closer to the 
RL3’s concept is the apparatus 
depicted in Fig. 8. It was developed 
by the French scientist Étienne-J. 
Marey. Pressure sensors allowed 
the recording of the birds’ kine-
matics. The simple artificial bird in 
Fig. 1 is equipped with two sensors 
for the two degrees of freedom 
pitch and plunge.       

6 Data acquisition   
The data acquisition system be-
longing to the RL3 is laid out for 
the recording of ten signals. 

1 Towing force 
2 Centrifugal angle  
3 Voltage tow motor 
4 Voltage flapping device 
5 Current tow motor 
6 Current flapping device 
7 Pitch angle (feathering) 
8 Plunge angle (flapping)  
9 Speed marks  
10 Position marks 

All signals including the marks for 
speed and position are analogue 
signals. An A/D card converts the 
signals for digital processing in a 

computer. Speed marks are sent 180 times per 
revolution, i.e. each 2 degrees, the position mark 
is sent once per revolution. The purpose of the 
position mark is to relate anomalies in the data 
to the position of the model in the test hall.  

A large number of physical quantities can be 
derived from the input signals. The basic 
quantities are 
• the velocity 0u  of the moving model, 

• the total drag force FD in Eqn. (16), 
• the lift force FL  according to Eqn. (15), 
• the electric power PF consumed by the 

flapping-flight component.   

 
Fig. 7. Central unit of the RL3. The lever tows the boom via a force 
sensor which is connected to an amplifier. Power supply and signals 
are transmitted using slip rings. The electric motor in the upper 
right corner  works as gearwheel drive. The height is about 0.6 m.  

 
Fig. 8. Apparatus designed by Étienne-Jules Marey (1830-1904). 
Investigation of life birds equipped with pressure sensors [11]. 
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7 Operating the test stand RL3 

Thrust measurements with the RL3 may be 
carried out in two different modes. In the free 
mode the tow lever is removed. The model starts 
from a position at rest. Fig. 9 shows the increase 
of passive torsion after the start and a raising 
amplitude with increasing speed. In Fig. 4 the 
corresponding operating range is the blue 
coloured area for pitch where the motion 
consumes power (lower right graph).  

The tethered mode uses the tow lever which 

is symbolized by a spring scale in Fig. 6. 
The boom with the model is driven by the 
electric motor installed on the central unit. 
For a given speed, the spring scale, the 
force sensor respectively, indicates the 
drag. If the flap mechanism is turned on, 
the drag is reduced by the amount of thrust 
generated. Fig. 10 shows a typical 
measurement. At the beginning, the 
flapping mechanism is turned off. The 
towing force (blue line) coincides with the 
steady drag (green line). Then the 
mechanism is turned on. FS decreases by 
the amount of thrust which now is 
generated. During the measurement the 
thrust gradually is decreased until the 
uniform steady motion is reached again.  

The difference in lift at the beginning 
and at the end is caused by a slightly 
different position of the wings, which 
simply results from manually turning off 
the power. The model possesses no “lock-
in” mechanism, which stops the flapping 
wings at a preset position for steady flight. 

The data processing implies several 
steps which complicate the evaluation. 
They are not discussed here in detail. For 
example, a closer look at the towing force 
in Fig. 10 shows a higher value at the end 
than at the beginning. This is caused be the 
increased lift. The difference is responsible 
for a slightly higher induced drag. Its 
absolute amount is scaled by the ratio in 
Eqn. (16).    

 
Fig. 9. Start of the artificial bird in free mode. Passive 
torsion is forced with beginning motion. 

Towing force 

Torsion 
Bending

Speed marks 

Angle β 

Fig. 10. Typical thrust measurement in tethered mode. 

Fig. 11. Drag curve of the boom. 
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The total drag immediately leads to the total 
power which is consumed by the towed model. 
The model’s aerodynamic drag is obtained by 
subtracting the drag of the boom from the total 
drag. Fig. 7 shows a typical curve for the 
boom’s drag. The caption in the figure tells that 
the drag of the support for the model is not yet 
included, which gives an additional small 
contribution.  

8 Electromechanical efficiency 
The total efficiency is determined by the ratio of 
gained thrust power to electric power consumed 
by the model. This ratio is not yet the predicted 
aerodynamic efficiency in Eqn. (12), which 
cannot be measured directly. The evaluation of 
the aerodynamic efficiency requires the deter-
mination of the electromechanical efficiency of 
the respective flapping-flight component.  

This is step #1 for verifying the high 
aerodynamic efficiency of the active torsion. 
The device in Fig. 12 determines the electro-
mechanical efficiency. The upstroke and down-
stroke of the wings is transferred to two levers 
(one of them is sketched in red). They are fixed 
on the horizontal axis of a device which 

frequently is named Prony brake. The more or 
less tightened brake shoe forms the end of a 
moment arm which is held by a force sensor. 
The flapping motion causes a cyclic motion of 
the horizontal axis, which is measured by a 
rotary inductive position sensor indicating the 
angular velocity. Force and lever form a 
moment of force, which - multiplied by the 
angular velocity - results in the available 
mechanical power. 

Step 1: ñmech = supplied electric power

availabe mechanical power
 

Step 2: ñtotal = supplied electric power
gained thrust power

 

Step 3: ñaero = supplied mechanical power
gained thrust power

 

The experiment with the towed model 
provides the data which are shown in Fig. 10. 
This is step #2 in the case of the tethered mode. 
The next step #3 gives the result for the 
aerodynamic efficiency:  

mech

total
aero η

ηη =  (17)

The verification of the theoretical predictions 
critically depends on the careful measurement 
of the electromechanical efficiency of the 
flapping-flight model.   

9 Direct thrust measurement 
While the determination of thrust in tethered 
mode is easily accomplished, its evaluation in 
free mode requires more effort. The measure-
ment done in free mode is named direct thrust 
measurement. From the physical point of view, 
this is the result which is comparable to the 
thrust data given for a customary airplane en-
gine, except that the typical values are smaller 
by several magnitudes. The flapping-flight 
model is mounted in a support frame and 
suspended from the boom like shown in Fig. 1.  

In a preliminary step the moment of inertia JF 
of the model including the boom and the 
support is determined. This is done by 
accelerating the joint-head by a falling mass. 
The configuration is displayed in Fig. 13. The 
joint-head Gk is connected via a thin nylon 

Fig. 12. Prony brake for the measurement of 
electromechanical efficiency of flapping-flight 
components - sketch of the wing motion. 

Brake shoe  
Force sensor  

Rotary sensor 
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thread to a guide pulley at the fixed point PT and 
from there to a mass mT of known weight which 
hangs at the end of the thread. Then, the joint-
head Gk is released and the boom with all parts 
is accelerated. Close to the apex of the circular 
motion, where the direction of traction of the 
nylon thread is nearly perpendicular to the 
boom, the motion may be treated as being linear 
instead being circular. With this assumption, the 
equations         

2, iFFFFT RMJaMgm ⋅=⋅=⋅  (18)

give the unknown moment of inertia JF. The 
constant g is the gravitational acceleration and 
the acceleration aF is determined from time 
derivative of the velocity measurement of the 
rotating boom. The following table gives an 
impression of the accuracy which might be 
achieved. 

Once the moment of inertia is determined, 
the ordinary differential equation for the 

unknown thrust FT is set up.  Again, the circular 
motion is treated as being a linear motion. A 
further assumption is a constant thrust. The 
following equation includes a friction term k 
proportional to velocity and the aerodynamic 
drag coefficient r proportional to the square of 
velocity 

TF FtukturtuM =⋅+⋅+⋅ )()()( 2&  (19)

The equation for the velocity u(t) is solved by 

( )[ ]ck tttuutu /tanh)( 00 −⋅+−=  (20)

with the constants given by 

( )
0

22
0 ,,

2 ur
M

tFuur
r
k

u F
cTkk ⋅

==−⋅=  (21)

Weight mT, Record # JF [kg m²]
 50 g 01 1.1386
 50 g 02 1.2503
 50 g 03 1.1689
100g 04 1.0713
100g 05 1.1809
100g 06 1.1027
Average 1.1521

MF 0.319 kg
Tab. 1. Moment of inertia JF and equivalent 
point mass MF for a typical configuration.  

 
Fig. 14. Set of velocity data for determining the 
moment of inertia. The boxed area near the apex 
is evaluated (acceleration aF ∼ 0.8 m/s²). 

 
Fig. 13. Geometry of the direct thrust meas-
urement with the outer boom kept vertically. 
Test stand seen from above.  

Joint-head Gk 

Circular path

Apex 

PT 

Boom 

Fig. 15. Velocity and acceleration over time t, 
measurement and theoretical reconstruction.  
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The unknown three physical constants r, k and 
FT are determined by the following procedure. 
Eqn. (21) implies the four unknown constants 
uk, u0, t0 and tc. The set of N measured data 

{n, tn, un(tn); n = 1, …, N} (22)

  is divided into four quarters. Then, any four 
pairs of data {i, ti, ui(ti); i = 1,2,3,4} are selected 
close to the beginning of each quarter. The four 
selections form a set of nonlinear equations with 
Fi = 0 for the four constants uk, u0, t0 and tc.: 

     The four equations are solved using the 
subroutine DNEQNF in the IMSL [13] for 
systems of nonlinear equations. The solution 
algorithm requires an initial guess. It is 
suggested to solve the system initially for k = 0, 
because k is a small quantity. The equations 
then read: 

     A sweep over the four quarters of the time 
interval with a successive solution for several 
sets of every time four pairs leads to an 
averaged solution for r, k and FT with the option 
of computing error estimates.     

10 Outlook 
At present, the search for the high efficiency of 
the active torsion is in the state of a thorough 
validation of the results for various flapping-
flight components and artificial birds.  
     The procedure described in this paper 
reflects the current state of the art of the 
authors’ approach to a better understanding of 
animal-flight performance.  
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F1(u0,tc,t0,uk) = -u1-uk+u0*tanh ((t1-t0)/tc)  
F2(u0,tc,t0,uk) = -u2-uk+u0*tanh ((t2-t0)/tc)  
F3(u0,tc,t0,uk) = -u3-uk+u0*tanh ((t3-t0)/tc)  
F4(u0,tc,t0,uk) = -u4-uk+u0*tanh ((t4-t0)/tc)

F1i(u0,tc,t0) = -u1+u0*tanh ((t1-t0)/tc)  
F2i(u0,tc,t0) = -u2+u0*tanh ((t2-t0)/tc)  
F3i(u0,tc,t0) = -u3+u0*tanh ((t3-t0)/tc)  


