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Abstract  

This paper discusses the development of a wind- 
tunnel testing equipment for investigating the 
dynamics behaviour of a 3 degree of freedom 
(DoF) aeroelastic system. It is intended to 
incorporate a mechanical platform into the test 
section of an open-loop wind-tunnel for this 
purpose. This platform must be designed such 
that the desired aeroelastic phenomena, such as 
instability (flutter), occurs and can be observed 
within the operation regime of the wind tunnel.  
Hence, a string of numerical calculations and 
analysis must be conducted to determine the 
plaform parameters. Theoretical analysis needs 
to be carried out by first forming the system 
aeroelastic mathematical model. The model is 
derived from a 3 DoF mechanical system 
involving unsteady aerodynamics force and 
moment induced by the system dynamic 
response. The aerodynamic force is calculated 
using Doublet Point Method (DPM) by 
considering the wing section main modes. The 
obtained force then is combined with the system 
dynamic equations which further is transformed 
into a generalized coordinate system. By 
analyzing and simulating the mathematical 
model, the aeroelastic system  parameters can 
be tuned to ‘match’ the wind-tunnel operation 
regime. Based on the obtained aeroelastic 
parameters, a platform configuration is 
designed and developed. The dynamic 
parameters of the platform must be adjusted 
such that they are equivalent to the 
mathematical model parameters. The dynamic 
characteristic of the platform then is evaluated 
and analyzed so that a compatible 
aeroelasticbehaviour can be observed during a 
wind-tunnel test.    

1. Introduction 
 
Dynamic aeroelastic problems generally can be 
represented as interactions between unsteady 
aerodynamics forces/loads and the structural 
forces (inertia, damping, stiffness) of the 
structures [2],[5],[11]. In this interaction, the 
aerodynamic loads vary as functions of the 
structure dynamic response/deflections, hence 
they form such a closed loop system where 
there is a loop of influence from the structure 
response to the aerodynamic forces, and vice 
versa.  
The study of aeroelasticity has been done in 
many researches, both theoretically and  
experimentally. It is obvious that experimental 
studies can be viewed as a way to validate the 
theoretical results, and as an effective way to 
observe and comprehend the physical 
phenomena in aeroelasticity problems. 
Theoretical methods for analyzing and 
evaluating the characteristic of aeroelastic 
systems have been developed and presented in 
many literatures.  In [2] and [5], 2 dimensional 
dynamic aeroelastic problem is described by 
analyzing 2 dimensional wing section system, 
where 2 degree of freedoms are involved, 
namely heaving (plunging) and pitching. 
Theodorsen unsteady aerodynamic coefficients,  
related to the heaving and pitching DoFs, are 
used for representing the aerodynamic force and 
moment in the 2D problem above. Based on this 
model, some methods for evaluating the 
characteristic of the aeroelastic system are 
discussed, for example the UG methods for 
determining the dynamic instability boundary 
(flutter speed).  In [11], a case of dynamic 
aeroelasticity involving a lifting surface with 
pitching and flapping DoFs is discussed, while 
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in [4] a problem involving rigid body mode is 
investigated. Method for determining the 
instability boundary by evaluating the 
characteristic roots of aeroelastic equation is 
described, for example, in [6] and [11]. 
Algorithm for computing the unsteady 
aerodynamic coefficients in time domain is 
described in [3], while in [9] an algorithm called 
Doublet Point Method (DPM) is described for 
computing the unsteady aerodynamic pressure 
distribution over a lifting surface. In [10] an 
approximation technique for obtaining unsteady 
aerodynamic loads representation is presented. 
This approximation is used in [6] for forming an 
aeroelastic equation in time domain. 
The experimental studies in aeroelasticity are 
also presented in many literatures and papers. In 
[8], some experimental studies in aeroelasticity 
conducted in NASA are presented, along with 
the description of some equipment used in the 
studies. The description of Benchmark Active 
Controls Technology (BACT) equipment for 
aeroelasticity wind tunnel testing is presented in 
[7] and [8]. Another test system is also 
discussed in [1] which is used for experimental 
study on the application of active control for 
nonlinear aeroelasticity.  
In order to conduct comprehensive studies on 
aeroelasticity, an experimental test equipment is 
about to be designed and developed in ITB,  
Indonesia. This paper discusses the 
development of a wind-tunnel test system for 
the investigation of aeroelastic system with rigid 
body mode involved. In this paper the 
configuration of the system will be presented, 
along with several theoretical studies which 
need to be done for determining the parameters 
of the test system.  
This paper paper will be presented in the 
following arrangement. The second section 
discuss the description of the existing wind 
tunnel  system operated by Faculty of 
Mechanical and Aerospace Engineering, ITB, 
Indonesia, for aeroelasticity study. The intended 
modification will also be described in this 
section. The third section presents the first step 
of the theoretical studies for obtaining the 
parameters of the test system, which is the 
governing of the aeroelastic equations and the 
unsteady aerodynamic calculation. In the fourth 

section, aeroelasticity analysis of the 
mathematical model is elaborated. Further, the 
determination of the test system parameters is 
presented in the fifth section, along with the 
description of a more detail configuration of the 
test system platform. The sixth section will 
conclude this paper by some analysis, 
evaluation, and proposition for further 
development.   
 
2. Wind-Tunnel Test System 
  
A low-speed open-loop wind tunnel system was 
developed in Faculty of Mechanical and 
Aerospace Engineering, Institut Teknologi 
Bandung (ITB), Indonesia, for aeroelasticity 
studies. This equipment has been used for 
several studies on aeroelasticity and active 
control implementation.  
 

 
 

Fig.1. ITB open loop wind tunnel 
 
It is intended to modify the equipment so that it 
can be used for further studies involving a 3 
DoF system, i.e. by incorporating a mechanical 
linkage which can represent the effect of a rigid 
body mode. The main configuration of the 
wind-tunnel is Table 1. 
 

Dimension 
Total length : 
Test section length: 
Test section width : 
Test section height : 

 
6 m 
1.2 m 
0.4 m 
0.4 m 

Max. flow speed : 20 m/s 
 

Table 1. ITB wind tunnel specification 
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Currently, the wind tunnel is already equipped 
with a spring supported wing section model 
representing a 2 DoF aeroelastic system. Several 
studies in aeroelastic instability and active 
control implementation have been conducted 
using this model. Another experimental study 
on the aeroelasticity characteristic of a bridge 
structure section was also done in the test 
section of this wind-tunnel.  
For designing the mechanical platform, besides 
the main system configuration, it is also 
required to determine suitable platform 
parameters such that the platform can exhibit 
particular aeroelastic behaviour in the wind-
tunnel. To determine the parameters, theoretical 
analysis must be carried out via mathematical 
modeling and analysis of the aeroelastic system. 
 
3. Aeroelastic Equation 
 
3.1 Equation of Motion 
 
The mathematical model of a 3 DoF aeroelastic 
system can be obtained from a typical wing 
section model, as described in [2] and [5], with 
a rigid body mode added to its DoF, as depicted 
in the following figure : 
 

 
 

Fig.2 Diagram of a 3 DoF system 
 

It can be seen from the diagram that the system 
has 2 variables related to flexible body DoFs, 
namely the wing heaving hW and the wing 
pitching α , while the rigid body DoF is 
represented by hF.  
Assumming that the structural damping is zero 
(Cs=0), and taking the elastic axis and center of 
gravity of the wing section coincide at the 
midchord, and the aerodynamic center is at c/4 
from the leading edge, then the equation of 
motion for the system depicted in Fig.2 can be 
represented as follows: 
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(1)
where mW and J are the mass and moment of 
inertia of the wing structure, mF  is the mass of 
the rigid body, kh is the stiffness for heave 
motion, kα is the stiffness of the pitch motion. 
While the unsteady aerodynamic force and 
moment are denoted by L and M, respectively. 
 
3.2 Doublet Point Method (DPM) 
 
The aerodynamic loads (L and M)  are 
calculated by implementing Doublet Point 
method described in [9]. This approach 
principally computes the pressure distribution 
over a lifting surface area, by exploiting its 
relation to the downwash flow distribution over 
the area. Suppose the lifting surface area is 
discretized into elements distributed in 
chordwise and spanwise direction, and each 
element at location (x,y) has vertical 
displacement as a function of time, denoted by 
z(x,y,t). Separating z(x,y,t) into the spatial part 
Ф(x,y) and temporal part q(t), we can express 
the element displacement as ( ) ( )tqyxz ,Φ= . 
The spatial part can be composed from the 
structural modeshapes representing the DoF of 
the system, in particular hW and α, hence it may 
be represented as ( ) ( ) ( )[ ]yxyxyx h ,,, αφφ=Φ . 
Having the surface already discretized into 
elements, the relations between pressure 
distribution and the downwash is described by 
the following equation: 
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( ) ( )yxwDyxp ,, 1−=  (2)
 
where p(x,y) is the pressure distribution and D 
is the aerodynamics matrix, defined by the 
equation below : 
 

[ ] ( )jijiA
j

ij yxKdD ηξ
π

−−
∆

== ,
8

 
(3)

 
where ∆j is the j-th element surface area, and xi, 
yi, ξj, ηj are the element coordinates. The Kernel 
function KA is described in [9], along with all 
the detailed explanation about the development 
of DPM method. Obviously, the aerodynamic 
matrix is determined by the geometry of the 
lifting surface. 
The downwash distribution vector ( yxw , ) is 
defined by the following relation: 
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where k is the reduced frequency ( ∞= Ubk ω ). 
The formulation above is called the aero-
structure coupling, which denotes the relation 
between the downwash ( )yxw ,  and the vertical 
displacement distribution represented by the 
structural modeshape Ф(x,y).  
Having the pressure distribution p(x,y) already 
computed via equation (2), the aerodynamic 
force and moment then can be computed by : 
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(5b)

 
where, the coefficients  and  of each 
elements are obtained from:  

lC mC
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(6b)
 

Note that the coefficients CL and CM above are 
computed from the pressure distribution related 
to each DoF of the system (1). 
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Fig. 3  Chordwise pressure distribution -

midsection (heaving mode) for rectangular wing 
with c= 0.25 m, s=0.35 m 
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Fig. 4  Chordwise pressure distribution -

midsection (pitching mode) for rectangular wing 
with c= 0.25 m, s=0.35 m 

 
3.3 Pade Approximation 
 
Using DPM, the aerodynamic coefficients CL 
and CM in (5a) and (5b) are computed as  
functions of reduced frequency k. Further, these 
coefficients are approximated by functions in 
Laplace variable domain as defined below: 
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(7)
where Q is the aerodynamics data (CL and CM)  
obtained from DPM computation, and  A0, A1, 
A2,… are the approximated aerodynamics 
matrices obtained from curve fitting procedure. 
Time domain functions obtained via the inverse 
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of Laplace transformation of (7) then can be  
applied for representing the aerodynamic parts 
in (1). The procedure for fitting the form (7) to 
aerodynamic data is called Pade approximation 
algorithm described in [10]. For a rectangular 
wing (chord =0.25 m and span =0.35 m) having 
pitch and heave motions, the DPM computation 
and Pade approximation (with no aerodynamic 
lagging terms β’s involved) results are presented 
in the following figures. 
 

 
 
Fig. 5  DPM data (dots) and Pade approximation 
(line) of the unsteady aerodynamic coefficients 

 
4. Dynamic Stability Analysis 
 
The aeroelastic equation (1), with aerodynamic 
parts represented by Pade approximation form,  
then can be rewritten in a state space form 
{ } [ ]{ }qAq S=& , where the AS matrix is defined as 
[6],[11]: 
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where, 

[ ] [ ]

[ ]

[ ] [ ]Wdyn

Wdyn

Wdyn

AqKK

U
bAqD

U
bAqMM

0

1

2

2

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∞

∞

 
(9)

where M and K are the matrices defined in the 
first and second terms of (1), and A0w, A1w, A2w 
are obtained from Pade approximation form (7). 
Note that some elements of the aeroelastic 
model matrix (8) are determined by the 
structural properties, which are assummed to be 
constant, while others are functions of 
aerodynamics (flow) properties.  
Based on the model (8), the aeroelastic analysis 
(instability and disturbance problems) is 
performed and discussed, and the results will be 
related to the determination of the parameters of 
the developed equipment. 
It has been described that the developed 
equipment will be installed in a low-speed wind 
tunnel. By assumming that the flow is 
incompressible, and that the structural 
properties of the mechanical linkage are 
constant, hence the theoretical model (8) can be 
described as a function of flow speed U∞.  
Evaluating the characteristic roots (Eigenvalues) 
of (8), i.e. by solving , at each 
incrementing value of U

[ ] 0det =− SAsI

∞, gives the information 
about the change of the aeroelastic system 
stability. The flow speed at which the system 
becomes unstable is defined as the dynamic 
instability boundary speed, also called the flutter 
speed. The flutter speed can be determined by 
finding out the flow speed which makes the 
characteristic roots of (8) starting to cross the 
imaginary axis, from the left-half to the right-
half, of the complex plane.  
 
4.1 Restrained mF (2-DoF) System 

 
A 2 DoF system can be obtained by restraining 
the rigid body mass mF, such that hF = 0.  

 
Fig. 6  Stability Analysis : Eigenvalues of (8) 

for restrained rigid body (2 DoF) system 
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Consider such system with a rectangular wing 
(chord = 0.25 m, span =0.35 m) which has 
flexural axis xf at 0.5 chord, mw =2 kg,  J = 
0.0104 kgm2, kh = 540 N/m, kα = 5.4 Nm/rad, 
and its aerodynamic loads coefficients are as 
depicted in Fig.5. The dynamic stability analysis 
by evaluating the Eigenvalues of (8), at each 
incrementing value of U∞, gives the system 
characteristic roots plot as shown in Fig. 6. 
The plot shows that the instability boundary 
speed (flutter speed) of this 2 DoF system is 12 
m/s. 
 
4.2 Unrestrained mF (3-DoF) System 
 
When mF is not restrained, a 3 DoF system with 
additional rigid body mass is obtained. The 
results of stability analysis for 3 DoF cases are 
presented below. 
 

 
Fig.7 Unrestrained rigid body (3 DoF) problem 

with MF =  0.5 Mw
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Fig.8 Unrestrained rigid body (3 DoF) problem 
with MF =  Mw

 

 
Fig.9 Unrestrained rigid body (3 DoF) problem 

with MF = 1.5 Mw
 
From the results shown in Fig. 7, 8, and 9, it can 
be seen that the rigid body mass mF also affects 
the flexible body characteristics and the flutter 
speed of the system (8). In the cases presented 
here, the natural frequency of the heaving mode 
of the 3 DoF problems are higher than that of 
the 2 DoF problem (when mF is restrained). For 
the cases of mF = 0.5 mw and mF = mw, 
instability occur when the pitch mode roots 
crossed the imaginary axis to the unstable area, 
while for the case of mF = 1.5 mw, it occurs 
when the heave mode roots move to the right-
half plane at V=8 m/s and followed by the pitch 
mode roots at V=19.3 m/s. The results are 
summrized in the following table: 
 

mF/mw Vf Flutter Mode 
0.5  18 m/s  Wing Pitch Mode 
1  18.5 m/s  Wing Pitch Mode 

1.5  8 m/s  
(19.3 m/s) 

Wing Heave Mode  
(Wing Pitch Mode) 

2 DoF 12 m/s Wing Pitch Mode 
 

Table 2. Results of 3 DoF Flutter Analysis 
 
The results discussed above also show that for 
the configuration of system as described in 
subsection 4.1, the introduction of rigid body 
mass with the ratio of (mF/mw) within 0.5 - 1.5, 
may increase (around 50 %) or decrease (around 
30 %) the instability speed of the system, related 
to that of the 2 DoF system. This observation 
will be considered in the next subsection when 
an approach for determining the parameters of 
the developed test system is proposed. 
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5. Structural Parameters Determination 
 
It is already showed that the stability analysis 
can be done by evaluating the system matrix (8). 
A systematic way for determining the 
parameters of the wind-tunnel test model is 
derived from the stability analysis. In this 
approach, the wind-tunnel flow speed limit is 
treated as a constraint, representing the speed at 
which the instability is expected to occur, while 
the aerodynamics coefficients are set as 
constants, since it is assumed to be only a 
function of lifting surface geometry. Then the 
structural parameters (mass and stiffness) can be 
calculated by examining the stability of (8) via 
Flutter Conic technique [11] .  
 
5.1 Flutter Conic 
 
The Flutter Conic technique is usually used for 
determining the flutter speed of a binary (2 
mode) system by examining the determinant of 
its equation matrix [11].  Consider the 
aeroelastic equation (1) with mF restrained, 
hence hF = 0 and it becomes a 2 DoF system. 
Having the aerodynamics load represented as 
functions of structure response, then (1) can be 
rearranged and rewritten in a compact form as : 
 

( ) 02 =+++ ∞∞ xECUxBUxA ρρ &&&  (10)
 
where A is the augmented inertial matrix which 
can be related to M  in (9), B is the 
aerodynamic damping matrix as described by 
D  in (9), C and D are the aerodynamic and 
structural stiffness matrices, related to K in (9), 
and [ T

Whx α= ] . Assumming a solution of the 
form ωτiexx 0= , equation (10) can be 
expressed as: 
 
[ ] 022 =+++− ∞∞ xECUBUiA ρρωω  (11)

 
where the non-trivial solution is defined by a 
complex valued polynomial obtained from: 
 

( )[ ]
[ 0det
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=
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The real part of (12) is a polynomial in ω 
described by : 
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where the coefficients r1…r6 are functions of the 
elements of A, B, C, E of (10).  
The equation (13) forms a conic when it is 
plotted in (ω2 - U∞

2) plane. 
The imaginary part of (12), given by 
 

03
2

2
2

1 =++ ∞ sUss ω  (14)
 
is a linear relation between ω2 and U∞

2. The 
coefficients of (14) are also functions of the 
elements of A,B,C,E of (10). 
The instability boundary of the system (U∞

2)f 
will be given by the value of U∞

2 where the 
curves of (13) and (14) are intersected. The 
point of intersection  also gives an information 
about the system frequency when instability 
starts to occur.  

 
 

Fig.10 Flutter Conic of 2 DoF Problem 
 
5.2. Parameter Determination Approach 
  
The flutter conic technique is then be explored 
for determining the parameters of the developed 
test system. In the proposed approach, a 
particular 2 DoF flutter speed is set by 
considering the speed limitation of the wind-
tunnel, and the relation between the flutter 
speed of a 2 DoF system and that of a 3 DoF 
system, which has been observed and discussed 
in Subsection 4.2. By setting the flutter speed, 

7  



R.A.Sasongko, L.Gunawan, M. Akbar 

then the equation (12), (13), and (14) become 
functions of structural parameters mW, J, kh, and 
kα. Further, the moment of inertia J can be 
related to mW, by considering a certain mass 
distribution of the wing structure, as described 
by the followings : 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

=

22
3

3 ffd

dW

xcxccsmJ

csmm
 (15)

 
where md is the weight/unit area, s is the wing 
span, c is the wing chord, and xf is the flexural 
axis location measured from the leading edge. 
The stiffness for heave motion is also related to 
that of pitch motion by the following: 
 

hk kck =α  (16)
 
where ck is a constant which can be determined 
by considering the configuration used for 
applying the stiffness in the physical system. 
Applying the relations (15) and (16), the 
equations (12), (13), (14) can be further 
simplified as functions of mw and kh, which can 
be described by the following equation : 
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(17)

 
where the coefficients λ1, λ2,… λ7, γ1, γ2, γ3 are 
obtained by considering the value of the 
elements of A,B,C,E in (10). 
The procedure for computing the pair of (mw, 
kh) which gives the expected flutter speed (U∞)f 
is described below: 
 
(a) Set the expected flutter speed (U∞)f and the 

reference parameter (can be mw or kh) 
(b) Suppose mw is chosen to be the reference 

parameter, then set an arbitrary value of kh 
>0, and denote it as kh(i) 

(c) Solve (14) using the pair (mw, kh(i)), giving 
a solution ω2 

(d) Apply ω2 from (c) into equation (13) to 
obtain a new value of kh, and denote it as 
kh(i+1) 

(e) Repeat (c) and (d) using the updated value 
of kh(i+1) until it converges to the previous 
value kh(i) 

(f) Set a new value of mW and repeat the 
procedure from (a) 

 
It should be noted that for a particular value of 
mW, there may be 2 solutions of kh, since the 
relation is in conic form. Hence another 
significantly different initial values of kh must 
be chosen for each particular mW. In addition, 
the value of mW and kh must also be positive. 
Suppose we want to obtain possible parameters 
for a system similar to the one defined in 
Subsection 4.1, such that it becomes unstable at 
U∞= 12 m/s. Using the appoach explained 
above, the obtained results are depicted in the 
following figures. 
 

 
 

Fig.11 Flutter Conic plots for parameter 
determination of a 2 DoF problem  (fixed 

parameter: kh = 540 N/m)  
 

 
Fig.12 (mw-kh) parameter pairs for binary flutter 

at 12 m/s 
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In Fig. 11 it can be seen that the approach can 
be used for selecting the parameters of the test 
system by setting the expected flutter speed. 
This approach provides a set of parameter 
values resulting in particular stability 
characteristics, as reflected by the flutter speed 
and the flutter frequency. It should be noted 
that, as depicted in Fig.11,  for each pair of 
parameters mw-kh, flutter occurs at different 
frequency. This frequency information is 
important when we intend to equip the test 
system with sensors and actuators, so that we 
can select sensors and/or actuators with 
appropriate characteristics.  
Fig. 12 shows the values of parameters mw and 
kh causing instability at a predefined flutter 
speed (12 m/s). This results shows that there are 
options in selecting system parameters for a 
particular characteristic (flutter speed), hence 
other factors (practical aspects) can be taken 
into consideration in the selection. 
Having the parameters mw and kh obtained from 
the procedure, the other parameters, such as J 
and kα can be computed using the relations 
defined by (15) and (16). 
The parameters provided by the proposed 
approach are determined based on a 2-DoF 
system instability problem. For extending the    
results to parameters determination of a 3-DoF 
system, the observation taken in Subsection 4.2 
must be considered, so that the resulting 3-DoF 
flutter speed is still below the wind tunnel 
maximum speed.   
 
5.3 Test System Configuration 
 
The physical test system is designed such that it 
can represent the behaviour of a 3 DoF dynamic 
aeroelastic system as depicted in Fig. 2. It can 
be seen that the configuration must be arranged 
such that it allows the system to move following  
all of its DoFs, while it is still mechanically 
realistic and can be manufactured. The proposed 
configuration is depicted in Fig. 13. 
Considering the equipment’s configuration, its 
parameters are defined and related to the 
equivalent parameters of the theoretical model 
described in the previous subsections.  
On the developed test system, the inertias of the 
flexible modes are provided by the physical 

mass and moment of inertia of the main and 
additional parts of the wing structure, while the 
rigid body mass is provided by the mass of the 
swinging arm and the balance weight. The 
stiffness are produced using 2 cantilever arms 
and rotational spring supporting the wing 
structure. Some features for enabling parameters 
adjustment are also designed on the test system.  
Implementation of sensors and actuators on the 
test system is also considered in further 
development. 
 
 

 
 

 
 
Fig.13 The configuration of the proposed wind 

tunnel equipment 
 
6. Conclusion and Remarks 
 
Aeroelastic analysis of a 3 DoF system has been 
presented and related to the development of a 
wind tunnel test system. An approach to 
determine the parameters of the test system, 
such that it can exhibit aeroelastic phenomena 
within the operation limit of the wind tunnel, is 
proposed. The approach is based on the Flutter 
Conic analysis for binary system. The approach 

9  



R.A.Sasongko, L.Gunawan, M. Akbar 

10 

is able to provide a set of parameters which can 
be selected and applied to the test system. Since 
the approach stems from the analysis of a binary 
system, then its application to a 3-DoF system is 
done by considering the effect of the 
introduction of a rigid body dynamic to the 
system stability characteristics, which has been 
observed theoretically. In further development, 
this approach can be modified such that it 
includes all DoFs of the system in the 
theoretical analysis, hence a more accurate 
results can be obtained. A procedure for relating 
the parameters to the system’s frequency 
response characteristic may also be developed 
to complement the proposed approach. The 
inclusion of frequency response analysis means 
that, besides system stability, the system 
dynamic response will also be considered in 
determining the parameters. Hence, the 
approach can also be employed for adjusting the 
equipment parameters to investigate problems 
such as the system dynamics response to gust 
disturbance.     
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