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Abstract

In this paper, a numerical study is presented to
investigate a boundary-layer instability on the
suction side of a NACA0006 airfoil, induced
by aerodynamic sound scattered from a trailing-
edge. By incorporating a linear stability analy-
sis into the direct simulations with a compress-
ible Navier-Stokes code using high-order accu-
rate schemes, the unsteady characteristics are es-
timated upon resolving the acoustic effects of
trailing-edge noise generation. The onset con-
dition of an acoustic feedback loop is explored
by altering the Mach number, compared with the
frequency characteristics of the boundary-layer
instability. While increasing the Mach num-
ber prompts the excitation of the feedback loop
via the amplification of acoustic disturbances,
the instability of the boundary layer seems to
be suppressed at a higher Mach number; there-
fore, the onset condition should be determined
between these two contradictory features, at a
given Mach number. Also the phase require-
ment between acoustic and hydrodynamic waves
is closely examined to attain a feedback loop. It is
strongly suggested that this phasing consistency
should explain the presence of discrete resonance
modes. In the present result, however, the mecha-
nism to determine the discrete frequencies is still
an open question for future research.

1 Introduction

Trailing-edge (TE) noise is one of major tonal
noises emitted from an airplane. Noise-source

eddies develop near the trailing edge of an air-
foil with time-periodic structures to achieve nar-
rowband spectra. Then a tonal sound is scat-
tered therefrom, much more efficiently than a di-
rect radiation from the noise source itself. Up to
now, this phenomenon has been studied on many
aspects. In a moderate range of Reynolds (Re)
numbers, of the order of 105 to 106, it is postu-
lated that the noise generation process is deeply
related with a self-induced feedback mechanism:
Tollmien-Schlichting (T-S) unstable waves, orig-
inally induced by acoustic disturbances scattered
from TE, develop into an organized vortical mo-
tion in the region near TE on the pressure side
of the airfoil, where a separation bubble should
be formed. Then, a tonal noise is generated
as the vortices are shed from TE, which would
again induce T-S waves, and eventually form a
closed loop. This postulation, originally pro-
posed by [12], has been verified via several ex-
perimental studies [7, 8]. Then, it is naturally
assumed that the establishment of the acoustic
feedback loop should require the phase consis-
tency between sound waves traveling upstream
from TE, and hydrodynamic T-S waves that prop-
agate downstream at a phase velocity Uc, which
is the order of base-flow velocity, U . This phase
conformation requirement is also utilized to ex-
plain the “ladder-like” discrete frequency varia-
tion, which has the dependence of the noise fre-
quency f ∝ U0�8, observed by [9].

On the other hand, it is also pointed out by
the experimental observations referenced above,
that presumably f follows the scaling of U 3�2

in average, in the discontinuous shift between
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the ladder-like modes. This scaling law is de-
rived from a dimensional analysis of wake con-
figurations with velocity deficits behind an air-
foil [10]. In the original derivation, self-excited
vortex shedding is studied for bluff bodies, by
proposing the universal Strouhal number defined
from proper physical scales in wake profiles.
If we assume that self-induced unsteadiness is
prompted by such wake characteristics, the pri-
mary frequency should be determined mathemat-
ically as a singular solution of the stability the-
ory [1, 6]. However, it is not very clear how
these two different instability mechanisms, the T-
S wave amplification in the boundary layer, and
the wake-flow instability with mathematical sin-
gularity, affect each other in a closed feedback
loop to reach discrete tones.

There are also many numerical studies avail-
able on TE noise generation. Among them,
Desquesnes et al. [2] investigated the discrete
noise generation process of the NACA0012 air-
foil at Re � 2� 105 on a two-dimensional grid
configuration. They claimed that the discrete
tones are produced via the interaction of vortices
shed from both sides of the airfoil, while the main
feedback loop occurs on the pressure side at the
Reynolds number. The DNS study by Sandberg
et al. [11] also conducted two-dimensional calcu-
lations of NACA symmetric airfoils at Re � 5�
104. Their intention was to examine the acous-
tic field by artificially imposing T-S waves. The
present authors also conducted two-dimensional
DNS of a NACA0006 airfoil at Re � 2� 104. In
our study, it was shown that an acoustic feed-
back loop may arise by increasing an inflow
Mach number, which results in amplifying im-
posed acoustic disturbances [3]. Although the
wake instability is presumably dominant at a low
Reynolds number, the onset of an acoustic feed-
back loop induces a noticeable vortical fluctua-
tion in the suction-side boundary layer, and even-
tually alters the vortex shedding pattern.

In this paper, our aim is first to investigate
the TE noise generation driven with the acoustic
feedback loop at a low Reynolds number. Acous-
tic fields are reproduced simultaneously on hy-
drodynamic flow motions by using compressible

Fig. 1 Flow configuration for NACA0006 airfoil.

direct simulation techniques. The onset condi-
tion of a feedback loop is examined from the
view point of boundary-layer stability. Partic-
ularly, the flow Mach number has an effect on
both the acoustic wave scattered from TE, and
the base flow compressibility. By increasing M,
acoustic disturbances are amplified to stimulate
the boundary-layer instability mechanism, while
the shear flow is usually stabilized at higher Mach
numbers. It is of interest to clarify the Mach
number effect on the TE noise generation, also
by the use of a linear stability analysis. The
boundary-layer instability is quantitatively eval-
uated on tonal frequencies obtained in the flow
solver. Secondly, the mechanism of discrete-tone
generation is examined in conjunction with an
acoustic feedback loop. To form a feedback loop
via acoustic disturbances, the phase arrangement
must be determined properly to attain a resonance
between sound waves and hydrodynamic waves
in the boundary layer. This requirement is sup-
posed to introduce discrete modes in TE noise
generation. It is also reported that multiple dis-
crete tones coexist at a moderate Reynolds num-
ber, of the order of 105 as in [2], which would ex-
plain the ladder-like structure on frequency deter-
mination. Here we would also clarify the devel-
opment of discrete modes in the two-dimensional
airfoil flow at a low Reynolds number.

2 Numerical Method and Conditions

We solve the set of two-dimensional compress-
ible Navier-Stokes (N-S) equations. Fluid prop-
erty is assumed to be of air; its specific-heat ratio
is treated to be constant, 1�4. A symmetric NACA
four-digit airfoil, 0006 is employed for unsteady
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simulations in our study. The geometric configu-
ration is shown in Fig. 1. The chord length L is
used as the characteristic length scale. The trail-
ing edge of the airfoil is placed at the origin in
the two-dimensional coordinates. The airfoil is
tilted by the angle of attack, α to the streamwise,
x direction. The uniform flow U∞ is enforced
in the x direction at the outer boundaries. The
Reynolds number based on L and U∞ is chosen to
be 10�000. The inflow Mach number is altered
from 0�1 to 0�6 to examine its effect on the flow
stability.

For spatial discretization, a C-grid topology is
employed by applying an optimized tri-diagonal
sixth-order compact scheme to both convection
and viscous terms, proposed by [5]. A stan-
dard fourth-order Runge-Kutta scheme is imple-
mented for time advancement. The numerical do-
main is extended to 20L and 30L in the radial and
downstream directions, respectively, with a non-
reflecting boundary condition applied to all outer
boundaries. The details of the implementation of
numerical schemes and the verification studies of
the present computational code are summarized
in [4]. The number of grid cells is 1400 in the
circumferential direction (600 around the airfoil
surface; 800 in the wake region) and 200 in the
wall normal direction, which leads to 2�8� 105

cells in total. Grid convergence was confirmed by
monitoring the resultant unsteady aerodynamic
forces and the variance of velocity field on var-
ious grid sizes: the largest numerical grid em-
ployed in this grid dependence study contains
more than 1�106 cells.

To quantitatively discuss the flow-instability
mechanism, a linear stability analysis based on
the Orr-Sommerfeld (O-S) equation is performed
for the time-averaged velocity profiles obtained
via the N-S solver described above, as will be
shown in Section 4. From the time-averaged
field, velocity components are extracted locally
along the wall-normal direction from the airfoil
surface on the suction side. At each location,
an incompressible, parallel flow approximation
is applied through local coordinate transforma-
tion. In discretizing the O-S equation in the
wall normal direction, the Chebyshev colloca-

tion method is employed. For a given real fre-
quency, the eigenvalue that provides the largest
spatial growth is chosen at each streamwise lo-
cation. Then, N factor is obtained by integrating
the obtained spatial growth rate, or the imaginary
part of a complex wave number along the airfoil
surface, as was also done in [3].

3 Unsteady Field of Numerical Results

Since the main purpose of the present study is
to examine the excitation condition of an acous-
tic feedback loop, the angle of attack should be
small enough so that bulk separation does not oc-
cur near a leading edge (LE) to ensure the valid-
ity of two-dimensional assumption. Otherwise,
laminar-turbulent transition should occur behind
the separation to increase spanwise complexity;
the acoustic feedback loop becomes less critical
in a noise generation process. Unsteady motions
arise for α �� 4�0° at this Reynolds number us-
ing the current simulation code. Here, we present
the results of α � 4�5° and α � 5�0°. By chang-
ing the inflow Mach number, the flow unsteadi-
ness is apparently affected by both the acoustic
disturbances, and the base-flow stability with a
compressibility effect. As a computational pa-
rameter, the Mach number is altered by 0�1 for
α � 4�5°, and by 0�05 for α � 5�0°, respectively,
from 0�1 to 0�6. In the following, each case is la-
beled using its Mach number and angle of attack:
for instance, the case at M � 0�2 and α � 4�5° is
referred to as Case M20A45.

The instantaneous fields around the airfoil are
presented in Figs. 2 and 3 for the given two an-
gles of attack. At lower Mach numbers, M � 0�2,
the wake instability is dominant to prompt the un-
steadiness at α � 4�5°, as each pair of vortices is
shed into the wake with opposite signs of vortic-
ity, ω. However, by slightly increasing α, due to
an intensified adverse pressure gradient, the in-
stability in the boundary layer becomes highly
visible to form vortical motions on the suction
side, as shown in Fig. 3, Case M20A050. This
can be considered to be the onset of an acous-
tic feedback loop by altering the angle of attack.
The stability analysis using the obtained velocity
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Fig. 2 Instantaneous vorticity field for M � 0�2,
0�3, 0�4, and 0�5 from top to bottom, respectively,
at α� 4�5°. Color scaling ranges from blue to red
for �4�0� ωL�U∞ ��4�0.
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Fig. 3 Instantaneous vorticity field for M � 0�2,
0�25, 0�3, and 0�6 from top to bottom, respec-
tively, at α � 5�0°. See the caption of Fig. 2 for
color scaling.
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profiles will be presented in Section 4.
The present observation on the onset of the

feedback loop is somewhat different from that re-
ported in [3], where the acoustic feedback loop
was prompted at a higher Mach number. How-
ever, as shown in Fig. 2, also by increasing M to
0�4, a flow state very similar to Case M20A50 is
achieved in Case M40A45. The scattered pres-
sure fluctuation p� has a Mach number depen-
dence of M1�2; in addition, the acoustic compo-
nent of velocity fluctuations is comparable with
p�M. Therefore, the increase in M amplifies
the acoustic disturbances emitted from TE, af-
fecting hydrodynamic instability. This excites a
more unstable mode in the boundary layer, which
eventually intensifies the scattered acoustic dis-
turbances, too. Therefore, the organization of an
acoustic feedback loop is regarded to be the self-
induced resonance between the boundary layer
instability mechanism and the acoustic distur-
bances scattered from TE.

However, by further increasing M to 0�5 as
shown in Fig. 2, Case M50A45, the vortical mo-
tion is suppressed in the boundary layer, and
again the flow unsteadiness seems dominated by
the wake instability to reach periodicity with a
frequency higher than that of Case M40A45.
This is presumably due to the stabilization of
the shear layer by adding compressibility effects.
Likewise, in Case M60A45, a Karman vortex
shedding is obtained in the wake with a slightly
lower frequency than M50A45, although not pre-
sented in the figures. Similar stabilization is seen
in Fig. 3 at M � 0�6, Case M60A50. Vortical
motion is primarily formed behind TE, not in the
boundary layer, although the flow is not periodic
in this case.

In Fig. 2, before reaching the acoustic feed-
back loop sufficiently recognized at M � 0�4, a
somewhat intermediate state is obtained in Case
M30M45. The wake vortex pattern seems irreg-
ular and aperiodic. However, by performing a
spectral decomposition on the temporal variation
of a velocity field, many sharp line spectra are
observed. Therefore, the obtained field can be re-
garded as the superposition of multiple discrete
modes. The spectrum analysis of this case is pre-

Table 1 Normalized primary frequencies f � for
time-periodic cases at α � 4�5°.

M 0�1 0�2 0�3 0�4 0�5 0�6
f � 3�27 3�27 1�71† 1�53 2�86 2�55

†: Primary frequency chosen among multiple dis-
crete line spectra.

Table 2 Normalized primary frequencies f � for
time-periodic cases at α � 5�0°.

M 0�1 0�15 0�2 0�25
f � 1�93 1�88 1�81 2�28

sented later in this section.
At α � 5�0°, the acoustic feedback loop is

achieved likewise at M � 0�2. However, at M �
0�25, Case M25A50, the shedding frequency dis-
continuously changes. This implies that the time-
harmonic motions exist only with discrete modes,
if incorporated with the acoustic feedback loop.
Presumably, by increasing M from 0�2 to 0�25,
the acoustic resonance moves to an adjoining
mode with a higher frequency. The presence of
discrete modes is due to the phase conformation
requirement, as discussed in [7], between a hy-
drodynamic unstable wave and an acoustic wave
at both edges of airfoil, if the acoustic disturbance
is received in the boundary layer at LE. However,
by increasing M furthermore, the flow shifts into
an aperiodic state without settling in one discrete
mode. At this angle of attack, the periodicity is
never retrieved for 0�3 � M � 0�6. The issue on
the phase requirement is discussed again in Sec-
tion 5.

The frequencies of each case that reaches a
periodic vortex shedding is summarized in Ta-
bles 1 and 2, normalized with U∞�L, expressed as
f �. In most cases, only the primary frequency ap-
pears in spectral decomposition, except its higher
harmonics. However, in Case M30A45, multiple
discrete line spectra are observed. The primary
frequency given in Table 1 is determined from
the velocity fluctuations sampled at �x�y�� �0�L�
in this case. In fact, the spectral decomposi-
tion of the far-field sound pressure also shows
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Fig. 4 Power spectral density of v-velocity sam-
pled at 0�1L downstream from TE for α � 4�5°.

its peak at this frequency. In Fig. 4, the power
spectral density is shown sampled in the wake re-
gion near TE, for Cases M20A45, M30A45, and
M40A45. In the discrete spectral distributions
of Case M30A45, the primary frequency is ob-
served at f � � 3�0, different from that denoted in
Table 1, while f � � 1�71 stays secondary. This
is supposedly due to the wake instability in the
TE neighborhood; the self-induced frequency de-
termined by the wake profile becomes prominent
only locally just behind TE. However, the fre-
quency f � � 1�71 approximately corresponds to
the most amplified frequency determined by the
stability analysis of the boundary layer, which is
dominant in the acoustic field. Similar observa-
tion is also reported in [3].

At α � 5�0°, a periodic state is only obtained
for lower Mach numbers. For M � 0�3, the spec-
trum of temporal field variations is shifted to a
broadband distribution. However, the presence of
several narrowband peaks can be recognized. In
Fig. 5, the power spectral density is also shown
for Cases M30A50 and M60A50, superposed
on lower Mach number cases. The diagram of
Case M30A50 clearly shows the primary and sec-
ondary peaks near the peaks at M � 0�2 and 0�25;
the third peak is also found with a slightly higher
frequency. These profiles imply that the ape-
riodic motions of M30A50 are weakly coupled
with the multiple discrete modes of the acoustic
feedback loop, extracted from broadband fluctua-
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Fig. 5 Power spectral density of v-velocity sam-
pled at 0�1L downstream from TE for α � 5�0°.

tions. On the other hand, Case M60A50 shows a
distinguished primary mode observed at f � � 2�2
with several subsidiary modes. This primary
frequency is considered to be an indication of
the wake-flow instability, through the suppres-
sion of the boundary-layer fluctuations as shown
in Fig. 3.

4 Onset Conditions of Acoustic Feedback
Loop

The onset of an acoustic feedback loop was il-
lustrated graphically in the instantaneous veloc-
ity field, as shown in Figs. 2 and 3. The ex-
citation of the boundary-layer instability is con-
sidered to be the resonance between the acous-
tic wave scattering from TE, and the amplifica-
tion of unstable waves in the suction-side bound-
ary layer, which is essentially equivalent to, but
presents a more simple mechanism than, that
reported in high-Reynolds number experiments
[e.g., 8]. The transition from the wake-induced
vortex shedding, to the unsteadiness driven by
the acoustic resonance, can also be seen in the
pressure field. Fig. 6 presents the sound pres-
sure scattered from the airfoil, and compares its
magnitudes, with or without an acoustic feed-
back loop. By including the Mach number de-
pendence, the sound pressure is intensified al-
most by an order of magnitude by prompting the
boundary layer instability to achieve an acous-
tic feedback loop, either by increasing M or
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Fig. 6 Instantaneous pressure fluctuations
p���ρ∞U∞

2� around the NACA0006 airfoil for
M � 0�2 (top) and M � 0�4 (middle) at α � 4�5°,
and M � 0�2 at α � 5�0° (bottom). The pressure
field is weighted by the factor �0�2�M�1�2 to re-
move the Mach number effect in sound pressure
scattering at M � 0�4. One contour level denotes
2�0� 10�5, 2�0� 10�4 and 2�0� 10�4 from top
to bottom, respectively.
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Fig. 7 Instantaneous vorticity fluctuations
ω�L�U∞ developing in the boundary layer of the
NACA0006 airfoil for M � 0�2 (top) and M � 0�4
(middle) at α � 4�5°, and M � 0�2 at α � 5�0°
(bottom). One contour level denotes 2�5� 10�2,
6�0� 10�1, and 1�5 from top to bottom, respec-
tively.
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Fig. 8 Time-averaged tangential velocity pro-
files sampled in the wall normal directions in the
boundary layer on suction side at α � 4�5° at var-
ious Mach numbers.

y�
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Fig. 9 Time-averaged tangential velocity profiles
at α � 5�0°. See the caption in Fig. 8.

α. Fig. 6 also captures the pressure fluctuation
caused by the unstable waves developing in the
suction side boundary layer in all three cases;
however, the cases with the feedback-loop exci-
tation show much intensified variations. Similar
observations apply in the vorticity fluctuations,
presented in Fig. 7. The development of vorti-
cal motions in the boundary layer represents the
amplification of hydrodynamic unstable waves.
Clearly, these vortices originate from the lead-
ing edge, convecting downstream with boundary-
layer growth. There are no discernible waves in
the pressure-side boundary layers, as mentioned
above. The vortices in Case M20A50 grow very
rapidly from the middle of the chord, which indi-
cates a strong unstable mechanism in this region.

The adverse pressure gradient causes a sepa-
ration bubble, as well as inflection points in the
velocity profile in the upper-side boundary layer.
This results in the shear-layer instability that am-
plifies the hydrodynamic waves at certain fre-
quencies. Figs. 8 and 9 show the time-averaged
velocity profiles at α � 4�5° and α � 5�0°, re-
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 70% chord
 50% chord

f �

Fig. 10 N factor distributions at 50% and 70%
chord lengths for: Æ, α � 5�0°; �, α � 4�5°, com-
puted using the time-averaged velocity profiles at
M � 0�2 in each case.

spectively. Case M20A45 in Fig. 8 has a sepa-
ration at about 50% chord length; then, the re-
circulation zone moderately extends down to the
wake, where the vortex shedding starts to de-
velop. Higher Mach number cases present sepa-
ration bubbles larger than that of Case M20A45,
although a fuller profile is obtained near TE in
Case M40A45, due to the vortex mixing induced
by the boundary-layer instability. It is also of
interest that Case M50A45 poses more unstable
profiles than lower M cases, despite the fact that
its vortex shedding is supposedly dominated by
the wake instability, as shown in Fig. 2. On the
other hand, as shown in Fig. 9, the angle of attack
increased only slightly leads to an earlier separa-
tion at about 10% chord, which imposes more in-
tensified reverse flow region in the middle of the
chord. This causes a faster growth of unstable
waves in the boundary layer, as was also shown
in Fig. 7. In addition, it should be noted that the
difference between Cases M20A50 and M25A50
is almost unrecognizable in their time-averaged
velocity profiles. Therefore, the frequency char-
acteristics of flow stability should be identical in
these two cases, although the resultant shedding
frequencies are different as shown in Table 2.

Here, the results of a linear stability analysis
using the O-S equation are presented. In obtain-
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ing N factors, the integration is started at 10%
chord. Since the vortical motion has well devel-
oped in the TE neighborhood where non-linearity
would be significant in the cases at α � 5�0°, the
integration is interrupted at 70% chord; in addi-
tion, a negative spatial amplification also aborts
the integration when obtained in an eigenvalue
search. In Fig. 10, the N factors are compared for
Cases M20A45 and M20A50, integrated to 50%
and 70% chord lengths. Case M20A50 shows a
greater amplification of unstable waves, as also
predicted by the velocity profiles with an en-
hanced reverse flow in Fig. 9.

The most amplified frequency of Case
M20A50 corresponds to f � � 1�8 at both 50%
and 70% chord, which well approximates the re-
sultant frequency. However, the frequency f � �
2�3 observed in Case M25A50 apparently pro-
vides less amplification, which does not follow
a conventional rationale on frequency determina-
tion. The reason of the inconsistency could be
explained as follows: as Case M30A50 shows
aperiodic motions with a broadband character, if
the magnitude of acoustic disturbances exceeds
some threshold by increasing M, the vortical mo-
tions amplified in the boundary layer would not
be able to maintain a stable periodic state beyond
some limit, when shed into wake. However, in
the lower Mach number case M25A50, the peri-
odic state could be sustained, still by selecting a
less unstable mode, which incidentally leads the
vortical motions in the boundary layer to an opti-
mized level at TE. In fact, this mode is shown
to be a secondary choice in Case M30A50, as
presented in Fig. 5. On the other hand, the most
amplified frequency of Case M20A45 is approx-
imately f � � 2�0 at 70%. It is slightly higher
than the frequency actually obtained in Cases
M30A45 and M40A45 with the acoustic feed-
back loop excited, nevertheless, still in a close
range. The frequency f � � 3�3 in Case M20A45,
determined by the wake instability, is also at a
super-critical state, and shows a very moderate
growth of unstable waves in the boundary layer as
portrayed in Fig. 7, which does not significantly
affect the vortex development in the wake.

y�

L

x�L

Fig. 11 Sampling locations of cross-covariance
indicated by bullets (�) near both edges of the
foil, superposed on instantaneous v-velocity fluc-
tuation contours at M � 0�1. One contour level
denotes 2�5�10�2U∞.

5 Phase Requirement on Feedback Process

For the feedback process via acoustic wave scat-
tering to perform effectively, correct phasing
must be attained with the convection of hydrody-
namic disturbances. This requirement of phase
consistency yields the discrete spectral tones, ei-
ther as multiple tonal peaks held simultaneously
in Cases M30M45 and M30M50, or unique tones
observed in the cases for 0�1 � M � 0�25 at α �
5�0°, as shown in Figs. 4 and 5. In this section,
the phasing condition is examined for the cases
at α � 5�0°, where the feedback loop shows a
common unique mode for 0�1 � M � 0�2, and a
higher-frequency mode at M � 0�25.

R

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

τU∞�L

Fig. 12 Cross-covariance coefficient at M � 0�1.
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As presented in Fig. 7, unstable waves are
generated at LE, where an acoustic wave is con-
verted into the hydrodynamic fluctuation, while
the acoustic disturbance is emitted from TE, due
to its geometrical singularity. First, to quantita-
tively describe the phase difference between TE
and LE, we employ the cross covariance analysis
of temporal velocity variation. By defining vi�t�
and v j�t� as the velocity sampled in the neigh-
borhood of TE and LE, and σi and σ j as their
variance, respectively, the cross covariance coef-
ficient can be defined as

R�τ� �

�
vi�t � τ�� vi�t�

��
v j�t�� v j�t�

�
σi σ j

� (1)

where the overbar in the equation indicates tak-
ing time average. As in Eq. (1), R is the function
of τ, the time difference between two points, if a
time-varying field is sufficiently developed from
its initial state. In Fig. 11, the sampling locations
are denoted on the distributions of instantaneous
v-velocity fluctuations: they are located at 0�1L
apart vertically from TE, and 0�1L upstream from
LE, respectively. Hydrodynamic vortical contri-
butions are dominant in the velocity fluctuation
at the TE-neighboring point, while the acoustic
component is presumably a primary factor at the
location apart from the LE-surface. Since the pri-
mary acoustic component in the velocity fluctua-
tions is v velocity in the LE neighborhood due to
the diffraction effect, v is chosen for the cross-
covariance analysis applied in Eq. (1). The dis-
tribution of the cross-covariance coefficient of
Case M10A50 is presented in Fig. 12. As can
be seen in the figure, R shows its minimum at
τ � �0�1L�U∞, which represents the phase-time
difference between the two sampling locations.
In fact, since the time variations are not random
in the present time-periodic case, the resultant
cross covariance depends on the sampling time
length. However, it is confirmed that the phase-
time difference defined above is not affected sig-
nificantly by the time length.

For 0�1�M � 0�2, other than the three cases
presented in Table 1, M � 0�18 is added in the
following phase analysis. In Fig. 13, the normal-

f�

0.1 0.12 0.14 0.16 0.18 0.2
1.8

1.85

1.9

1.95

M

Fig. 13 Primary frequencies at α � 5�0° in the
same resonance mode.

ized primary frequency f � is shown at each Mach
number. The number of unstable waves Nc on the
chord length L can be estimated as

Nc �
L f �M�

Uc
� (2)

where Uc is the phase velocity of unstable waves,
and assumed to be constant here. Since the dif-
ference of Nc causes a phase shift between differ-
ent Mach numbers, the phase-time difference Δτ
from M � 0�1 can be written as follows for each
Mach number:

Δτ �
Nc� Nc	M�0�1

f �M�
�

L
Uc

�
1 �

f �0�1�
f �M�

�
� (3)

In addition, since the cases considered here sup-
posedly belong to the same resonance mode, the
increase of M causes the delay of LE phase due to
acoustic-wave propagation. The time delay, con-
sidering an advection effect of mean flow, is rep-
resented as the retarded time tret:

tret � �
L

c∞�M��U∞
� (4)

where c∞ is the sound velocity in a uniform field.
Then, the phase difference Δφ from M � 0�1,
caused by the variation of tret, can be expressed
as

Δφ � 2π � f �M� tret � f �0�1� tret	M�0�1 � � (5)
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Fig. 14 Phase-time difference at various Mach
numbers. Æ, estimated from cross covariance; �,
frequency difference, Eq. (3); �, retarded time of
a sound wave Eq. (6).

From Eq. (5), the phase-time difference associ-
ated with the retarded time can be derived as

Δτ � tret �
f �0�1�
f �M�

tret	M�0�1 � (6)

Now by using Eqs. (3) and (6), we can com-
pare the phase difference between TE and LE,
from two different, acoustic and hydrodynamic
waves, with different phase velocities. Here we
assume the phase velocity of an unstable wave
in a boundary layer as Uc � 0�4U∞, which corre-
sponds to that reported in [8], and reasonably ap-
proximates the result of the linear stability anal-
ysis. In Fig. 14, the phase-time differences are
presented, estimated from the cross-covariance
minima, and also from the above equations. As
can be seen, these three different estimations
agree well, except a small deviation at M � 0�2.
This indicates that, by increasing M, the resul-
tant phase delay due to the sound propagation
is reflected in lowering the vortex-shedding fre-
quency to maintain the feedback loop. It is also
supported by the measured phase differences that
coincide with the estimations employing Eqs. (3)
and (6), by using the cross-covariance analy-
sis. Therefore, once an acoustic resonance of
boundary-layer instability is achieved, it requires
a phase consistency between acoustic and unsta-
ble waves to maintain the feedback loop, even if

f�

0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

3

m = 3

m = 5

m = 7

 

 
 α = 5.0
 α = 4.5

M

Fig. 15 The comparison of discrete modes pre-
dicted by Eq. (8) (3�m� 7� and the frequencies
obtained in the present study.

the Mach number is altered.
Through the discussion above, by equating

Eqs. (3) and (6), we can derive a relation on a
frequency dependence:�

1
Uc

�
1

c∞�M��U∞

�
L f �M� � const. (7)

This equation indicates that the total number of
waves existing on an airfoil does not vary on the
Mach number in a resonance mode. However, in
the study of [7], a similar relation was presented
as an assumption:�

1
Uc

�
1

c∞�M��U∞

�
L f �M� � m� (8)

where m is an integer that indicates the discrete
mode: this requires that the sum of the number of
both acoustic and hydrodynamic waves, must be
an integer to attain an acoustic feedback loop. On
the frequencies obtained in the present study, the
validity of Eq. (8) is examined in Fig. 15. In addi-
tion to the primary modes given in Tables 1 and
2, the secondary mode of Case M30A45 is also
presented. The cases studied above on the phas-
ing condition, and also the primary frequencies
at α � 4�5° for M � 0�3 and 0�4, agree very well
with the mode at m � 5. However, Case M25A50
and the secondary frequency of Case M30A45
show the non-negligible deviation from the inte-
ger modes predicted by Eq. (8). The reason of
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this inconsistency is not clear here. However,
in Eq. (8), it is assumed that the phase should
be continuous across two different waves at TE,
where the vortices are well developed, and there-
fore, non-linear effects cannot be ignored, which
may not ensure the phase continuity at TE. Also,
the sound source of TE noise is usually regarded
to be the vortices located in the neighborhood of
TE; the acoustic phase should be determined by
considering the total effects from all those vor-
tices, not solely from the phase of an unstable
wave arriving at TE.

6 Conclusion

In the present study, the onset condition of an
acoustic feedback loop was investigated numer-
ically by using both the higher-order compress-
ible flow solver and the linear stability analysis.
A parametric study of the flow Mach number was
conducted by employing two angles of attack,
α � 4�5° and 5�0°, which provide different sizes
of separation bubbles on the suction side, and
therefore, different stability characteristics. By
increasing M, the amplified acoustic disturbance
prompted the feedback loop first at α � 4�5°; but
also the shear layer seemed to be stabilized at
even higher Mach numbers, which prevents the
feedback loop, retrieving a wake-flow Karman
vortex shedding, as seen in Case M50A45. For
lower Mach number cases at α � 5�0°, a phas-
ing condition was examined to attain an acous-
tic feedback loop. By using the cases on the
same resonance mode, phase differences were es-
timated using the cross covariance analysis. It
was shown that the obtained phase difference
agrees well with those determined by the retarded
time of a sound wave, and also by the frequency
difference.

It was confirmed that the multiple modes
exist with the acoustic feedback loop at a low
Reynolds number. Case M30A50 shows aperi-
odic motions with multiple narrowband peaks in
a frequency domain. The primary frequency cor-
responds to that of lower Mach number cases.
The secondary mode is also found in Case
M25A50, which shows a unique mode that does

not coincide with the most amplified frequency.
Using the frequencies obtained in the present
study, the phasing condition proposed in [7] is
examined. On a provided mode, the present data
agree well with the estimated Mach number de-
pendence. However, the frequency jump between
two adjoining modes is not quantitatively well
predicted. It is still an open question how these
discrete modes are provided with a certain fre-
quency width, which would be able to formu-
late the frequency determination mechanism of
an acoustic feedback loop.
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