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Abstract  
This paper discusses a multidisciplinary design 
optimization of a three-dimensional supersonic 
biplane. First, methods to evaluate the 
performance of a supersonic biplane are 
described. The methods include modified 
oblique shock wave equations, a modified 
Method of Characteristics, and the reference 
enthalpy method. Second, validations of the 
present methods are described. Finally, a 
multidisciplinary design optimization was 
conducted in terms of aerodynamic performance 
and weight performance, and trade-off 
relationship between them is shown. Major 
factors governing the trade-off relationship are 
found out and characteristics of a supersonic 
biplane are described. 

1  Introduction 
A bottleneck in the development of commercial 
supersonic transport aircrafts is a strong sonic 
boom felt on the ground. A strong sonic boom 
has been preventing supersonic aircrafts from 
flying over the land. It restricts the flexibility of 
operations and thus makes the value of 
supersonic aircrafts low. Hence, supersonic 
aircrafts need to be so designed as to meet 
requirements on a sonic boom. 

Busemann [1] mentioned that the two-
dimensional biplane shown in Fig. 1 does not 
generate drag in an inviscid supersonic flow by 
the interferences of the shock and the expansion 
waves. Later, Lomax [2] confirmed in a 
linearized flow that the equivalent source 
strength of such biplane is zero throughout 
although the biplane has a finite thickness. It 
means that the biplane can eliminate the 

contribution of wing volume to the pressure 
disturbance on the ground or a sonic boom. 
Hence, the biplane is a useful concept for 
supersonic aircraft design under constraints on 
sonic booms because the pressure disturbance 
due to wing volume can be compensated for by 
the contributions of other aircraft components to 
a sonic boom [3]. 

M∞

Expansion waveShock wave  
Fig. 1 Supersonic Biplane Concept 

There have been researches aiming at 
designing a three-dimensional supersonic 
biplane with high aerodynamic performance [4-
7]. Maruyama et al. [5,6] conducted it by 
employing an inverse design method. This 
method found a wing shape of which the surface 
pressure distribution matches a user-specified 
target one. However, this method has two 
limitations. First, it is difficult to come up with 
target pressure distribution that yields high 
aerodynamic performance. Second, it only take 
into account pressure force although other 
characteristics, e.g. friction force, wing weight, 
etc., are also important. 

The present study conducted 
multidisciplinary optimization of a three-
dimensional supersonic biplane to overcome the 
limitations of the previous research. 
Optimization objectives were to maximize 
aerodynamic performance including viscous 
effect and to minimize the wing weight. 
Because no detailed configuration of a 
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supersonic aircraft with the biplane has been 
presented so far, many uncertainties in design 
requirements would exist. Thus, a 
computationally inexpensive design process is 
desirable to make it possible to redesign the 
biplane quickly when the requirements change. 
This study employed modified oblique shock 
wave equations, a modified Method of 
Characteristics (MOC), the reference enthalpy 
method to promptly evaluate the aerodynamic 
performance of the biplane, and an analytical 
method to evaluate the wing weight. These 
methods were incorporated with the genetic 
algorithm (GA) to obtain optimal shapes of 
supersonic biplanes in terms of the 
aerodynamics and the wing weight. 

2  Development of Analysis Tool 

2.1 Geometry Definition 
A supersonic biplane in the present study is a 
tapered and swept wing without twist. It has the 
airfoil similar at any spanwise stations, and has 
a planar shape defined by straight lines. The 
three-dimensional shape of a supersonic biplane 
is defined by the sweep and the dihedral angle 
of the lower wing leading edge, the taper ratio, 
and the ratio of span length to the vertical gap 
between the upper and the lower wing at the 
leading edges. 

An airfoil geometry definition basically 
follows the Licher’s definition [8] with some 
modifications to allow greater flexibility of 
geometry. An airfoil shape is defined by seven 
design variables and two fourth-order 
polynomials that smoothly start from the point 
at which the expansion fan first hits the other 
wing as shown in Fig. 2. The reason why the aft 
parts of the inward surfaces are defined by the 
polynomials is due to spread of an expansion 
fan. A supersonic biplane was introduced within 
the assumption that the airfoil is infinitely thin 
and expansion waves are expressed by line. 
However, an expansion wave spreads out to be 
an expansion fan in general, and thus the 
pressure distribution on the inward aft surface 
deviates from the ideal one that results in zero 
wave drag [1]. Hence, the aft surface of the 

airfoil is defined by a high-order flexible curve 
to yield low drag. 

Once these design variables are given, an 
airfoil is constructed so that the shock wave 
from each wing leading edge hits the inward 
vertex of the other wing using modified oblique 
shock equations that will be introduced in the 
next section. 
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Fig. 2 Airfoil Geometry Definition 

2.2 Evaluation Methods 

2.2.1 Pressure force evaluation 
To evaluate pressure force, the three-
dimensional steady Euler equations are 
considered as governing equations. To solve 
them, the oblique shock wave equations and 
MOC are employed. Generally, these methods 
cannot be applied to a three-dimensional flow 
[9]. The oblique shock wave equations can be 
applied to shock waves perpendicular to a plane 
in consideration. Three-dimensional shock 
waves in general do not satisfy this condition. 
MOC is based on the equations given by 
diagonalizing Euler equations, but such a 
diagonalization is impossible in three 
dimensions. 

The present study proposes a method to 
apply those methods to the three-dimensional 
flow field around a supersonic biplane defined 
by the previous section. For the supersonic 
biplane in the present study, flow field around 
the biplane that is outside of the Mach cones 
from the wing tips and wing roots can be locally 
considered as two-dimensional by local 
coordinate transformation. This coordinate 
transformation is carried out such that the 
derivative with respect to a third coordinate is 
zero or negligible. Such a coordinate 
transformation is impossible inside the Mach 
cones from the wing tips and wing roots. Thus, 
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the employed methods cannot be used inside 
such regions accurately. In the present study, a 
region in which the local coordinate 
transformation is possible is called an ideal 
region, whereas the other region is called an 
unideal region. 

After the coordinate transformation, the 
oblique shock wave equations can be applied to 
the flow field. Hence, shock waves in the idal 
region can now be solved. 

Next, a method to apply MOC is described 
herein. The three-dimensional steady Euler 
equations are given by Eq. (1). 
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ρ is the density, p is the pressure, u, v, and w are 
the velocity components in x, y, and z directions, 
respectively, and H is a specific total enthalpy. 
Choosing the coordinate system in which the 
derivative with respect to y is zero yields Eq. (3). 
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Equations (6) and (8) yield 
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where H’=H - v2/2. Equations (4), (5), (7), and 
(9) are the same as the two-dimensional Euler 
equations. Hence, those equations can be 
diagonalized to yield Eq. (10). 
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M is the Mach number, q is the velocity, ϕ is the 
angle between in-plane velocity vector and t 
coordinate, γ is the specific heat ratio, s =s/cv, s 
is the entropy, cv is the specific heat at constant 
volume, and μ=asin(1/M). t indicates the 
coordinate along in-plane velocity vector and n 
indicates the in-plane coordinate perpendicular 
to t. The variables with a prime are calculated 
using only in-plane variables. Equations (10)-
(18) indicate that dVi=0 along a line with (dn/dt) 
= λi. 

Consider a net constructed by 
characteristics shown in Figure 3. Actual 
characteristics are shown by blue whereas red 
lines are employed as characteristics in the 
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present method. The red lines are straight with 
their gradients being the gradients of the 
characteristics at points A and B, respectively. 
Two sets of lines are different but almost the 
same if the points A and B are close. 

A

B

P’

P

C
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θC

Characteristic line

Flow direction

Initial value line

 
Fig. 3 Net constructed by characteristic lines 

If a shock wave is absent, the entropy is 
constant. Hence, the third term in Eqs. (11) and 
(14) vanishes. Because of the coordinate 
transformation, in-plane specific total enthalpy 
is not constant throughout the flow field. 
Assume the point P is close enough to the points 
A and B for the variables on the characteristics 
B-P and A-P to be assumed constant. On this 
assumption, the Eqs. (11), (13), and (14) are 
integrated to yield 
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where ν is the Prandtl–Meyer function,  T is the 
temperature, and R is the specific gas constant. 

Variables at the point C are linearly interpolated 
using the variables at the point A and B. Flow 
field without any discontinuities can be obtained 
by simultaneously solving the Eqs. (19)-(21). 

Except shock waves, there is a 
discontinuity shown in Fig. (4) in the flow field 
around the supersonic biplane across which the 
entropy is discontinuous. Special treatment to be 
proposed below is needed to solve this 
discontinuity. 

Pu

A

B

Cu

PlCl
A1

A2

Entropy discontinuityCharacteristic line

 
Fig. 4 Net constructed by characteristic lines across 

entropy discontinuity 

From the first law of thermodynamics, 
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The specific total enthalpy is constant 
throughout flow field and the pressure does not 
change across the entropy discontinuity. Using 
these conditions and Eq. (22) give 
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This can be integrated to yield 
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Subscript o indicates a value on the opposite 
side of the entropy discontinuity. Equations (11) 
and (14) with the Eqs. (23), the equation of state, 
and dp=0 across the entropy discontinuity 
become 
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 ϕddV =m  (26) 

With Eq. (10), Eq. (26) means that flow angle 
does not change across the entropy discontinuity. 

Consider the point Pu in Fig. 4. The Mach 
number is decomposed into in-plane component 
M’Pu and out-of-plane component MPuy: 

 222 ' PuyPuPu MMM +=  (27) 

The out-of-plane Mach number component is 
given by 
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Similarly for the point Pl there exists a 
relationship 
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The variables at the point A is linearly 
interpolated from the variables at A1 and A2. By 
simultaneously solving Eqs. (19)-(21), (24), 
(25), (29), and (30) the variables at the points Pu 
and Pl are obtained. With the equations given so 
far, the three-dimensional Euler equations are 
solved in the ideal region. 

2.2.2 Friction force evaluation 
The Euler equations have been employed as 
governing equations of flow field. The Euler 
equations neglect viscous effect, that is, friction 
force. Hence, the friction force needs to be 
evaluated separately. 

The reference enthalpy method [10] was 
employed to evaluate friction force. This 
method estimates the friction drag of a 
compressible flat plate boundary layer by 
applying reference enthalpy into the estimation 
equation for incompressible boundary layer.  

The friction force of the biplane was 
approximated by two flat plates and fully 
turbulent boundary layer was assumed in this 
method. 

From the reference enthalpy, the reference 
temperature can be calculated by 
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where T* is the reference temperature, Te is the 
temperature at outer edge of the boundary layer, 
Me is the Mach number at outer edge of the 
boundary layer, r is the recovery factor, e 
denotes a value at outer edge of boundary layer,  
w denotes a value at wall, 
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and 0 denotes the value of the total condition. 
The recovery factor for turbulent flow is 
approximately given by r = Pr1/3 where Pr is the 
Prandtl number. With the reference temperature, 
the reference density is given by state equation 
and the reference viscosity coefficient by 
Sutherland viscosity law. The approximation 
equation for estimating skin friction coefficient 
of incompressible flat plate turbulent boundary 
layer is 
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where Rex is the Reynolds number based on 
local distance from a leading edge. Replacing 
the Reynolds number in Eq. (33) by the one 
given by the reference density and the reference 
viscosity coefficient yields the skin friction 
coefficient of a compressible flat plate turbulent 
boundary layer. 
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where μ is the viscosity coefficient, and the 
asterisk indicates reference value. 

2.2.3 Weight estimation 
The analytical method [11] has been employed 
to evaluate wing weight. This method calculates 
a required weight of a wing structure based on 
the bending moment obtained by aerodynamic 
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analysis. This value and the wing area yield an 
estimation of wing weight based on the 
correlation data of existing aircrafts. 

Consider a cross-sectional structure of the 
lower wing shown in Fig. 5. The red lines show 
structures that carry loads. The front and aft 
parts are not used to carry loads because these 
parts are necessary for moving parts to avoid 
choking of the wing [4].  
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Fig. 5 Wing structure for weight estimation 

Maximum bending moment of the wing is 
calculated from aerodynamic force. Aircrafts 
have to withstand loads under the ultimate load 
factor condition. The ultimate load factor is 1.5 
times the limit load factor which, by FAA 
Federal Aviation Regulations, is given by 
2.1+24000/(W0+10000) where W0 is the design 
maximum takeoff weight. A previous study 
showed that sum of forces acting on inward 
surfaces of a supersonic biplane does not almost 
change when the angle of attack is changed [12]. 
Thus, pressure force acting on each wing in the 
ultimate load factor condition is calculated only 
by changing the outward surface pressure. 

Bending moment Mb and normal stress σ 
has a relationship: 

 
G

b

I
tM 2

=σ  (35) 

where IG is a second moment of cross sectional 
area of structure. The second moment of cross 
sectional area is related to the cross sectional 
area A. Maximum stress of the wing material is 
given. Substitution of maximum bending 
moment to Eq. (35) gives required cross 
sectional area of wing structure which yields the 
minimum weight of wing box Wwingbox. 
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2

0cos'cos

b
mat

matwingbox Ady
g

AdlgW
τ

ρ
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where ρmat is the density of material, g is the 
acceleration due to gravity, l is the coordinate 

along the structural axis, Ω’ is the sweep angle, 
τ is the dihedral angle, and b is the wing span. 
The minimum weight of a wing box and the 
wing area S have a statistical relationship with 
overall wing weight given by 

 SWW wingboxwing 44.2930.1 +=  (37) 

The characteristics of the material are set to ρmat 
= 2796 kg/m3，σlim = 372 MPa. 

All of the analyses take less than 10 
seconds altogether with the Intel Core 2 Quad 
processor. 

2.3 Validation 
To confirm the validity of aerodynamic force 
evaluation methods described so far, results of 
the present methods and CFD are compared.  

2.3.1 Comparison with CFD in terms of 
pressure force 
The present methods and CFD analyzed the 
same wing model to confirm the validity of the 
present methods in terms of pressure force.  

The wing model is shown in Fig. 6. The 
Mach number is set to 1.7. For CFD analysis, a 
flow solver named Tohoku University 
Aerodynamic Simulation code (TAS code) [13-
18] using three-dimensional unstructured grid is 
employed. The three-dimensional Euler 
equations are solved by a finite-volume cell-
vertex scheme. The lower/upper symmetric 
Gauss-Seidel (LU-SGS) implicit method for an 
unstructured grid is used for the time integration. 

15 deg.

5 deg.  
Fig. 6 Orthographic views of wing model used for 

validation 

Figures 7 show the cross-sectional pressure 
coefficient distribution at 60% half span station. 
MOC indicates the result obtained from the 
present methods. Great agreement is confirmed 
between the results from the present method and 



 

7  

MULTIDISCIPLINARY DESIGN OPTIMIZATION OF A THREE-DIMENSIONAL
SUPERSONIC BIPLANE BASED ON METHOD OF CHARACTERISTICS

CFD except the region around the inward vertex 
located near x/c=0.5. The reason of the 
difference is that a shock wave has thickness of 
a couple of grid points in CFD resulting in 
gradual pressure rise around the vertex. 

-0.1

0

0.1

0.2

0.3

0.4

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

x/c

C
p

CFD
MOC

 
(a) Upper wing 
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(b) Lower wing 

Fig. 7 Chordwise pressure coefficient distributions at 60% 
halfspanwise section 
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Fig. 8 Spanwise cross sectional pressure lift coefficient 
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Fig. 9 Spanwise cross sectional pressure drag coefficient 

Figures 8 and 9 show spanwise airfoil 
pressure lift and drag coefficients. It is 
confirmed that unideal regions exist near the 
wing tip and root, but good agreement between 
these two methods is achieved outside of the 
unideal regions. 

As a conclusion, it is confirmed that the 
present methods can evaluate pressure force 
accurately in the ideal region but cannot 
evaluate pressure force in the unideal region. 
Hence, to conduct optimization using the 
present methods, it is necessary to assume that 
aerodynamic performance of the unideal region 
is independent of airfoil and to keep the planar 
shape of a wing unchanged to keep the size of 
the unideal region constant. 

2.3.3 Comparison with CFD in terms of friction 
force 
Friction force calculated by reference enthalpy 
method is compared with a result from CFD 
given in Ref. [4]. 

A wing model is constructed by straight 
lines and is symmetrical about a center line. 
Each wing has the thickness of 5%. For CFD 
analysis, Navier-Stokes equations were solved 
by TAS code. The Reynolds number based on 
the chord length of one wing is set to 3×107. 
The Mach number is 1.7. 

The results are shown in Table 1. 
Difference between the present method and 
CFD is about 10%. Considering the simplicity 
of the present method, those two methods agree 
fairly accurately. 
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Table 1 Drag coefficients of CFD and the present method 

 CFD Present Error [%]
Cdp 0.0016 0.00177 +10.6 
Cdf 0.0087 0.00767 -11.8 
Cd 0.0104 0.00944 -9.2 

3  Optimization of Supersonic Biplane 

3.1 Optimization Method 
An optimizer called Adaptive Range Multi-
Objective Genetic Algorithm (ARMOGA) [19] 
was employed for optimizations. ARMOGA 
uses Genetic Algorithm as an optimization 
algorithm. ARMOGA has the option to use 
adaptive range function, but it was not used. 
The number of individual members was 128. 
The initial population members were generated 
randomly across the whole design space. 
Fonseca and Fleming’s Pareto ranking method 
was employed and fitness was computed based 
on average fitness. Stochastic Universal 
Selection (SUS) was employed as a selection 
method. The blended crossover was employed 
as a crossover method. The revised polynomial 
mutation was employed as a mutation method.  

3.2 Single Objective Optimization of 
Supersonic Biplane 

A single objective optimization to 
minimize pressure drag coefficient of a biplane 
with the same planar shape as the inversely 
designed wing [6] was conducted. 

Design variables are the ratio of wing span 
to wing gap, dihedral angle of the lower wing, 
and variables shown in Fig. 2. The number of 
design variables is 15. 

The result shown in Table 2 indicates that 
the present method found the design that has the 
pressure drag coefficient 11.0% lower than the 
ideal region of the design obtained by the 
inverse design method under almost the same 
condition of pressure lift coefficient. The 
inverse design method has a limitation of how 
to define the pressure distribution. The present 
aerodynamic performance evaluation method 
coupled with GA overcame the limitation and 
yields the better performance wing. 

Table 2 Characteristics of supersonic biplanes obtained by 
the inverse design method and the optimization coupled 

with the present methods 

C Dp C Lp AR t/c
Inverse design 0.00416 0.1138 5.120 0.1

Optimization 0.00370 0.1134 5.152 0.1014
Difference [%] -11.0 -0.3 0.6 1.4  

3.3 Multidisciplinary Optimization of 
Supersonic Biplane 

3.3.1 Problem Definition 
To conduct optimization, design variables, 
constraints, and objective functions need to be 
defined. 

The taper ratio is fixed to 0.25. The 
previous studies [6,7] showed that tapered 
wings have good aerodynamic performance and, 
although it depends on the sweep angle, the 
taper ratio of around 0.25 yields the highest 
aerodynamic performance. The total wing area 
is set to greater than 230m2, and the aspect ratio 
of each wing is set to greater than 6 to meet 
landing and climb requirements as described in 
Ref. 3. The sweep angle of lower wing leading 
edge is set to 11.3 degrees to make mid-chord 
sweep angle zero degree. The previous study 
shows that wings with mid-chord sweep angle 
of zero have a good aerodynamic performance 
[7]. 

The design variables are the same as the 
single objective optimization. The objective 
functions are drag and wing weight, both of 
which should be minimized. 

The flight conditions were set as follows: 
the cruising weight is 50 metric tons, the 
cruising altitude is 55,000 ft, and the cruising 
Mach number is 1.7. 

3.3.2 Results and Discussions 
After evolving the population for 120 
generations, the changes in objective functions 
became small. It indicates that the optimization 
has converged, so it was terminated at 120 
generations. Figure 10 shows the drag and wing 
weight of the non-dominated solutions. Trade-
off relationship between drag and wing weight 
is clearly observed. Consider the solution 
marked as A. If either drag or wing weight is 
reduced further, the other variable increases 
considerably. Hence, solution A is the most 
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likely candidate to be employed. The geometry 
of solution A is shown in Fig. 11. 
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Fig. 10 Drag and wing weight of non-dominated solutions 

Table 3 shows a comparison of the 
characteristics of the minimum drag design, a 
design A in Fig. 10, and the minimum wing 
weight design. The aerodynamic performance of 
the design A is worse than the inversely 
designed wing shown in Table 2. As shown in 
the section 3.2, the present tool has a potential 
to obtain higher aerodynamic performance wing, 
but it yielded lower aerodynamic wing because 
it considered not only pressure force but also 
friction force and weight. 

 Tendencies of the non-dominated 
solutions are as follows. First, thinner wings 
increase wing weight but decrease drag. Second, 
larger dihedral angles make the drag lower but 
make wing weight heavier. Thus, those 
parameters establish the trade-off relationship 
between drag and wing weight of the supersonic 
biplane. 

For typical aircrafts, the weight of the wing 
is roughly 15% of the maximum takeoff weight 
[20]. Although it depends on how much fuel is 
consumed during takeoff and climb, the weight 
of the biplane is approximately 20% of the 
maximum takeoff weight. Hence, the biplane is 
relatively heavy, so it can be regarded as a 
drawback. 

The lift to drag ratio is around 10. It is 
similar to that of delta or arrow wings that are 
usually used for supersonic aircrafts. 

The wing fuel weight was evaluated by 
assuming that the wing can carry fuel of 85% of 

the wing box’s volume [20]. The biplane can 
store fuel that weighs over 20% of the cruising 
weight. 

 
Fig. 11 Orthographic views of solution A 

Table 3 Characteristics of solutions obtained from the 
multidisciplinary optimization 

Min. drag A Min. weight
Lift, N 489,142 489,166 489,176

Drag, N 43,637 43,995 49,712
C Lp 0.2158 0.2289 0.2293
C Lf -0.0004 -0.0004 -0.0004
C L 0.2154 0.2285 0.2289

C Dp 0.0111 0.0124 0.0152
C Df 0.0081 0.0081 0.0081
C D 0.0192 0.0205 0.0233

(L/D) p 19.44 18.43 15.12
L/D 11.21 11.12 9.84

Total wing weight, kg 11,169 10,471 10,101
Wing weight, lower wing, kg 4,912 4,709 4,661
Wing weight, upper wing, kg 6,257 5,762 5,441

Aspect ratio, lower wing 6.31 6.13 6.01
Aspect ratio, upper wing 6.02 6.03 6.02

Total wing area, m2 244 230 230
Wing area, lower wing, m2 119 114 115
Wing area, upper wing, m2 125 116 115

Span length, m 27.4 26.5 26.3
Sweep angle, leading edge, lower wing, deg. 11.3 11.3 11.3
Sweep angle, leading edge, upper wing, deg. 11.2 11.2 11.1

Dihedral angle, leading edge, lower wing, deg. 11.5 10.3 7.5
Dihedral angle, leading edge, upper wing, deg. -0.2 -1.5 -5.5

α , lower wing, deg. 2.94035 3.1042 3.07947
α , upper wing, deg. 2.52559 2.50337 2.45174

t/c , lower wing, % 7.07 7.30 7.63
t/c , upper wing, % 4.80 4.87 5.29

Total usable wing fuel, kg 12,473 11,853 13,809
Usable wing fuel, lower wing, kg 8,565 8,371 9,767
Usable wing fuel, upper wing, kg 6,109 5,573 6,479  

4  Conclusions 
The tool to evaluate the performance of a 
supersonic biplane has been developed using the 
modified oblique shock wave equations, the 
modified Method of Characteristics, and the 
reference enthalpy method. It has been 
confirmed that aerodynamic forces can be 
evaluated with less than the error of 12% in the 
ideal region of the test case compared to CFD at 
significantly low computational costs. 

Using the tool thus developed, the 
multidisciplinary optimization was conducted to 

A 
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design a three-dimensional supersonic biplane. 
The high performance wings were obtained and 
the major factors governing the trade-off 
relationship between drag and wing weight were 
found out. Small thickness-to-chord ratio and 
larger dihedral angle decrease drag but increase 
wing weight. The characteristics of a supersonic 
biplane were also shown. The aerodynamic 
performance is similar to that of a delta or an 
arrow wing. Supersonic biplanes are relatively 
heavy, and can store fuel that weighs over 20% 
of the cruising weight. 
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