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= Equivalent area distribution 
= Difference from target 

BFL = Balanced field length 
C.G. = Center of gravity 
CL = Lift coefficient 

DOC = Direct operating cost 
L/D = lift to drag ratio 

LF anding field length 
LH Liquid hydrogen 
SFC ption 
SSBJ Supersonic business jet 
SSC Second segment climb 
SST Supersonic transport 
T/W = Thrust to weight ratio 
W/S = Wing loading 

pty weight 
uel weight 
e-off weight 
amic pressure 
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e realization of a 
en. In Japan, the 
Laboratory of Japan 
e Japan Aerospace 
XA) successfully 

rsonic experimental 
05 [1], and validated 

 well as 
has been promoting 
logy Demonstrator 
 emphasis on low 

sonic boom, noise reduction and the integration 
of the advanced demonstration system. Now, as 
part of it, they are planning a project known as 
Drop Test for Simplified Evaluation of Non-
symmetrically Distributed sonic boom (D-
SEND project) [3] in 2011. 

Many projects including the studies of 
JAXA have indicated there are many barriers 
for the successful completion of various 
necessary project goals such as supersonic 
cruise efficiency, sonic boom annoyance, 
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Abstract  
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economical viability and also envir
problems. According to a report of 
2008 [4], CO2 emissions from aircraf
total CO2 emissions will increase at a
annual rate of 4.6 % between 2005 
Furthermore, a stable supply of oil is 
difficult to maintain. Some projects 
carried out to analyze the feasibility of h
fueled aircrafts. An idea using the L
Configuration SST was proposed by H
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sengers than the SSBJ class 
since LH2 fuel can reduce the take-off we

is study is to disc
feasibility of a low boom LH2-SST desig

 of hy
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ed 
trade-off relations. A low boom Kerosene-SST 
is designed by this method for comparison with 
the low boom LH2-SST. 

2 Some Features of LH2-SST 

2.1 Effects of Hydrogen on Aircraft Design 
Table 1 lists the properties of hydrogen and the 
effects on aircraft design [6].  

drogen molecules 
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ean. However, an 

 water vapor could 
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 per weight is about 
that of kerosene. 

Therefore, it will raise direct operation costs 
(DOC).  

2.2 Early Studies of LH2-SST 

Table 2 presents the comparisons of two 
concepts, the Kerosene-SST and the LH2-SST, 
both of which were designed by Lockeed in the 
mid 1970s to carry 234 passengers for a range 
of 4200 nm, at a M2.7 [6]cruise speed. The take-
off weight (WTO) of the LH2-SST was estimated 
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to be much lighter than that of the K
SST by nearly 50% because lower SFC
the ratio of fuel weight to take-of
(WF/WTO), although the LH2-SST h
L/D. Wing loading (W/S) was determ
the landing constraints in this com
Because of this constraint the LH2-
lower W/S. Subsequently, lower W
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CRUISE
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W SC at cruise
q

=
 

Lower dynamic pressure indicate
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higher take-off thrust to weight rat
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(1)
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. At a 
have a 
(T/W) 
lapse. 

3 Design Method 

3.1 Design Method 
Figure 3 shows the flow 
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study of LH2-SSTs [11] which were designed to 
carry less than 100 passengers for a range of 
3500 nm, at a M1.6 cruise speed, although the 
design method wasn't incorporated with any 
sonic boom minimization or  optimization 
process. The study reveals LH2 fuel can reduce 
WTO by 40~50% at the most for the purpose 
mentioned above. It also predicts the weight 
trend of a LH2-SST with respect to the number 
of passengers referring to the past SST projects, 
as shown in figure 2.  

 LH2-SST 
 management of 
ult and some weight 

lation, tank 

weight penalties assumed in the design of a 
2-SST performed by Lockeed.  

chart of the design 

or a given mission. 
rator (§3.3) gives 
ubsequent modules. 

e (§3.4) calculates weight and 
balance. The aerodynamics module (§3.5) 

wing camber, estimates drags and so on. 
le (§3.6) receives 

ze. The results are 
sing commercially-
ht [12]. 

 process, preliminary sizing 
provides a baseline model for a given mission. 

 W/S, T/W and some dimensions of 
imated here. The 
 T/W is narrowed 

ith respect to BFL, 
L), SSC and cruise [13]. 

BFL, LFL and SSC 
/W.  

The fuselage is defined to be an axis-
symmetrical circular body. Non-Uniform 
Rational B-Spline (NURBS) determines the 
radii distributions of fuselage (figure 4) while 
the maximum length and diameter are fixed.  

The wing planform is determined by using 
the result of reference 14. In this reference, the 
multi-point optimization of wing planform was 
carried out at the supersonic cruise condition of 
M1.6 and CL =0.1 with two objectives being: 1.) 

either balanced field length (BFL) o
segment climb (SSC). However, the d
of the take-off T/W in this compar
suggest a possibility that a cru

second designs 
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n may 
straint 

e LH2-

e LH2-
 large 
ich are 

Last, the evaluation modu
some output files to analy
iterated and optimized by u
available software called Isig

3.2 Preliminary Sizing 
In this design

SST.  
Figure 1 shows the plan view of

SST [6]. The fuselage contains tw
cryogenic integral tanks fore and aft w
nearly cylindrical in shape. Note that i
its lower W/S, the wing is relatively sm

2.3 Take-off Weight Trends of LH2-S

As mentioned above, the results obt
Lockeed show a potential for redu
weight of an aircraft due to the high h
of the combustion of hydrogen. Th
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3.3 Geometry 

2.4 Other Considerations of
Generally speaking, the
cryogenic LH2 fuel is diffic
penalties are expected due to insu
structure and boil-off. Table 3 summarizes the 
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minimizing the bending moment aro
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turbofan engine with low noise devices for a 
SSBJ [20], the thrust to engine weight ratio is 
supposed to be about 3.0 in this paper.  

In designing a LH2-SST, the weight of the 
LH2 fuel tank is assumed to be 24% of fuel 
weight. The penalty due to the fuel supply 
system is assumed to impose an 85 % increment 
of the weight in this paper. (see table 3) 

At supersonic speeds, the wing 
aerodynamics center typically moves aft and it 
leads to trim drag. To minimize it, a C.G. 

ore, the allowable 
ifting fuel is calculated here. 

on Tools 
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3.5 Aerodynamics Estimati
Aerodynamics estimation 
paper are listed in Table 
based on linear theories be
method will be useful for multi-poin
conceptual design phases wh
of calculation cases are req
is a tool for the estimation 
also evaluates the equiv
volume. SEEB, which utiliz
method of Seebass and Ge
[24], provides the target eq
given sonic boom signature, either ram
flat-top type. This tool was f
participants of the NA
Aeronautics

Type 2 on the pareto frontier is cho
used as a main wing configuration in th

The horizon tail and vertical tail 
by an aspect ratio, wing area and a swe
both at leading and trailing edges. The
nacelle is assumed to be cylindrical in

cations of the tail and engine are
chosen considering the equivale
distribution due to volume or Center o
(C.G) location. 

The dimensions of the cabin incl
cargo space are calculated from the
required by the number of passengers.
tanks of a conventional kerose
expected to be loc
fuselages to shift the C.G location for tr
In designing a LH2-SST, the fuel 
deployed in the fore and aft of the 
similar to the configuration shown in fi
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re 1. 
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ceptual 
rred to 

ss.) 
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lift under supersonic conditi
of Carlson [27]. FRICTIO
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3.6 Evaluation Module 
In the evaluation module,
from the previous module
evaluate performances of 
take-off weight, L/D in cru

3.4 Mass Estimation Tool 
The tool for estimating each compon
of an aircra is based on the equatio

AATS [15], which employ an 
approach.   Following the four c
design results of SST [16] ~ [19] are re
update the equations.  
1 SSXJET (M2.2, 32
2 Low Boom HSCT (M2.0, 4000nm, 
3 M2.4 HSCT (M2.4, 6500nm, 25
4 M3.0 HSCT (M3.0, 6500nm, 2

Figure 6 shows the equ

-p
p
p
m
g

EAΔ  of the equivalent area  from 
the target given by SEEB shown in figure 7. 
The horizontal axis shows the axial distance of 
an aircraft and the vertical ax
equivalent area  in figure 7. Note that the 

EA

is shows the 
EA

EAΔ  is nondimensionalized by a representative 
area. 
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4 Design Results 
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The reason for the big gap of the 
figure 9) is because the v
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lage radii distribution were set as

variables and CL =0.1 at cruise was chosen as a 
constraint. (The value of CL was determined 
empirically to cruise around the maximum value 
of L/D) This constraint means that as the wing 
area or W/S changes, cruise altitude and also 
dynamic pressure varies to meet CL =0.1. Figure 
10 shows the result with respect to wing area 
and . It can be seen that the  decreases 
as the wing area increases and it plateaus around 
3,800 ft2. 

oom Design 
was performed by 
Genetic Algorithm 
d 10 control points 
 were set as design 
ise was chosen as a 
 minimizing  

ρ
= =

According to this equation, increasing
decreasing dynamic pressure (q) m
value larger. Note that decreasing q aff
cruise, as mentioned in §2.2. In order
around the maximum value of L/D, pr
or cruise altitude should be chosen.  
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variables. The wing area and 10 cont
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4.3 Optimization for Low B
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Neighborhood Cultivated 
(NCGA). The wing area an
of fuselage radii distribution
variables and CL =0.1 at cru
constraint. The objective was EAΔ  
and WTO. The calculation 
through 10 generations and

was implemented 
 figure 11 shows 

 r generation. The 
h. However, it was 
 trade-off between 

the esult at the 10th 
convergence was not enoug
confirmed that there is a

EAΔ and WTO. 
To reduce EAΔ  muc

single-purpose optimization
using the D hill Simplex
points of fuselage radii distr
as design variables and CL =0

h closer to zero, 
 was performed by 

own  method. 10 control 
ibution were chosen 

.1 at cruise was set 
as a cons ng area was fixed at 
3,800ft2 from the result of DOE (see §4.2). The 

minimize . Figure 12 
tory. Figure 13 and 
 the low boom LH2-

equivalent area 

ine model 
specification of the 
 LH2-SST. Each of 

the cruise altitude is different to meet CL =0.1 at 
use of the difference of W/S.  

he sonic boom is 
f as shown in figure 
 from 6.13 to 7.39. 

m 69 to 41 psf and 
ally, this 

improvement of L/D is considered to suppress 
the growth of WTO to only 7%.  

4.5 Comparison with Kerosene-SST 
The low boom Kerosene-SST (figure 15) was 
also designed for comparison with the low 
boom LH2-SST. Table 7 lists both SST’s 
specifications. The comparison shows that LH2 
fuel could lead to a 25% WTO reduction. With 
this help, the pressure rise by sonic boom is 

traint. The wi

objective was to EAΔ
shows the convergence his
14 presents the plan view of
SST obtained and its 
distribution.  

4.4 Comparison with Basel
Table 6 compares both the 
baseline and the low boom

cruise. This is beca
The pressure rise from t
reduced from 1.87 to 0.44 ps
16. The L/D is also improved
Although W/S decreases fro
T/W increases from 0.46 to 0.53 drastic
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decreased from 0.67 to 0.44 psf as 
figure 16. 

As another 
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notable difference, the 
price of LH  fuel per weight raises DOC from 
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om LH2-SS
predicted as shown in figure 17. Note t

aft C.G. lines in figure 17 
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WTO is suppressed by the improvement o
One of the reasons for this improvement is that 
the wave drag is decreased because the 
equivalent area due to volume becomes 
smoother as shown in figure 9 and 14.  

Brewer’s report [6] and our former study [11] 
indicated that LH2 fuel can reduce WTO by 
40~50 % at the most because of its high heat 
level of combustion. However, WTO of the low 
boom LH2-SST in this study is 25% lighter than 
the low boom Kerosene-SST. It is expected that 

ight reduction will 
weaken a little when a LH2-SST is designed for 

f Low Boom LH2-

onic boom intensity 
round is considered 
ptable value. In the 
e SSBJ class most 

on for sonic boom. 
low boom LH2-SST 
it was designed to 

0 passengers for a range of 3500nm at 
Mach 1.6. That is, the low boom LH2-SST 

s sonic boom criterion, which is less 
passengers than the 

SSBJ class. This is because of the weight 

siderations about a 
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fueled engine was 
 specification with 
ed turbo-fun engine 

problems in a turbo 
 necessary to study a 
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and §4.5, LH2 fuel 
y supposing the cost 
 LH2 fueled aircraft 
mmercial purposes. 
cle (FCV) concepts 

efore, there is now a 
possibility that LH2 fuel will grow in popularity 
and come down in price in the future. 
c. Safety 
Safety is one of the biggest problems. 
Especially, a LH2 fuel tank is expected to be 
stored under a severe, low temperature and high 
pressure environment. Sufficient measurements 
for this situation should be taken. Accordingly, 
if regulations of a LH2 aircraft are established, 
there will be a trade-off between the safety and 
weight penalty. 

wn in 

E

SST.  That is, minimizing EAΔ  leads
W/S and higher T/W comparing with
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required (see §4.2). However, the g

the advantage of the we

higher low boom.  
2
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The LH2 tank was divided into two se
forward and aft of fuselage (see figure
result, the C.G. of the low bo
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T was 

hat the 
do not 

hey do 
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5 Considerations 

5.1 Optimization 
Multi-point optimization was performe
paper. However, the convergence 

in this 
as not 
seems 

ometry 
zed

reduction by LH2 fuel. 

5.4 Other considerations 
There are some other con
LH2-SST. 
a. Eng

something wrong with the fuselag
model. In this paper, NURBS was
Figure  shows the B-Spline basi
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choices of the knot vector will 
convergence. 

5.2 Take-off Weight of Low Boom L

It is confirmed that there is a trade-off 
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proper 
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SST 

In this paper, the LH2 
assumed to be the same
conventional kerosene fuel
(see §3.4). According to reference 6, it is 
expected that there are few 
jet engine fueling LH2. It is
LH2 fueled engine 

between 
 LH2-
 lower 
ose of 
tude is 
wth of 
f L/D. 

b. Cost 
As above mentioned in §2.1 
would raise DOC drasticall
of LH2 in 2010. At present a
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d. Cooling capability 
Hydrogen has the high specific heat (
There is an expected a

see §2.1).  
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Fig. 7. Equivalent Area and Definition of EAΔ  
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Fig. 9. Equivalent Area of the Baseline 
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Fig. 10. EAΔ
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Fig. 13. Plan View of the Low Boom LH2-SST 
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Fig. 14. Equivalent Area of the Low Boom LH2-SST  
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Fig. 15. Plan View of the Low Boom Kerosene-SST 
 

-2

-1

0

1

2

-50 50 150 250

time[msec]

Low boom Kerosene-SST: 0.67psf
Low boom LH2-SST: 0.44psf

Baseline of LH2-SST: 1.87psf

Δ
P[

ps
f]

 
Fig. 16. Overpressure on the Ground 
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Fig. 17. Estimated C.G. Boundaries of the Low Boom 

LH2-SST 
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