
FROM GEOMETRY TO CFD-BASED AERODYNAMIC
DERIVATIVES - AN AUTOMATED APPROACH

Maximilian Tomac , David Eller

Aeronautical and Vehicle Engineering

Royal Institute of Technology

SE - 100 44 Stockholm, Sweden

Keywords: Mesh Generation, Automated Analysis, CFD

1 Introduction

The aim of the EU-funded collaborative research
project SimSAC is to generate stability and con-
trol data for preliminary aircraft design using
methods of varying fidelity. This paper is con-
cerned with the automatic determination of aero-
dynamic data, namely the computation of aero-
dynamic derivatives for the rigid aircraft with
control surfaces. In order to obtain this data, the
aircraft geometry must be defined, computational
meshes for different aerodynamic solvers need to
be created and finally, the flow solver parame-
ter settings must be adapted to reliably perform
multiple solutions from which the derivatives are
computed. To illustrate the process, the mod-
elling, mesh generation and automated compu-
tation setup procedures are applied to the EADS
Ranger 2000 jet trainer.

Most of the geometry modelling process
could be performed inside one of the industry
standard general purpose CAD systems, and the
mesh generation left to a commercial mesh gen-
erator. This approach, although theoretically
highly attractive, has significant disadvantages.
Due to the complex nature of both CAD systems
and high-fidelity flow solvers, combined with the
associated substantial licensing and training cost,
the number of aerospace CFD experts who also
are experienced users of both CAD and mesh
generation software is rather limited. Further-
more, the geometry description exported by stan-
dard CAD systems to the mesh generation soft-

ware tends to be unnecessarily complex and usu-
ally requires extensive manual simplification ef-
forts, thereby severely encumbering automation.

2 Variable-fidelity framework CEASIOM

Figure 1 shows an overview of the CEASIOM
framework. The framework integrates discipline-
specific tools with main focus on aircraft concep-
tual design. As mentioned above, the focus of
this paper is on reducing the engineer’s workload
by means of automatic determination of aerody-
namic data. This brings us to sumo and the in-
teraction between the CFD and AMB modules in
figure 1. Methods spanning from simple empiri-
cal procedures and vortex-lattice (VLM) methods
to inviscid Euler and viscous RANS simulations
are used within the CFD module. For further de-
tails see references [1, 2].

3 Geometry

The simplest geometry representation is a col-
lection of global shape parameters which can be
used to describe a set of typical aircraft con-
figurations with a level of accuracy suitable for
use with VLM aerodynamics. The particular
set of shape parameters adopted for the SimSAC
project is here referred to as the CEASIOM [2]
geometry description. An example for a typical
CEASIOM geometry dataset is shown in Figure
2. The VLM model only includes lifting surfaces
such as wing and vertical tail and stabilizer, while

1



MAXIMILIAN TOMAC , DAVID ELLER

Fig. 1 Illustration of CEASIOM framework

Fig. 2 CEASIOM geometry of baseline model

the CEASIOM geometry representation also in-
cludes airfoil thickness and non-lifting surfaces
such as the fuselage. At the next higher level of
detail, the graphical surface modelling tool sumo
can be used to define a more detailed geometry
based on a moderate number (often less than 30)
spline surfaces. This description is used to gen-
erate input for CFD solutions based on the Euler
equations. At a later stage when details of inter-
est have been added in sumo , the geometry rep-
resentation can be exported to CAD systems or
commercial mesh generation software by means
of IGES [3] files.

4 Mesh generation

From the CEASIOM geometry parameters, the
VLM mesh can be generated directly within
the Matlab-based CEASIOM environment. For

higher-fidelity geometry descriptions and the
generation of meshes for CFD solutions based
on the Euler equations, sumo and TetGen [4] are
employed, as described in the following sections.

Generation of volume meshes for Navier-
Stokes computations can exploit the compara-
tively simple geometry representation of avail-
able in sumo . Continuous geometry data can be
exported in IGES format, while volume meshes
are exported using CGNS [5]. The commer-
cial mesh generation software ICEM-CFD [6] is
then controlled by small scripts in order to auto-
matically generate a hybrid prismatic-tetrahedral
mesh suitable for Reynolds-averaged Navier-
Stokes (RANS) simulations, as detailed in Sec-
tion 4.3. Figure 3 illustrates the typical level of
detail which can be achieved with this approach.

4.1 Surface mesh generation

The accuracy of the numerical solution of the
flow problem is obviously rather strongly af-
fected by the quality of the surface discretiza-
tion. As the solver used in this study exploits only
piecewise linear geometry and represents the so-
lution as nodal values, the surface mesh must

• approximate the underlying geometric sur-
face with sufficient accuray;

• allow resolution of important flow features
such as pressure distributions.

While the first requirement is, in most cases, a
necessary condition for the second, it is not al-
ways sufficient. As an example, consider the
pressure recovery near the trailing edge of a lift-
ing surface. Although the surface geometry usu-
ally is relatively flat in this region, fairly small
triangles are needed in order to resolve the steep
pressure gradient accurately. For a single flight
condition, this could be achieved by means of
solution-adaptive mesh refinement, but for the
multitude of cases considered here, that is not
necessarily a practical option.

The algorithm employed in sumo to auto-
matically generate surface meshes ensures that
the first requirement above is fulfilled to given

2



From Geometry to CFD-Based Aerodynamic Derivatives - An Automated Approach

Fig. 3 Left: Euler mesh; Right: RANS mesh, both based on sumo geometry

tolerances. A set of geometric heuristics de-
scribed below are used to refine particular regions
where large variations in pressure are typically
observed.

All geometric surfaces which make up the
aircraft configuration are bi-parametric surfaces
of the form (x,y,z) = S(u,v), where at least the
first derivatives with respect to the parameters u
and v must be continuous. The mesh genera-
tion is performed in the parameter space (u,v) by
means of a modified Delaunay algorithm similar
to that presented by Chew [7]. A plane triangular
mesh is said to be Delaunay if the circumcircle
of any plane triangle does not contain any vertex
of another triangle. Chew extended this defini-
tion to triangles on a parametric surface, where
the mesh is defined to be Delaunay if the circum-
sphere of any three-dimensional triangle does not
enclose vertices of any other triangle. A mesh
which does not have this property can, in princi-
ple, be made conforming by a sequence of edge
flips. Here, however, lies an important difference
to the two-dimensional case, since edge flips in
three dimensions can lead to geometric irregular-
ities which do not exist in 2D.

As an example, consider a long triangle edge
lying on the leading edge of a thin wing surface.
If this edge needs to be flipped in order to re-
establish the Delaunay property, it will connect
a point on the upper surface of the wing sur-
face with a point on the lower surface, which
most likely leads to very poor mesh quality.
Even Chew states that the process of improving

mesh quality (constituting the dominating part
of the whole mesh generation) must start from a
mesh which is Delaunay in the three-dimensional
sense. For general parametric surfaces, this ini-
tialization is not trivial.

4.1.1 Mesh initialization

To initialize the process with an (at least approx-
imately) Delaunay surface mesh, a structured
quadrilateral mesh is first created on each sur-
face. Since the parameter domain (u,v) ∈ [0,1]2
is quadratic, this step is comparatively simple.
In the common case of surfaces with very large
changes in local curvature, such as wings, highly
stretched quadrilateral elements result. Splitting
these quadrilaterals into triangles would obvi-
ously not yield a surface mesh conforming to
the Delaunay property. Therefore, another pass
is applied in which the initial, highly stretched
quadrilateral mesh is converted into a geometri-
cally adapted triangular mesh. Figure 4 shows
the hybrid mesh just after conversion to triangu-
lar elements and the final mesh which fulfills the
Delaunay property. In some cases, the mesh qual-
ity requirements of the flow solver may allow to
use surface discretizations of the type depicted to
the left in Figure 4. Usually, however, consider-
ably better quality must be achieved.

4.1.2 Refinement

Once initialized, the triangular mesh is refined
until a set of criteria are fulfilled. These crite-

3



MAXIMILIAN TOMAC , DAVID ELLER

Fig. 4 Left: Initial triangular mesh. Right: Delaunay mesh.

ria can be set by the user, but the mesh genera-
tor attempts to determine sensible default values
which in most cases yield a usable discretization.
The following mesh generation parameters can
be used to control the mesh generation process:

Dihedral angle is the angle between the nor-
mal vectors of two triangles sharing an edge.
This parameter mainly affects the resolution of
strongly curved regions such as wing leading
edges.

Edge length can be controlled by enforcing
both a minimum and maximum length. The min-
imum edge length serves to avoid resolution of
irrelevant geometric details.

The triangle stretch ratio is defined as the
length of longest divided by shortest edge. Here,
the magnitude of the maximum acceptable ratio
depends entirely on the properties of the flow
solver used. A high stretch ratio allows to dis-
cretize large surfaces with small regions with
strong curvature, such as thin wings, with fewer
elements.

Leading- and trailing edge refinement fac-
tors are used to control resolution of regions
which typically feature large pressure gradients.
Since the geometry modelling component has in-
formation on which surfaces are wings, this ab-
stract information can be exploited to enforce a

gradual decrease of the maximum edge length
from the value specified using the edge length
parameter to a smaller value along the lead-
ing/trailing edge line. Figure 5 displays the ef-
fect on the root leading edge region of the EADS
Ranger test case described below.

Mesh refinement is performed in an iterative
process. In each pass, all triangles which vio-
late one of the quality criteria are collected as
candidates for refinement. The element refine-
ment itself is performed by splitting the longest
edge of the candidate triangle. Since most edges
are shared by two triangles, this split operation
normally affects both of them. Therefore, the
quality criteria are evaluated anew each time an
affected triangle is processed in order to deter-
mine whether a split is still necessary. Follow-
ing each edge split, the Delaunay property is re-
established by a series of edge flips. This part
of the algorithm is entirely identical to the two-
dimensional Delaunay procedure with the only
exception that no edge flips are performed which
would lead to geometric degeneracies. Here, an
edge is deemed degenerate if the angle between
the surface normals at its vertices exceeds 90 de-
gree. Once all candidate triangles are processed,
the quality criteria is evaluated again for all tri-
angles, resulting in a new set of triangles which
violate the imposed criteria. This iterative re-
finement procedure is repeated as long as non-
conforming elements are found, which usually
requires between four and eight passes.

4



From Geometry to CFD-Based Aerodynamic Derivatives - An Automated Approach

Fig. 5 Left: Leading edge refinement factor 2.0; Right: Factor 4.0

4.1.3 Surface intersections

The surface geometry module in sumo does
not compute surface intersections based on the
continuous geometry, as that would require ad-
ditional user interaction in order to determine
which part of a surface sliced by an intersection
curve is to be kept and which discarded. Elim-
inating this interaction is a necessary condition
for automatic mesh generation. Hence, surface
intersections are computed based on the discrete
geometry.

First, a triangular mesh is created on each sur-
face using the procedure described above. Then,
a bounding volume hierarchy (BVH) is estab-
lished in order to allow for the efficient compu-
tation of element intersections. In this case, an
unbalanced binary tree with axis-aligned bound-
ing boxes is used, as such a BVH can be con-
structed at low computational cost. The trian-
gle meshes generated by the algorithm above are
characterized by a very high degree of spatial co-
herence, so that such a simple BVH is already
very effective in eliding the vast majority of ele-
ment intersection tests. Finally, the intersections
of individual triangles are determined using the
triangle-triangle intersection test by Möller [8].

As each mesh element carries both three-
dimensional (x,y,z) geometry as well as parame-
ter values (u,v), the intersection line can be con-
structed both in 3D space and in the parameter
space of the intersecting surfaces. A limitation
of the current implementation is that no more
than three surfaces may intersect in a single point.

Usually, discrete intersection lines determined in
this way are very irregular in the sense that they
often contain extremely small segments where
one triangle intersected another at a small dis-
tance from one of its vertices. A postprocessing
stage removes such excessively short segments
where possible.

Intersection lines are then imposed as con-
strained edges for a subsequent mesh refinement
pass. In order to recover these lines in the final
mesh, such edges cannot be flipped or split by the
mesh refinement process. For this reason, mesh
quality criteria may not be fulfilled exactly near
surface intersection lines.

Once every individual surface is meshed and
all intersection constraints satisfied, the discrete
meshes are merged and duplicate vertices (along
intersections) eliminated. From the geometry
modelling topology, a small set of elements on
the external (wetted) surface of the configuration
is identified. Starting from these triangles, the
merged mesh is processed by a topological walk
over element edges. For each edge which is con-
nected to exactly two triangles and touched by a
triangle identified as external, the opposed trian-
gle (across the edge) is added to the set of ex-
ternal elements. Edges on intersection lines are
connected to four triangles and always reached
by the walk over an external element. From the
three remaining triangles, the one whose plane
includes the smallest angle with the plane of the
external triangle is selected as the next external
element.

5



MAXIMILIAN TOMAC , DAVID ELLER

This procedure is reliable as long as the con-
nectivity of the discrete mesh near intersection
lines is identical to the (mathematical, not neces-
sarily numerical) connectivity of the continuous
surface representation. In order to resolve typical
degenerate cases which can occur whenever that
is not the case, information about the originating
surface of each element is exploited to assist in
the decision.

4.2 Euler mesh generation

Once a high quality surface mesh is created, satis-
fying the requirements mentioned earlier, an un-
structured tetrahedral volume mesh for use in the
solution of the Euler equations is generated using
TetGen [4], developed by Hang Si at the Weier-
strass Institute in Berlin. TetGen is a very ef-
ficient quality-constrained tetrahedral Delaunay
mesh generator. Starting from an initial con-
strained Delaunay tetrahedralization of the do-
main, nodes are dynamically inserted until a
given set of quality criteria is met. The domain is
delimited by a surface mesh of the aircraft con-
figuration and the farfield boundary, created by
sumo . Tetrahedral quality criteria available in
TetGen, version 1.4.3, include

• maximum element volume;

• maximum ratio of circumsphere radius to
tetrahedron edge length;

• minimum dihedral angle between faces.

Furthermore, a field of maximum permitted el-
ement volumes can be defined once a volume
mesh exists. This feature is not yet exploited by
the procedure implemented in sumo .

In order to comply with imposed element
quality requirements, TetGen will subdivide even
boundary triangles (if explicitly allowed to do
so). Since no higher-order geometry description
is available at this stage, this subdivision is per-
formed in the triangle plane.

For reasonably complex configuration such
as the Ranger example displayed in Figure 3, sur-
face mesh generation requires about 40 seconds

on a quad-core 2.8 GHz Intel Core i7 series pro-
cessor. TetGen, which is a purely serial program,
generates a tetrahedral mesh with about one mil-
lion cells in less than one minute on the same
computer.

4.3 RANS mesh generation

Towards the end of the conceptual design stage
it might become of interest to perform higher fi-
delity analyses, e.g. based on RANS simulations.
At this stage it may be presumed that consider-
able changes to the external geometry, especially
the global topology, are less likely. For RANS so-
lutions, the mesh must not only resolve large so-
lution gradients created by shocks or trailing vor-
tices, but should likewise be sufficiently fine in
viscous boundary layers. This is not always eas-
ily accomplished and can often become a rather
time consuming process.

A program written in the python scripting
language has therefore been implemented to au-
tomate this process to some degree by means of
templates for the ICEM-CFD mesh generation
package. At the time of writing, this approach
allows the handling of a wide class of topolog-
ically roughly similar configurations with lim-
ited user intervention, thereby drastically reduc-
ing the amount of engineering man-hours needed
for mesh generation.

The required user intervention is confined to
the establishment of a file with parameters (de-
scribed in Section 4.3.1) controlling the prismatic
mesh generation procedure in ICEM-CFD. Based
upon these settings, the python program will then
assign suitable parameters to different surface en-
tities in the mesh and call the mesh generation
program, using the tetrahedral mesh generated by
sumo and TetGen as input. After typical mesh
generation execution times of about one hour per
3 million mesh nodes (on a quad-core Intel Xeon
5520), the quality of the resulting hybrid mesh
needs to be reviewed in order to identify outright
failures of the template-based approach. Cur-
rently, this step has not been automated. Should
the mesh quality be substantially acceptable, fur-
ther global mesh smoothing operations can be ap-

6



From Geometry to CFD-Based Aerodynamic Derivatives - An Automated Approach

plied to improve overall quality.
Compared to a traditional manual bottom-up

mesh generation procedure, this approach saves a
lot of man-hours, but requires a surface mesh of
sufficiently high quality, as the surface discretiza-
tion is not changed during the automated hybrid
mesh generation procedure. Even the tetrahedral
volume mesh used as input needs to be of accept-
able resolution, but this requirements is not too
difficult to achieve. Note that the quality of the
tetrahedral mesh domain of the final hybrid mesh
will be improved by the global smoothing passes
in ICEM-CFD.

4.3.1 Prism parameter settings

The build-up of the prismatic boundary-layer
mesh is controlled by a set of parameters which
are shortly described in the following list. Most
of these parameters can be selected once on a typ-
ically sized configuration and will then yield ac-
ceptable mesh quality for roughly similar geome-
tries.

Initial height is the height of the first prismatic
cell. Depending on turbulence model and bound-
ary conditions used, the laminar sub-layer of tur-
bulent boundary layers must be resolved. Typ-
ically, this requirement is expressed in terms of
the dimensionless wall-normal coordinate y+, de-
fined with the wall shear stress τw, local fluid den-
sity ρ and kinematic viscosity ν according to

y+ =
τw

ρ
y
ν
.

As the laminar sub-layer extends to approxi-
mately y+ ≈ 4, (see e.g. Cebeci [9]), a common
criterion is to resolve this part of the boundary
layer with at least four prismatic cells, so that
the first cell height should not exceed y+ ≈ 1.
The python program can estimate the resulting
absolute cell height from a user-supplied refer-
ence length and Reynolds number.

Prism height ratio is the ratio of the height of
the next prismatic layer over the previous one.

Number of prismatic layers affects the total
height and resolution of the boundary layer, it
also affects the size of the step in cell volume be-
tween last (largest) prismatic and first tetrahedral
cell.

Fillet ratio is a parameter which controls the
permitted height-to-width ratio of prismatic cells.
A larger ratio allows the prismatic layers to pro-
gressively smooth out sharp ridges and corners
of the surface mesh, which tends to improve the
quality of the transition to the tetrahedral mesh.

Orthogonal weight determines the emphasis
laid on orthogonality of wall-normal cell edges
with respect to the original surface. A weight
of one essentially constrains these edges to per-
fect orthogonality, while a lower value such as
0.1 substantially improves robustness.

Auto reduce allows, when switched on, that
colliding prismatic layers are reduced in height in
order to avoid interference. Figure 6 shows an ex-
ample where the layers between the fuselage and
nacelle of a rear-mounted engine are squeezed to
avoid collision. Furthermore, the image exem-
plifies the effect of a low orthogonal weight and
high fillet ratio, leading to a rounded interface
surface to the tetrahedral mesh domain.

Fig. 6 Slice of a fuselage-nacelle mesh with auto-
reduce on, low orthogonal weight, high fillet ratio

7



MAXIMILIAN TOMAC , DAVID ELLER

Smoothing steps during extrusion controls
the number of iterations performed on each pris-
matic layer before proceeding to the next layer.
Smoothing improves mesh quality considerably,
but it is also fairly expensive in terms of compu-
tational effort.

Allowed prismatic angle is the maximum al-
lowed angle within a prismatic cell. Since the
surface mesh generated by sumo features sharp
wing trailing edges, this value must be set to at
least 160◦, so that the prismatic cell layer wraps
around the trailing edge.

Minimum allowed prismatic quality is a lim-
iting value which controls at which point low-
quality prismatic cells are replaced by pyramidal
cells which then transition to the tetrahedral do-
main.

4.3.2 Robustness

This approach has been tested on a number of
different aircraft configurations. For demonstra-
tion purposes the Ranger 2000 was fitted with a
V-Tail instead of the actual T-Tail configuration
Fig. 7 (top-left). The program was also applied
to a business jet configuration (top-right) as well
as a flying wing (bottom-left) and a wind tun-
nel model of the transonic cruiser (bottom-right),
a common test case in the SimSAC project. In
all of these cases, the resulting mesh quality is
at least acceptable, but certainly not optimal. It
should be noted, however, that the flow solver
Edge features solution-based mesh adaptation
[10], so that an acceptable initial mesh may very
well be sufficient to obtain a first solution which
is then used to refine specific regions of the mesh.

Since the mesh quality parameters described
in Section 4.3.1 are applied globally, local geo-
metric features such as narrow passages between
bodies or surface edges with small included angle
may force the use of overly conservative (robust)
settings. This will then lead to reduced global
mesh quality, resulting from excessively large
volume ratio of prismatic to tetrahedral neigh-
bour cells or poorly shaped (stretched) tetrahedra

filling narrow convex corners.
A particular difficulty is introduced by the

sharp wing trailing edges present in the geometry
representation used by sumo . Low mesh quality
in this region is particularly detrimental to solu-
tion accuracy. With the currently employed ap-
proach, significant enhancements in this area are
unlikely, so that changes to the sumo geometry
representation are probably necessary.

Figure 8 shows the result of applying the
script-based approach to a very complex geom-
etry, namely the X-31 experimental aircraft. The
hybrid mesh around the canard trailing edge is
generated successfully, although the volume ra-
tio between coincident cells is rather large in this
area. However, near the main wing trailing edge,
the mesh generation algorithm fails to generate
prismatic layers, so that pyramidal cells are cre-
ated there instead. Unfortunately, this does not
only impact mesh quality, but results in a sub-
stantial number of cells with negative volume, so
that a flow solution is not even possible.

5 Automated CFD Solution

Like many other industry-strength CFD systems,
the Euler/Navier-Stokes solver Edge [11] used in
the SimSAC project requires a considerable num-
ber of parameters to be defined for each solution
case. Depending on the flight condition of inter-
est, a python program automatically

1. chooses appropriate boundary conditions
and solver parameters;

2. generates solver input files and calls the
preprocessor;

3. handles communication and data transfer
to/from a managed-queue compute cluster;

4. optionally runs mesh adaption schemes;

5. outputs basic quality diagnostics on the so-
lution;

6. alerts the user to insufficiently converged
results;

8



From Geometry to CFD-Based Aerodynamic Derivatives - An Automated Approach

Fig. 7 Example configurations for automatic RANS mesh generation.

7. extracts force coefficients and prepares
data for flow visualization from solver out-
put files.

The python program is controlled by a table of
flight conditions of interest, which can also con-
tain specific solver parameters should these devi-
ate from default values. As output, the script will
generate aerodynamic force and moment coeffi-
cients for the flight conditions listed.

5.1 Preprocessing and solver execution

The first step performed by the python script is
the settings of proper boundary conditions ac-
cording to the flight case matrix. This is followed
by execution of the solver program (optionally on
a remote cluster) and postprocessing operations.

5.1.1 Boundary conditions and parameters

Before the flow solver can be started, a solver pa-
rameter file must be written. For this, another
python script is used which, starting from a tem-
plate file containing defaults, inserts the appro-
priate values for each case to be analysed. Aside

from straightforward specification of the flight
condition in terms of Mach number, angle of at-
tack, sideslip angle and roll rates, each flight case
might also require the setting of control surface
angles.

Control surface deflection is simulated by im-
posing transpiration boundary conditions [12].
With the current version of the Edge solver, this
implies performing an pseudo-aeroelastic solu-
tion since control surface motion is handled in
the same manner as structural deformation. Con-
sequently, it is necessary to generate boundary
condition and further supporting files for this
prescribed-motion aeroelastic run, which is trans-
parently performed by the python script.

Furthermore, the flight case table may con-
tain numerical solution parameters, such as the
CFL number for (pseudo-) time-stepping, iter-
ation numbers, convergence criteria, multigrid
parameter or low-speed preconditioning options,
which the user may want to change from their
default settings for demanding cases. Optionally,
automatic solution-based mesh adaptation can be
activated, which leads to local refinement in re-

9



MAXIMILIAN TOMAC , DAVID ELLER

Fig. 8 Difficulties encountered in automated hybrid mesh generation.

gions of strong solution gradients, as shown for a
transonic Euler solution in Figure 9. The result-
ing improvement in solution accuracy is, how-
ever, accompanied by a significant increase in
computational cost (see Table 1).

Fig. 9 Adapted mesh for transonic flight case

5.1.2 Work load distribution

Table 1 shows the expected cost from using the
different methods. While running a rather dense
set of 10,000 cases takes less than 12 hours us-
ing the VLM, an automatically generated Euler
baseline setup of 500 cases requires around three
days of runtime on one eight-core computer. For
the higher-resolution meshes, the computing time
exceeds one week, which is clearly not feasible
in a conceptual design context. To reduce the
wallclock time to 12 hours (an overnight run), a
compute cluster with at least 144 processor cores
would be needed.

The python script used to execute the solver
will either submit compute jobs to a shared
managed-queue cluster1 or execute the solver on
the local workstation, depending on the number
of cases and mesh size. Due to the complexity
and differences in the remote communication and
file transfer schemes of different computing cen-
tres, the job submission code would need to be
adapted to exploit different computing resources.

5.2 Postprocessing

Once the solver reports convergence for a cer-
tain flight condition, the python management
script extracts force and moment coefficients and
computes derivatives where applicable. These
values are then automatically assembled into a
global aerodynamic data table, which, due to the
large number of cases, can also be both time-
consuming and error-prone if done manually.

For visualization, the open-source system
ParaView [13] is employed. ParaView allows ex-
tensive scripting of its functionality using python,
which will be exploited to automatically generate
images such as the contour plot in Figure 10. This
module is, however, not completely functional at
the time of writing.

6 Example case: Ranger 2000 Jet Trainer

The procedure outlined above is applied to the
Ranger 2000 jet trainer for which wind tunnel-

1In this case, the high-performance computing center
(PDC) at KTH was used.

10



From Geometry to CFD-Based Aerodynamic Derivatives - An Automated Approach

Method Elements nr of cases Computational effort
VLM ≈ 1000 10,000 < 12h using 1 core

Euler baseline ≈ 1 mio. 500 ≈ 72h using 8 cores
Euler refined ≈ 2 mio. 500 ≈ 168h using 8 cores
Euler adapted ≈ 6−12 mio. 500 � 168h using 8 cores

RANS baseline ≈ 6−12 mio. 50 � 168h using 8 cores

Table 1 Computational effort for different CFD methods

Fig. 10 Ranger at Mach 0.75; Top: local Mach
number; Bottom: Cp contours

and flight test data has been made available by
the manufacturer [14]. The Ranger is a training
aircraft for primary and aerobatic flight training
of military jet pilots. It is a mid-wing tandem seat
configuration equipped with a Pratt & Whitney
JT15 turbofan engine.

6.1 Forces and moments compared to flight

test data

The reference area used to normalize aerody-
namic coefficients is S = 15.5m2, while reference
chord and span are c = 1.53m and b = 10.5m, re-
spectively. Moments are computed for a refer-
ence point at (0.44m,0.0m,−0.11m) in the CAD
model coordinate system.

Figure 11 shows a comparison of lift, drag
and pitch moment coefficient between experi-
ment and a set of computations at moderate air-
speed (M = 0.5) and at near the dive Mach num-

ber (M = 0.75). Results for the vortex-lattice
and baseline Euler solutions are based on the
parametrized CEASIOM geometry shown in Fig-
ure 2, while the results for Navier-Stokes so-
lutions and those labeled ’Euler refined’ corre-
spond to a somewhat more accurate geometry
model created in sumo (see Figure 3).

As expected, the linear region lift slope is
captured well by all computational methods used.
At the higher Mach number, a shock is present
on the upper wing surface, which substantially
changes the lift curve for α > 2◦, possibly by
inducing boundary layer separation just down-
stream of the shock. The simulation based on
Navier-Stokes equations predicts this behaviour
fairly well, while none of the inviscid solutions
yields acceptable accuracy outside a narrow band
of −2◦ < α < 2◦.

For both drag and moment curves, there is
a substantial difference between results for the
CEASIOM geometry, which does not include the
engine, and the refined, engine-equipped sumo
model. At the time of writing, it is not clear how
the air intake and engine exhaust boundary con-
ditions should be defined in order to better match
the experimental setup.

7 Concluding remarks

The automated mesh generation and solution pro-
cess described above has been shown to work
fairly well for a wide range of aircraft configu-
rations when targeting inviscid CFD simulations
based on the Euler equations. Extension of the
process to automated Navier-Stokes solutions has
been attempted and found to yield acceptable
meshes for many different configurations; how-
ever, due to the much more stringent mesh qual-

11



MAXIMILIAN TOMAC , DAVID ELLER

(a) CL vs Angle of Attack (b) CL vs Angle of Attack

(c) CD vs Angle of Attack (d) CD vs Angle of Attack

(e) Cm vs Angle of Attack (f) Cm vs Angle of Attack

Fig. 11 Left: Mach 0.5; Right: Mach 0.75

ity requirements and much less robust solution
procedures, manual intervention or adaptation of
mesh generation and solution parameters is still
sometimes necessary. Concerning the solution

process itself, it has become obvious that an en-
gine model needs to be used in order to accurately
determine the intake and outflow boundary con-
ditions for each flight case.

12



From Geometry to CFD-Based Aerodynamic Derivatives - An Automated Approach

For the automatic generation of hybrid
meshes for Navier-Stokes analyses, the presence
of a sharp trailing edge has been identified as a
considerable complication. A possible remedy
to this problem might be the inclusion of an in-
finitely thin wake surface extending some dis-
tance past the trailing edge. The prismatic mesh
could then continue downstream without a large
change in the direction of the surface normal, al-
lowing the wake mesh to coarsen progressively.
In addition to solving the trailing edge discretiza-
tion problem, this approach would also lead to
a much better resolution of the boundary layer
wake (shear layer) in the immediate vicinity of
the wing.

8 Acknowledgments

The authors would like to thank Dr. Stefan Hitzel
of EADS-MAS who kindly provided the Ranger
2000 data in accessible form.

9 Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original ma-
terial included in this paper. The authors also confirm
that they have obtained permission, from the copy-
right holder of any third party material included in this
paper, to publish it as part of their paper. The authors
confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for
the publication and distribution of this paper as part of
the ICAS2010 proceedings or as individual off-prints
from the proceedings.

References

[1] The SimSAC Project Website. SimSAC Project.
http://simsacdesign.org/, July 2009.

[2] A. Rizzi et al. CEASIOM Validation and Its Use
in Design - Status of SimSAC Project. In SAAB
Flygteknikseminarium, Kolmården, November
2008.

[3] US Product Data Association, Charleston,
SC. Initial Graphics Interchange Stan-
dard 5.3, September 1996. Available from
www.uspro.org.

[4] H. Si and K. Gaertner. Meshing Piecewise Lin-
ear Complexes by Constrained Delaunay Tetra-
hedralizations. In Proceedings of the 14th Inter-
national Meshing Roundtable, pages 147–163,
San Diego, September 2005. Software available
from tetgen.berlios.de.

[5] AIAA CFD Committee on Standards. The CFD
General Notation System – Standard Interface
Data Structures. Technical Report R-101A-
2005, AIAA, 2005.

[6] ANSYS, Inc. ANSYS ICEM CFD 12.1 USER
MANUAL, 2009. http://www.ansys.com.

[7] L. P. Chew. Guaranteed-Quality Mesh Gen-
eration for Curved Surfaces. In Proceed-
ings of the Ninth Annual Symposium on Com-
putational Geometry, San Diego, May 1993.
Available from the ACM Digital Library, por-
tal.acm.org/citation.cfm?id=161150.

[8] Tomas Möller. A fast triangle-triangle intersec-
tion test. journal of graphics tools, 2(2):25–30,
1997.

[9] T. Cebeci and J. Cousteix. Modeling and Com-
putation of Boundary Layer Flows. Springer,
2nd edition, 2005.

[10] L. Tysell, T. Berglind, and P. Eneroth. Adap-
tive Grid Generation for 3D Unstructured Grids.
In 6th International Conference on Numerical
Grid Generation in Computational Field Simu-
lations, June 1998.

[11] P. Eliasson. Edge, a Navier-Stokes solver for un-
structured grids. In Finite Volumes for Complex
Applications III, pages 527–534, June 2002.

[12] C. C. Fisher and A. S. Arena Jr. On the Transpi-
ration Method for Efficient Aeroelastic Analy-
sis Using an Euler Solver. In AIAA Atmospheric
Flight Mechanics Conference, San Diego, CA,
July 1996. AIAA-1996-3436.

[13] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens,
and J. Favre. Remote Large Data Visualiza-
tion in the ParaView Framework. In A. Heirich,
B. Raffin, and L. P. Santos, editors, Eurograph-
ics Parallel Graphics and Visualization, pages
162–170, May 2006.

[14] RANGER 2000 FR06/RP01 Aerodynamic
Dataset, Release 1.1. Technical Report
TN-R-R-002-M-0011, DASA, 1994.

13


