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Abstract  

Appling perturbation to dynamic pressure 
in the nominal aeroelastic equation of motion, a 
mu-omega method is presented for flutter 
solution. Utilizing the structured singular value 
mu as stability margin indicator, this method 
simply employs frequency domain aerodynamics 
to predict the nominal flutter margin through 
frequency domain mu-analysis. The error of 
flutter dynamic pressure is selected as 
convergence criterion during iterations. 
Discontinuity of the real mu with respect to 
purely real perturbation is found in a two 
dimensional wing model with steady 
aerodynamics when using mu-omega method. 
To prevent this problem, complex perturbation 
to dynamic pressure is considered 
mathematically and the complex mu-analysis is 
employed in this study. Numerical examples 
demonstrated that the flutter results obtained by 
the mu-omega method correlate well with those 
of the p-k method. 

1  General Introduction  
Flutter is a typical dynamic instability 

phenomenon in fluid structural interaction 
systems such as atmosphere flight vehicles with 
aerodynamic surfaces and the mathematical 
model can always reduce to a nonlinear 
eigenvalue problem. A historical review of 
several solutions of flutter eigenvalue has been 
made by Heeg in [1], wherein the classical k 
method and p-k method were discussed [2,3]. 
For k method always assumes structural 
damping g which lacks physical meaning, thus 
the p-k method are more widely used, because it 
is directly related to decay rate which has more 

physical meanings. However, as no p-domain 
aerodynamic is available (i.e. the unsteady 
aerodynamics is usually obtained in frequency 
domain by panel methods); the decay rate 
computed by the p-k method is only valid near 
the critical flutter speed. Recent years a g-
method is proposed by Chen [4], in which the 
unsteady aerodynamics is treated as analytic 
function in p-domain, and the frequency domain 
aerodynamics is employed with a damping 
perturbation approach. 

In the last decade, Lind and Brenner 
introduced structured singular value (SSV) μ 
into the aeroelastic research field and developed 
a μ method [5]. In the μ method, aeroelastic 
system is parameterized at a nominal dynamic 
pressure with perturbation to dynamic pressure, 
which makes it possible to solve nominal flutter 
problem by μ analysis. 

However, rational function approximation 
(RFA) technique [6,7] of the frequency domain 
aerodynamics is needed in the μ method, which 
sounds like a p method that employs a p-domain 
aerodynamics. Borglund et al. [8-11] 
demonstrated that the RFA technique is not 
necessary in robust flutter analysis and proposed 
a μ-k method to make direct use of frequency 
domain aerodynamics, but the perturbation to 
dynamic pressure is excluded to facilitate the 
robust flutter analysis. 

As a combined work of [5] and [7], the 
authors proposed a μ method to make a nominal 
flutter solution in frequency domain in the 
previous studies, and the error of reduced 
frequency at the flutter speed is selected as the 
convergence criterion. The results coincide well 
with the p-k method for the test cases [12]. 

The μ-ω method simply solves the flutter 
margin through frequency domain μ analysis of 
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the system frequency response matrix, thus it 
utilizes frequency domain aerodynamics 
directly, and no assumption (i.e. small decaying 
rate) needs to be made other than the classical 
methods mentioned above. Using μ as flutter 
margin indicator, one increase the initial guess 
airspeed or dynamic pressure carefully and the 
μ-ω method predicts the flutter speed until the 
error of flutter reduced frequency converges to 
meet an acceptable accuracy level. 

In this work, the discontinuity of μ analysis 
with respect to purely real perturbation to 
dynamics pressure is concerned and a complex 
perturbation to dynamic pressure is introduced 
mathematically, the complex μ analysis is 
employed which can guarantee the continuity of 
μ and predict accurate flutter results. 

2  Formulation of the μ-ω Method 

2.1 Equation of Aeroelastic Motion  
The equation of aeroelastic motion in frequency 
domain reads 

0})]{([ 2 =−++− ∞ ηQKBM kqjωω  (1) 

where nn×∈RKBM ,,  stand for the generalized 
mass, damping and stiffness matrices, 
respectively, )(kQ  stands for the generalized 
aerodynamic influence coefficient matrix which 
is a tabular function of reduced frequency k. 

nC∈η  is generalized displacement and ∞q  is 
dynamic pressure. 

Lind and Brenner proposed a real 
perturbation to the dynamic pressure, which is 
expressed as 

( )qqq δ+=∞ 10
 (2) 

where R∈qδ  and 1|||| ≤∞qδ . 
Substitute Eq. (2) into Eq. (1) and transfer 

the perturbed term to the right hand side of 
Eq. (1), one can get 
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2.2 Development of the μ Framework  
As note in [12], the μ framework for Eq. (3) can 
be formulated by the following procedure. 

First introduce two signals {w} and {z}, 

}{}{ zIw nqδ=
 (4) 

})]{([}{ 0 ηQz kq=  (5) 

and define the flutter matrix F0 at q0 as 

)(0
2

0 kqj QKBMF −++−= ωω  (6) 

Then Eq. (3) can be rewritten as follows. 

}{}]{[ 0 wηF =  (7) 

Solving Eq. (7) for η , we get 

}{][}{ 1
0 wFη −=  (8) 

Now we Substitute Eq. (8) into Eq. (5), and 
the formulation is given by 

}]{[}{ wPz =  (9) 

where 1
00 )( −= FQP kq  (10) 

The relationships between signals {w} and 
{z}, i.e. Eq. (4) and Eq. (9), essentially form a 
typical μ framework as depicted in Fig. 1. 

 
Fig. 1. Diagram of the μ Framework of Nominal 

Aeroelastic System. 
Now we can use the frequency domain μ-

analysis to determine the critical flutter point 
with the frequency response matrix P(jω). 
Before that, let’s first recall the definition of μ. 

2.3 Definition of μ and the μ-ω Method 

For a plant model P formulated in the 
framework depicted in Fig. 1 with respect to a 
structured uncertainty set 

P 

nqIδ wz
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}1||||,,:{ ≤∈=ΔΔ= ∞qqnq RI δδδΔ  (11) 

structured singular value μ is defined as 

}0)det(,:)(min{/1)( =Δ−∈ΔΔ= PIP ΔΔ σμ
 

(12) 

If there is no Δ∈Δ that makes 
Δ− PI singular, then 0)( =PΔμ . 
The peak value of μ, uβ  is used to predict 

the flutter margin. 

))((sup ωμβ
ω

jPu Δ=  (13) 

uq βδ /1|| ≤  (14) 

( )uf qq β/110 +=  (15) 

where Eq. (14) stands for the maximum 
perturbation in Eq. (2) to ensure the robust 
stability of uncertain aeroelastic model, Eq. (3). 

In the μ-ω method, one increases the initial 
guess airspeed or dynamic pressure q0 carefully 
until the predicted flutter dynamic pressure qf 
converges to an acceptable accuracy level. 

3  Analysis and Main Results 

3.1 Analytical μ Analysis of 2D Wing System  
For a two dimensional (2D) wing aeroelastic 
system, when steady aerodynamics is 
considered, the system equation of motion and 
the generalized matrices can be formulated as 
follows [13]. 
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where 000 /μQq = is non-dimensional dynamic 
pressure. 

Let λI=Δ  in Eq. (3) and solve for λ  
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one can obtain 
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According to the definition of Eq. (12), if 
there exists a real λ , ||/1 λμ = , else 0=μ .  

Now the existence of real λ is equal to 
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Assuming 5.0−>a (the elastic axis locates 

aft 1/4 chord stream wisely), it is concluded that 
Eq. (18) has three non-negative real roots at 
most, i.e. 21,,0 ωω  when structural damping is 
omitted. This means the real μ has at most three 
non-zero value along the positive frequency axis, 
i.e. the real μ is discontinuous. 

3.2 Numerical μ Analysis of 2D Wing System 
With the parameters employed in [13] (see 
Table 1), real part and image part of λ is shown 
in Fig. 2 with respect to a given dynamic 
pressure 0.40 =Q , and numerical value of real 
and complex μ is shown in Fig. 3. Figure 2 
depicts that the image part of λ  crosses the 
horizontal axis three times. It is illustrate that 
real μ only has non-zero values at three discrete 
frequency points in Fig. 3, while the complex μ 
is a continuous function of frequency. 
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The predicted flutter results by analytical 
method are shown in Table 2 compared with the 
results by real and complex μ. 

Table 1 Non-dimensional parameters for 
2D wing 

parameters value 
μ0 20.0 
a -0.1 
xα 0.25 
rα2 0.5 
ω0

2 0.2 
ch0 0.1 
cα 0.1 

 
 
 

 
 
 
Table 2 Flutter results predicted for 0.40 =Q  

Method βμ FQ  αωω /F  

Analytic - 4.0802 0.5982 
Real μ 49.9057 4.0802 0.5982 

Complex μ 47.9566 4.0834 0.6000 

3.3 The Complex μ-ω Method and Numerical 
Application 
It is implied that when the computed dynamic 
pressure is close to the flutter point, complex μ 
can predict a flutter result with certain accuracy. 

Based on this fact, the complex μ-ω method can 
be described as: 

A nominal flutter solution by increasing 
the initial guess airspeed or dynamic pressure 
carefully every time, utilize a frequency domain 
μ analysis to search a minimum qW  that 
destabilizes the aeroelastic system with respect 
to purely complex dynamic pressure 
perturbation. 

In this study, we just use the predicted 
flutter dynamic pressure in each step as initial 
guess of dynamic pressure in the next step. With 
a convergence level of 

%1%100|1/| 0 <×−QQF
 (19) 

the flutter results predicted with complex μ is 
shown in Table 3. It is demonstrated that the 
algorithm converges well and the final results 
coincide well with the analytical results shown 
in Table 2. 

An interesting graph of the predicted flutter 
dynamic pressure is illustrated in Fig. 4, 
wherein the center point of each disc stands for 
initial guess dynamic pressure Q0 in the first 
column of Table 3, and the radius of each disc 
stands for the predicted flutter margin. This 
graph shows a good convergence property of the 
complex μ-ω method with rapidly decreasing 
radius within 4 iterations. 

 
 
 
 

Table 3 Flutter results predicted with complex μ 

0Q  
Predicted 

Flutter 
Margin 

FQ  αωω /F  

1.0000 1.4887 2.4887 0.9900 
2.4887 1.1214 3.6101 0.8400 
3.6101 0.4528 4.0629 0.5800 

○      real μ 
— complex μ 

Nondimensional frequency ω/ωα 
Fig. 3. Diagrams of μ v.s. ω/ωα 

Nondimensional frequency ω/ωα 
Fig. 2. Diagrams of μ v.s. ω/ωα 

Real part of Q0 
Fig. 4. Predicted Flutter Dynamic Pressure on 

Complex Surface 
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4.0629 0.0234 4.0863 0.6000 

4  Conclusions 
The discontinuity problem of real μ analysis in 
flutter solution is noted in this report and an 
alternative way that using complex μ analysis to 
get a continuous μ is explored. It is found that, 
when using real μ analysis in flutter solution, the 
discontinuity problem of real μ that results from 
purely real perturbation to dynamic pressure 
should be carefully examined. The complex 
perturbation to dynamic pressure is 
mathematically introduced to make a continuous 
μ. The algorithm developed for flutter solution 
with complex μ analysis can converge to the 
flutter result with satisfied accuracy, which is 
already applied to several examples successfully 
in another work [14]. 
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