
27
TH

 INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

The aim of this paper is to define a new

methodology and to establish a future reference

against which to assess software systems of

ATM ground segments. The approach

elaborated relies on the analysis of best

practices both from other domains using

dedicated standards and also from ANS, using

the feedbacks of ATS providers.

An increasing proportion of Air Navigation

System (ANS) functions is implemented by

software and these functions are becoming more

and more safety-critical. It is therefore

necessary to define guidance on how assurance

on reliability may be provided for software.

However today, no ANS software-related

standard exists which neither fulfils ANS

specificities (especially for ground part of ANS),

nor is widely spread and extensively used by

ANS community (at least not enough to become

a de facto standard).

The only methodology and assurance level

proposed for ANS systems, which is not a

standard yet, is the one of EUROCONTROL

and EUROCAE, who defined the Software

Assurance Level (SWAL) and provided ED-153

for recommendations and requirements on the

major processes necessary to provide safety

assurance for software in ANS systems. ED-153

can be applied whenever it is possible to assess

the whole software lifecycle (from the design

phase), while most of existing ATM systems are

the result of an integration between new

software products and old ones, for whom is no

more possible to assess the first steps of

lifecycle, but just their service history, based on

problem reports opened during their

operational life.

ANSPs require the assessment of safety impact

of the introduction of new software components

in existing systems and do not accept just the

legally required certification of interoperability.

To this purpose, we developed and proposed an

innovative approach, based on the verification

of SWAL for new safety components and of

service history evidences for the old ones. The

new methodology is a customization of Safety

Assessment Methodology. It has been proposed

to several ANSPs around Europe, who accepted

and validated it.

1 General introduction

Introducing new technology into safety-

critical environments can cause more problems

than it solves if it is not done carefully.

In fact, an increasing proportion of Air

Navigation Service (ANS) functions, in

particular the ones related to ground segments,

is implemented by software. These functions are

becoming more and more safety-critical, as the

provision of an ANS is inherently a risky

operation, providing the primary means of

avoiding aircraft collisions. Moreover, the

introduction of new navigation systems

highlights the need for efficient tools to assess

the possible impact of these systems on the

current safety levels.

It is necessary to define guidance on how

assurance on safety may be provided for

software, but today no ANS software-related

standard exists, which neither fulfils ANS

A NEW METHODOLOGY FOR SOFTWARE
RELIABILITY AND SAFETY ASSURANCE IN ATM

SYSTEMS

Daniela Dell’Amura, Francesca Matarese

SESM – Sistemi Evoluti per la Sistemistica e i Modelli, A Finmeccanica Company

Via Circumvallazione Esterna - Zona ASI – 80014 Giugliano in Campania (Napoli - Italy)

www.sesm.it

Keywords: safety, reliability, SWAL, methodology, software

DANIELA DELL’AMURA, FRANCESCA MATARESE

2

specificities (especially for ground part), nor is

widely spread and extensively used by ANS

community, at least not enough to become a de

facto standard.

EUROCONTROL has suggested a Safety

Assessment Methodology (SAM), which is not

a standard but aims at defining practices to

assure safety of an ANS system during its whole

lifecycle. Its main limitation consists of not

evaluating safety level of existing legacy

systems, which have been developed over an

extended period of time and for whom the only

evidence that they are „tolerably safe‟ is that

they have proved themselves to be so over years

of operation. [1]

Therefore, the aim of this paper is to define

a new methodology and to establish a future

reference against which to certify safety of

software systems of ATM ground segments.

This methodology assesses safety of new

integrated systems, constituted by old legacy

and new ones.

2 State of the art

2.1 Software reliability models

Safety of a system is defined as freedom

from unacceptable risk, which is the

combination of the overall probability of

occurrence of a harmful effect, induced by a

hazard, and the severity of that effect.

Severity is assessed by Air Navigation

Service Providers (ANSPs), who know the

consequences that can affect the overall system.

The probability of occurrence instead can be

assessed by stakeholders and be equated to

reliability that is used to describe the probability

of the system, operating in a given environment

and within the designed range of input, without

failure. Therefore, software reliability is defined

as the probability that software will not cause a

system failure, over a specified time period

under specified conditions, and can be used to

assess probability of occurrence of hazards

related to existing legacy systems.

Unlike hardware reliability engineering,

which was first introduced as a discipline during

World War II, the software reliability is much

younger, beginning in the mid 1970‟s, when the

software development environment was

reasonably stable. The known “bathtub” curve

for Hardware Reliability does not apply to

software, since software does not typically wear

out. However, if the hardware life cycle is

likened to the software development through

deployment cycle, the curve can be analogous.

The Software bathtub curve is shown in Fig. 1:

t1 t2 t0

Failure

Rate

Time

Upgrade

Upgrade

Period A Period B Period C

Fig. 1: Software bathtub curve

For software, the time points are defined as

follows:

 t0 is the time when testing begins. Period

A (from t0 to t1) is considered to be the

debug phase. Coding errors, more

specifically errors found and corrected

or operation not in compliance with the

requirements specification, are identified

and resolved. This is one key distinction

between hardware and software

reliability: the “clock” is different.

Development/test time is not included in

the hardware reliability calculation but is

included for software.

 t1 is the initial deployment (distribution)

time. Failures occurring during Period B

(from t1 to t2) are found either by users

or through post deployment testing. For

these errors, work-around or subsequent

releases typically are issued (but not

necessarily in direct correspondence to

each error reported).

 t2 is the time when the software reaches

the end of its useful life. Most errors

reported during Period C (after t2) reflect

the inability of the software to meet the

changing needs of the customer. In this

frame of reference, although the

software is still functioning according to

its original specification and is not

3

A NEW METHODOLOGY FOR SOFTWARE RELIABILITY AND SAFETY ASSURANCE IN ATM SYSTEMS

considered to have failed, that

specification is no longer adequate for

the current needs. The software has

reached the end of its useful life

(obsolescence) much like the wear out of

a hardware item. Failures reported

during Period C may be the basis for

generating the requirements for a new

system.

Usually hardware upgrades occur during

Period A, when initial failures often identify

required changes. Software upgrades, on the

other hand, occur in both Periods A and B.

Thus, the Period B line is not really flat for

software but contains many mini-cycles of

periods A and B: an upgrade occurs, most of the

errors introduced during the upgrade are

detected and removed, another upgrade occurs,

etc.

Although the failure rate drops after each

upgrade in Period B, it may not reach the initial

level achieved at initial deployment. Since each

upgrade represents a mini development cycle,

modifications may introduce new defects in

other parts of the software unrelated to the

modification itself.

An upgrade often focuses on new

requirements and its testing may not typically

encompass the entire system. Additionally, the

implementation of new requirements may

inversely impact or be in conflict with the

original design. The more upgrades that occur,

the greater the likelihood that the overall system

design will be compromised, increasing the

potential for increased failure rate, and hence

lower reliability. This scenario is now occurring

in many legacy systems (as existing ANSs),

which have recently entered Period C, triggering

current reengineering efforts.[2]

2.2 Peculiarities of ANS software

ANSPs are responsible for ANSs they

provide.[3] Whenever they need to upgrade the

ATM system, they have to demonstrate to the

National Supervision Authority (NSA) that it is

still reliable and that it will not impact on

existing safety level. To this aim, ANSPs ask to

the stakeholders to provide safety assessment of

the new system, composed by newly developed

elements and already existing ones.

At the same time, when ANSPs receive the

result of new system safety assessment, they

have to evaluate it in the context of the already

existing legacy system, assessing the resulting

level of safety of the integrated system.

A system upgrade often focuses on new

functionalities, whose implementation may

inversely impact or be in conflict with the

original system. The more upgrades that occur,

the greater the likelihood that the overall system

design will be compromised, increasing the

potential for increased failure rate.

The limit of existing safety assessment

methodologies is that they evaluate safety level

of new subsystems as stand-alone, not in

combination with existing legacy ones. This

approach is not acceptable because ANSPs that

decide to upgrade their existing ANS systems

rarely change the overall system, but just a part

of it. That means that stakeholders are in charge

to ensure reliability of the “change” they are

providing, ignoring possible new failures that

could occur in the new integrated system.

Sometimes, it happens that existing sub-

systems are assessed, but as black-boxes, to be

tested just indirectly through tests on new sub-

system functionalities. No additional tests are

usually performed on old functionalities, which

could on the contrary be affected by the new

ones.

Moreover, when providing a new part of

the system, this is composed by different sub-

systems, some of them of new concept, others

already developed. So it happens that two

different kind of difficulties have to be faced by

Safety Engineers: the one of evaluating safety

level of the integration between old legacy

software systems with new ones, and the one of

the deployment of newly developed software

components integrated with already existing

ones.

Software reliability is defined as the

probability that software will not cause a system

failure and can be used to assess probability of

occurrence of hazards, based on service history

metrics for existing legacy systems, or on the

quality of new subsystems.

DANIELA DELL’AMURA, FRANCESCA MATARESE

4

To most software engineers, reliability is

equated to correctness, which is the reliability of

the delivered code is related to the quality of all

the processes of software lifecycle. According

to this definition, EUROCONTROL defined

Software Assurance Level (SWAL) as a

uniform measure of how the software was

developed, transferred into operation,

maintained and decommissioned and a measure

of the ability of the product to function as

intended.

3 Regulatory Framework

3.1 Software safety-oriented standards

Some safety-oriented standards to assess

software reliability exist, such as

ED12B/DO178B, ISO/IEC 12207, ED109, IEC

61508-3, ED12B/DO178B and CMMI, but

which first requires to be tailored to a domain of

application (this has not yet been done for ANS

ground segments).

Here below a short description of these

international standards:

 ISO/IEC 12207 - Information

Technology - Software Engineering -

Software Life Cycle Processes.

 ED109/DO278 - Guidelines for

Communication, Navigation,

Surveillance, and Air Traffic

Management (CNS/ ATM) Systems

Software Integrity Assurance.

 IEC 61508-3 - Functional safety of

electrical/electronic/programmable

electronic safety-related systems. Part 3:

Software Requirements.

 ED12B/DO178B - Software

Considerations in Airborne Systems and

Equipment Certification.

 CMMI - Capability Maturity Model

Integration.

P
L

A
N

N
IN

G

D
E

S
IG

N

C
O

D
IN

G

IN
T

E
G

R
A

T
IO

N

S
P

E
C

IF
IC

A
T

IO
N

SUPPORTING PROCESS

SW PROJECT

DEVELOPMENT AND MAINTENANCE

ISO/IEC 12207MIL-STD-498

SW DEPARTMENT

PURCHASE, SUPPLY, MAINTENANCE

ORGANIZATION

S
W

 C
R
IT

IC
A
LI

TY

P
L

A
N

N
IN

G

S
P

E
C

IF
IC

A
T

IO
N

D
E

S
IG

N

C
O

D
IN

G

IN
T

E
G

R
A

T
IO

N

SÜPPORTING PROCESS

SAFETY CRITICAL SW

DEVELOPMENT AND MAINTENANCE

ED12B/DO178B IEC61508-3

ISO 9000-3

ISO-9000

Fig. 2: Scope and Interrelationships of Standards

The ISO/IEC 12207 Standard is currently

considered as reflecting the best practices for all

processes and activities of a Software lifecycle.

The IEC 61508-3 and the ED12B/DO178B

cover the lifecycle of safety critical software.

The IEC 61508-3 is part of an emerging generic

standard (IEC 61508) addressing the functional

safety of safety-related systems (in particular of

the Equipment Under control (EUC). This

generic standard is expected to be tailored to a

specific sector of application.

The EB12B/DO178B Standard defines

recommended practices for the development of

software in airborne systems and equipment.

The Standard is not mandatory, but represents

an international consensus in the avionics

industry.

The MIL-STD-498 has been used in ANS

industry. This standard is now superseded by

the ISO/IEC 12207.

ED109/DO278 applies to software

contained in CNS/ATM systems used in ground

or space-based applications shown by a system

safety assessment process to affect the safety of

aircraft occupants or airframe in its operational

environment. A description of the prerequisite

safety assessment process is not included in

ED109/DO278. ED109/DO278 is not intended

to be a development standard nor a process

document.

The CMMI is a model, whose purpose is:

 to provide some guidance for an

organisation to improve its processes,

 to serve as a reference to assess process

capability/maturity level of the

organization, and then to benchmark

organizations.

5

A NEW METHODOLOGY FOR SOFTWARE RELIABILITY AND SAFETY ASSURANCE IN ATM SYSTEMS

The scope of this model covers the

development, acquisition, and maintenance of

product or services. It may be used in various

disciplines: System engineering, Software

Engineering, Project Management and Supplier

Sourcing. The extension to other disciplines

(including safety engineering) is possible but

requires a specific interpretation of the model to

the discipline.[4]

3.2 ANS Software Safety Assessment

None of the previous standards is ANS

software-related, neither fulfils ANS

specificities (especially for ground part), nor is

widely spread and extensively used by ANS

community, at least not enough to become a de

facto standard.

For this reason, EUROCONTROL has

proposed a new approach, Recommendation for

ANS Software, based on the reuse of

IEC/ISO12207 processes structure, which has

the widest coverage (from definition till

decommissioning) of ANS needs, focusing on

“ground” segment.

EUROCAE ED153 is derived from these

EUROCONTROL Recommendations. ED153 is

not a standard, but defines practices to assure

safety of an ANS system during its whole

lifecycle. It has been delivered to provide

guidance on how to be compliant with EC

Regulations on ATM Safety [5].

ED153 covers quality and safety related

activities from the beginning of the system

definition till decommissioning. Unfortunately it

still appears to have some limitations in its

applicability, due to the fact that it aims at

assuring the safety and reliability of not yet

available software.

The only methodology and assurance level

proposed for ANS systems, which is not a

standard yet, is the one of EUROCONTROL

and EUROCAE, who defined the SWAL as part

of Preliminary System Safety Assessment

(PSSA) process, in the frame of SAM. A SWAL

relies upon planned and systematic actions

necessary to provide confidence and assurance

(through arguments, evidences or other means)

that a software product or process satisfies given

requirements. SWAL is based upon the

contribution of software to potential

consequences of its anomalous behaviour as

determined by the system safety assessment

process. The SWAL implies that the level of

effort recommended to showing compliance

with Safety Requirements (SRs) varies with the

severity of the end effect of the software failure

and the probability/likelihood of occurrence of

the end effect.

The SWAL is a uniform measure of how

the software was developed, transferred into

operation, maintained and decommissioned and

a measure of the ability of the product to

function as intended. [4][6]

ED153 can be applied whenever it is

possible to assess the whole software lifecycle

(from the design phase), while most of existing

ATM systems are the result of an integration

between new software products and old ones,

for whom it is no more possible to assess the

first steps of lifecycle, but just their service

history, based on problem reports opened during

their operational life.

4 Methodology

The ANS SAM has been developed to

reflect best practices for safety assessment of

ANSs and to provide guidance for their

application.

SAM describes a generic process for the

safety assessment of ANSs. It covers the

complete life cycle of the ANS system, from

initial planning and system definition to de-

commissioning.

ANS SAM methodology provides

Guidance Material on how to assess what is a

“change”. Safety management practice demands

that, before making a change to a safety related

system, appropriate steps to ensure that the

change does not introduce an unacceptable risk

into the system has been taken into account.

Therefore, a simple hazard identification

procedure is requested to ANSPs by NSAs to

determine whether it is necessary to re-assess

the system safety level.

To be able to answer ANSPs requirement

of validation of the whole new operating

integrated system, an innovative approach has

been proposed, based on the verification of

DANIELA DELL’AMURA, FRANCESCA MATARESE

6

SWAL for new software components and of

service history evidences collection for the old

ones. The new methodology is therefore a

customization of EUROCONTROL‟s SAM.

4.1 Analyses

4.1.1 Fault Tree Analysis (FTA)

The FTA is performed starting from the

Functional Hazard Assessment (FHA), provided

by ANSPs, through which it is possible to

identify credible system hazards and to classify

them according to their severity.

A fault tree is developed for each Top

Event identified. A fault tree is a model that

graphically and logically represents the various

combinations of possible failures and events

occurring in a system that lead to a failure

condition at the top.

Once the FTA is performed, starting from

the probability assigned to the Safety Objective,

the probability to be assigned to each element in

the diagram is determined by applying a top

down process. In this way, it is possible to

apportion the requirements coming from the

Safety Objectives (SOs) to physical components

functionalities, thus allowing a direct link of

these requirements to the physical components

failures that affect these functions, by

performing a dedicated FMECA.

4.1.2 Failure Mode Effects and Criticality

Analysis (FMECA)

FMECA is carried out on physical software

components in order to identify possible failure

modes, their effects at different levels, their

connection to FTA, their severity, their possible

mitigation means and the resulting new SRs

after mitigation.

Here below the representation of Risk

Classification Scheme, with qualitative and

quantitative ranges, used for evaluating the risk

associated to the Failure Modes, that has to be at

least tolerable.[7]

 PROBABILITY OF OCCURRENCE

Extr.

Rare
Rare

Occa-

sional
Frequent

Very

Frequent

< 10-7
from 10-7

to 10-5

from 10-5

to 10-3

from 10-3

to 10-1
>10-1

S
E

V
E

R
IT

Y
 C

L
A

S
S

I

Accident

II

Serious

Incident

III

Major

Incident

IV

Significant

Incident

V

No Safety

Effect

 Acceptable Tolerable Unacceptable

Table 1: Risk Classification Scheme

4.1.3 Safety Requirements and SWAL

allocation

FTA is performed in order to determine the

SRs; this is done by deriving a functional

breakdown that allows apportioning the

requirements coming from the SOs to physical

components functionalities, thus showing a

direct link of these requirements to the physical

components failures that affect these functions,

by performing a dedicated FMECA.

FMECA allows identifying connections

between failure modes of system components

and SRs. In order to calculate SRs after a

Mitigation Mean is implemented, it is necessary

to consider the connection between FTA and

FMECA, i.e. between Basic Events and Failure

Modes.

After having determined SRs it is possible

to translate them into SWAL objectives for

software component functionality.

To allocate a SWAL to an ATM software

function, the likelihood that, once software fails,

this software failure can generate an end effect,

which has a certain severity, is identified. That

couple (severity, likelihood) corresponds to a

certain SWAL, according to the following

matrix:

7

A NEW METHODOLOGY FOR SOFTWARE RELIABILITY AND SAFETY ASSURANCE IN ATM SYSTEMS

Severity

Likelihood

(Pe x Ph)

1 2 3 4 5

V.Frequent SWAL1 SWAL2 SWAL3 SWAL4 SWAL4

Frequent SWAL2 SWAL3 SWAL3 SWAL4 SWAL4

Occasional SWAL3 SWAL3 SWAL4 SWAL4 SWAL4

Rare SWAL4 SWAL4 SWAL4 SWAL4 SWAL4

Extr.Rare SWAL4 SWAL4 SWAL4 SWAL4 SWAL4

Table 2: SWAL matrix

SWAL allocation is possible only for new

designed software; for already existing

software, SRs, which correspond to a certain

range of acceptable likelihood, have to be

demonstrated by service history.

4.2 Collection of evidences of compliance

System Safety Assessment (SSA) process

aims at demonstrating that the system as

implemented achieves an acceptable (or at least

a tolerable) risk and consequently satisfies its

Safety Objectives specified in the FHA and the

system elements meet their Safety Requirements

specified in the PSSA.

The compliance to each analysed SR

implies the compliance to each SO. In order to

demonstrate system compliance with SRs, two

options can be considered: Service History

Analysis or SWAL assessment.

As already explained in §2.2, existing sub-

systems are usually not considered in safety

assessment of new ANS systems that integrate

them, or rather they are assessed as black boxes.

The new proposed methodology requires

that each element of existing legacy subsystem

is considered as part of the new integrated

system.

Service History Analysis provides

evidences of reliability for those software

components whose history data are available,

resulting in the evidence of their reliability in

the past.

The SRs are expressed in terms of Failure

Rates. These requirements are then compared

with the Failure Rates resulting from service

history analysis, to prove compliance.

In order to calculate the Failure Rate

associated to each software component involved

in the analysis, the following parameters have

been evaluated:

 Number of operative hours in the

considered period of time calculation.

 Overall number of operative hours in the

considered period of time calculation

(the number of operative hours in the

considered period of time per the

number of sites in which the specific

software component is installed).

 Number of Failures per CSCI reported.

 Failure Rate calculation (the number of

failures occurred in the considered

period of time is divided by the number

of operative hours; this result represents

the Failure Rate, the number of Failures

per unit of operative hour).

SWALs instead, are designed to provide a

level of confidence that the software will be

developed and can be integrated in the

equipment and then in the system in order to

manage risks due to software failure.

The way to provide this level of confidence

and assurance is by defining some objectives

that will satisfy this level of assurance.

These objectives address the software

acquisition, development, integration,

maintenance, operation, and all processes of the

software lifecycle and identify what is to be

done to satisfy a level of assurance. These

objectives intend to give confidence that the

assurance level is satisfied by showing

evidences.

These evidences are produced by activities,

which achieve these objectives. Therefore, in

order to provide evidences that such activities

have been correctly performed it is necessary to

produce logs about all software lifecycle

phases.[8]

5 Conclusions

ANSPs require the assessment of safety

impact of the introduction of new software

components in existing legacy systems. No

DANIELA DELL’AMURA, FRANCESCA MATARESE

8

standard or guidance material exists for

evaluating this complex situation.

To this purpose, we developed and

proposed an innovative approach, based on the

verification of SWAL for new safety

components and of service history evidences for

the old ones. Both evidences collection methods

are necessary to give assurance that the ANS

software answers to SRs, because in case of new

systems it is possible to evaluate the whole

lifecycle activities but no service history exists;

vice versa in case of existing ANS software.

The new methodology is a customization

of EUROCONTROL‟s SAM. It has been

proposed to several ANSPs around Europe

(Italy, Luxembourg, Cyprus, Malta, Georgia,

Turkey, Romania) who accepted and validated

it.

6 References

[1] EUROCONTROL, Air Navigation System Safety

Assessment Methodology, Ed. 2.1, 2006.

[2] J. Marciniak, R. Vienneau, Software Engineering

Baselines, 1996.

[3] COMMISSION REGULATION (EC) No 2096/2005

of 20 December 2005 laying down common

requirements for the provision of air navigation

services.

[4] EUROCONTROL, Recommendations For A.N.S

Software, Ed. 1.0, 2005.

[5] COMMISSION REGULATION (EC) No 482/2008

of 30 May 2008 establishing a software safety

assurance system to be implemented by air

navigation service providers and amending Annex II

to Regulation (EC) No 2096/2005.

[6] EUROCAE, Guidelines for ANS Software Safety

Assurance, Ed. 1.0, 2009.

[7] EUROCONTROL, EUROCONTROL Safety

Regulatory Requirement ESARR4 Risk Assessment

and Mitigation in ATM, Ed. 1.0, 2001.

[8] EUROCONTROL, EUROCONTROL Safety

Regulatory Requirement ESARR6 Software In ATM

Systems, Ed. 1.0, 2003.

7 Contact Author Email Address

Contact authors email addresses:

Daniela Dell‟Amura ddellamura@sesm.it

Francesca Matarese fmatarese@sesm.it

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS2010

proceedings or as individual off-prints from the

proceedings.

mailto:ddellamura@sesm.it
mailto:fmatarese@sesm.it

