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Abstract  

An adjoint-based error prediction and grid 
adaptation methodology has been implemented 
in a CFD-software (DLR-TAU). The potential 
and drawbacks of this method are examined 
with an eye to its industrial application. Two 
strategies for an adjoint-based adaptive process 
are compared in terms of the computational 
efficiency. The influence of the surface mesh 
reconstruction method, which is a relevant issue 
for industrial applications, is also examined. 
The method is applied to several 2D and 3D 
configurations, including a more realistic 
complex 3D industrial geometry. The 
effectiveness of the method is demonstrated for 
inviscid flows. 

1  Introduction  
The necessity to accurately predict the global 
aerodynamic coefficients using CFD is a crucial 
question for the aeronautical industry nowadays. 
The increasing use of CFD in the aeronautical 
industry allows to reduce the design cycle and 
thus the time to market, to optimize and 
improve the quality of the product in terms of 
energy efficiency and contamination reduction 
and finally, to save a lot of money. Absolute 
drag coefficient prediction within ten drag 
counts (≤ 5.10-4) was defined as representative 
of the desired accuracy level by the EU 
aerospace industry within the EU project 
ADIGMA [1, 17] for some simple geometry test 
cases. Such drag accuracy may translate to 
variations of ≤1.5% in the total predicted drag 
for a typical long range aircraft configuration. It 
has been shown [2] by using the simple 

Breguet-range equation, that a 1% under-
prediction of the drag produces a 1% shortfall in 
range which may be recovered, assuming the 
same initial fuel weight by an 8% of payload 
weight reduction. This translates, for such 
scenario, to a reduction of over 30 passengers 
for a large transport aircraft. These figures 
denote the importance of the drag prediction 
accuracy, especially when using CFD tools for 
design and optimization.  

In the current aeronautical industrial 
environment, the standard CFD solvers are 
based on second order accurate finite-volume 
structured or unstructured grid schemes. For 
such solvers, excluding physical modeling error 
sources, the mesh resolution remains the key 
aspect to obtain accurate and reliable predictions 
of engineering outputs such as drag or lift. The 
popular CFD practitioner credo “grids are 
everything” still remains valid nowadays. 
Generating a suitable (appropriate) grid for the 
accurate computation of a given aircraft is not a 
trivial task, even for a simple wing-body 
configuration [3]. The grid generation activity 
demands a lot of user expertise. Thus, the 
development of methods to automatically 
generate optimal grids for the accurate 
estimation of any engineering output is still a 
necessity and a challenge nowadays. 

The adjoint error estimation and mesh 
adaptation methodology [4] has gained 
increasing popularity in recent years as a 
promising post-processing tool to improve the 
accuracy of CFD predictions. While this 
methodology has been successfully 
implemented and applied to test cases involving 
simple geometries by several groups [5, 6, 7, 8], 
few results have been shown for complex test 
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cases of industrial interest [9, 10]. There are still 
several critical drawbacks, which are inherent in 
the methodology itself, that make the method 
difficult to apply at production level within 
industrial environments. Most adjoint adaptation 
approaches [5-10] require the construction of a 
uniformly refined embedded grid. This 
requirement produces appreciable memory 
overheads for large initial grids. Moreover, the 
construction of such embedded meshes is 
challenging for the viscous areas in Navier-
Stokes meshes. In addition to this, robustness 
and computational efficiency of the adjoint 
solver is still an issue to be addressed for the 
systematic application of the adjoint technology 
in the industry environment. 

The present paper describes the 
implementation of an adjoint-based adaptation 
method into a CFD code which is being used on 
a daily basis in the European industry. Some 
issues regarding the adaptation strategy, surface 
reconstruction, mesh quality, etc., are examined 
with the aim of highlighting the potentials and 
drawbacks of the method with an eye to its 
application in an industrial environment. 

This paper is organized as follows: Section 
2 describes briefly the adjoint-based adaptation 
methodology implemented into DLR-TAU. 
Section 3 is focused on implementation issues. 
Section 4 discusses several applications of the 
method, as well as various challenging issues 
such as adaptation strategies, surface 
reconstruction, mesh quality, etc. which stand 
out as the main drawbacks for industrial 
application.  

2 Adjoint-based adaptation method 
An adjoint-based error correction method due to 
Dwight [1] is already available within the DLR 
TAU software suite. In this method, the error 
indicator is derived in a somewhat heuristic way 
using the fact that the dissipation term 
introduced explicitly for stabilizing the solution 
process is the major source of error in the output 
functional prediction. Therefore, the proposed 
error indicator only accounts for errors 
originated from dissipation terms (e.g. JST- 
central dissipation scheme). On the positive 
side, the method does not rely on an auxiliary 

refined grid (embedded grid), which saves 
memory for large initial mesh cases and avoids 
the burden of generating uniformly refined 
meshes for the anisotropic hybrid meshes 
typically used in Navier-Stokes calculations. 
Despite of this attractive advantage, Dwight’s 
method is not general in the sense that the 
discretization errors may be originated from 
sources other than the artificial dissipation. 
Therefore, in the current work we have 
implemented into DLR-TAU an alternative 
adjoint-based method which follows the original 
formulation proposed by Giles [13] and adapted 
by Venditti and Darmofal [5,11] to the finite 
volume method framework.  In the next section 
we briefly review the mathematical formulation 
of the method.  

2.1 Adjoint-based error correction 
formulation 
The implemented adjoint-based error estimation 
follows the work of Venditti [11]. Let’s 
consider an output functional of physical 
interest derived from the solution U of the 
system of partial differential equations (PDE’s) 

( )J U

( )R U under consideration. In the present case, 
the functional output is usually an integral 
quantity (e.g. lift, drag, etc.), U  is the flow 
solution and the PDE’s are the flow equations 
(e.g. Navier-Stokes). Due to the complexity of 
the flow equations, the solution is obtained by 
numerical methods. In the present case, an 
unstructured finite volume method [12] is used 
to solve the flow on a mesh HΩ  of 
characteristic size H. Let’s denote the functional 
output of the numerical solution HU  on this 
mesh by ( )H HJ U . Next, pick a fine mesh 

hΩ obtained e.g. by uniform h-refinement of the 
coarse grid HΩ . The error correction method 
seeks to approximate the output functional on 
the mesh hΩ , i.e. to obtain , without 
solving the flow equations on that mesh, 

( )h hJ U

( ) 0h hR U = . By combining Taylor expansions 
of the flow equations and the output functional 
around an approximated flow solution  
defined on mesh 

hU

hΩ  it is possible to obtain a 
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(first order) approximation to the error in the 
output functional  

 
 ( ) ( ) ( ) ( )T

h h h h hJ U J U R Uψ≈ −  (1) 
 

where hψ is the solution of the discrete adjoint 
solution system given by  

 

 
T T

h
h

h h

R
U U

ψ
⎡ ⎤ ⎡ ⎤∂ ∂

=⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
hJ  (2) 

 
Obviously, obtaining an approximation of the 
functional by using expression (1) is still too 
expensive computationally because one has to 
solve the discrete adjoint system (2) on the fine 
embedded mesh. Instead, suppose that we have 
an approximation hψ  to the adjoint solution on 
the fine mesh. The expression (1) may be then 
re-written as 

 
 ( ) ( ) ( ) ( ) ( ) ( )T T

h h h h h h h h h hJ U J U R U R Uψ δψ≈ − −

h

(3) 
 

where h hδψ ψ ψ= − . The first term on the right 
hand of Eq. (3) can be computed because 

hψ and are assumed to be known. This term 
is known in the literature, e.g. [1], as the 
“Computable Correction” (CC). The second 
term represents the error introduced in the 
correction when an approximation of 

hU

hψ  is used 
to compute the functional output correction. 
This term is known as the “Remaining Error” 
(RE). Note that this error component is not 
known and should be approximated, usually, by 
using higher order interpolation approximations 
to hψ . 

2.2 Reconstruction of primal and dual 
solutions 
In the previous section an expression for the 
functional error correction has been derived. 
This expression depends on approximations of 
the primal and dual solutions on the fine grid 

. These approximations are obtained by 
projection of the coarse grid solutions onto the 
fine grid as follows. First, consider that the 

embedded fine grid 

hΩ

hΩ is generated by uniform 
h-adaptation of the coarse one, i.e. by inserting a 
new node at the midpoint of each existing edge 
of the grid HΩ . The next step is to find 
approximations to  and hU hψ  on that embedded 
mesh. Linear and higher order interpolant 
operators, H

hL and H
hQ , respectively, are used for 

projecting the coarse primal and adjoint 
solutions, HU  and Hψ , respectively, onto the 
embedded fine grid. In the present 
implementation, the linear operator is a simple 
linear interpolation at the edge midpoint using 
the two nodal edge values.  For the higher order 
operator, a cubic Hermitian polynomial is used 
along the edge to approximate the value of the 
midpoint from the edge nodal values [6]. This 
interpolation is fourth order accurate provided 
that the derivates are exact at the nodes. The 
estimation of the gradients of the variables at 
the nodes of the grid HΩ  is performed using a 
weighted least square method which is second 
order accurate and exact for linear functions. 
Therefore, the higher order interpolation reduces 
to third order accuracy overall. This compact 
edge higher order interpolation has been chosen 
because it is quite robust, it does not produce 
computational overheads and it is especially 
well suited for using together with an edge-
based structure in an unstructured solver. 
Substituting the reconstructed solution into (3)  
gives the following expression for the estimated 
functional on the embedded mesh  

 
 ( ) ( ) ( ) ( )H H T H

h h h h H h H h h HJ U J L U L R L Uψ= −  (4) 
 
Note that the linear operator has been 

finally chosen for both, the approximation of the 
primal and the adjoint solutions. The main 
reason for this choice is to maintain robustness, 
especially in regions where the flow and adjoint 
solutions may exhibit steep gradients, 
discontinuities and oscillations.   

The grid adaptation strategies implemented 
in the new TAU module will be described in the 
next section. One of the strategies is to define a 
local adaptation parameter based on the local 
remaining error which is given by 
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 ( ) (T
h )hRE Rδψ= U  (5) 

 
In the present implementation the 

remaining error has been approximated using 
the higher order projection operator 

H
hQ described above yielding the following 

expression for the estimated remaining error 
 

 (( ) ( ) ) ( )H T H T H
h H h H h HRE Q L R L Uψ ψ= −  (6) 

2.3 Grid adaptation strategies  
The adjoint-based error analysis can also serve 
to drive an adaptive refinement process, in 
which the grids are especially tuned to compute 
the chosen functional. Two main adjoint-based 
adaptation strategies may be devised. The first 
one uses the computable correction (functional 
output correction) as a driver in the adaptive 
refinement [7,13]. The goal is to reduce the 
magnitude of the error correction term in each 
adaptation cycle. We call this strategy the CC-
strategy. The second strategy, called RE-
strategy, is based on improving the accuracy of 
the corrected output in (3) by reducing the 
remaining error after correction [5-10]. Both 
strategies have been implemented in the adjoint-
based correction and adaptation module. A 
comparison between these two strategies will be 
presented in section 4. 

Let us consider a local adaptation 
parameter iε  for a node i of the grid , which 
is strategy dependent and is defined for the CC-
strategy as  

hΩ

 
 , , ,( )T

h i h i h iR Uε ψ=  (7) 
 

and for the RE-strategy by 
 

 , , ( )T
h i h i h iR Uε δψ= ,  (8) 

 
The corresponding projection operators are 

applied to obtain the approximated values of hψ  
and . The adaptation parameter defined by hU
(8) is a simpler version of the estimate 
suggested by Venditti et al. [2], who include an 
additional term based on the residual of the 

adjoint equation. The sum of the adaptation 
parameters over the nodes of the grid gives a 
conservative estimation of the computable 
correction if definition (7) is used, or an upper 
bound for the remaining error after correction 
for (8). The used adaptation strategy aims at 
reducing and equi-distributing the value of the 
defined adaptation parameter throughout the 
computational domain. 

Assume that the local error in the fine grid 
is transferred back to the coarse grid with a 
certain prolongation operator (to be described in 
the next section) 
 ,

h
,H i H hP iε ε=  (9) 

 
With the aid of this operator, the adaptation 

parameter, which mimics the local error, or the 
incertitude of the error, respectively, has been 
returned to the original mesh. We define the 
total error as 

 
1

pN

i
i

ε ε
=

=∑  (10) 

 
where PN is the number of nodes of the coarse 
grid. Given a user specified global tolerance to  
for the functional of interest, we specify a target 
adaptation level for each node as 

l

 

 
P

tolt
N

=  (11) 

 
A node of the original coarse mesh is 

flagged for refinement if 
 

 ,H i tε λ>  (12) 
 

where 1λ ≥  is an optional global threshold 
factor used to scale the refinement parameter.  
This parameter can be useful to reduce the 
number of flagged nodes in the initial cycles of 
the adaptation process [10], especially for the 
CC- strategy adaptation. 

A cell or edge of the coarse mesh HΩ is 
selected for refinement if it has at least one node 
flagged for refinement. Once the mesh is 
refined, the solution is computed on the new 
adapted grid and a new adaptation cycle begins. 
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Thus, an adaptation cycle consists of the 
computation of the error correction and 
adaptation parameters on the embedded mesh, 
the transfer of this adaptation parameter back to 
the starting coarse mesh and the mesh 
refinement itself using the adaptation parameter. 
No termination criterion other than a user-
prescribed number of cycles has been 
implemented in the adaptive process in the 
present version. Three input parameters, which 
must be prescribed by the user, control the 
adjoint-based error correction and adaptation 
process: number of adaptation cycles, desired 
functional output tolerance,  and relaxing 
threshold, 

,tol
λ . 

3 Implementation issues  
The adjoint-based error correction and adaptive 
refinement process has been implemented in a 
new TAU module called Adj_error_adapt. The 
complete process involves the interaction of 
several TAU modules: Primal and adjoint 
solvers [12,14], as well as the adaptation [12] 
module. The adaptation process has been 
integrated using a python script shown in Fig. 1.  
 
 

 
 

Fig. 1. Adjoint-based adaptation process. 

 
In this way, the process is fully automatic 

and easy to use since the only three required 
inputs are the number of adaptation cycles, the 
prescribed tolerance for the chosen output 
functional and the relaxing threshold. The 

automation and ease of use of a CFD process 
are two of the chief requirements for a process 
to be successfully used in industrial 
environments.  

The inputs for the Adj_error_adapt module 
are the embedded dual grid file and the 
interpolated primal and adjoint solution files. A 
key point of the process is the transfer of the 
adaptation parameter back to the original coarse 
mesh, i.e., Eq. (9). To accomplish this operation 
it is necessary to keep track of the information 
of the original coarse mesh in the embedded 
one. This task is carried out by introducing a 
new inverse permutation index which maps the 
embedded grid onto the original coarse one. In 
this way, an edge of the embedded grid “knows” 
whether its endpoints are new points or “old” 
coarse grid points (with the corresponding old 
connectivity). Following a common practice 
employed in transferring residuals within 
multigrid methods, the projection operator, h

HP , 
is constructed in such a way that the total error 
transferred to the coarse mesh is equal to the 
total error computed in the fine grid, i.e. 

 

 
, ,

, ,

P H P hN N

H i h
i i

iε ε=∑ ∑  (13) 

 
Tau solver 

Primal/adjoint 

Tau Adaptation 

Tau Adj_error_adap 

,h hU ψ

Tau Prep 

,H iε

grid

Tau Prep 

,H HU ψ

The new adjoint error correction module 
has been implemented to work in either serial or 
parallel modes alike. In the current 
implementation, the data exchange among the 
TAU modules is through file I/O rather than 
memory.  However, the python script may be 
extended in a straightforward manner to 
perform the exchanges in memory using the 
TAU-python API.  

4 Discussion of results 
Adaptation results are shown for three cases:  
2D and 3D Euler flows over an airfoil and wing, 
respectively, and an inviscid 3D flow over a 
wing-body-pylon geometry. The first two cases 
can be found in many studies reported in the 
specialized literature, and they are normally 
used for validation. The third test case was 
selected for the demonstration of the adjoint-
based error estimation and adaptation (AEA) 
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method on a more representative (from the 
industrial viewpoint) configuration. Two 
functional outputs have been investigated in 
these studies, the total drag and lift. 

4.1 Grid adaptation strategies  
As explained above, two adjoint-based 
adaptation strategies are available (CC and RE), 
depending on the adaptation sensor being used, 
which is the correction term in (3) for the CC-
strategy, and the remaining error term (5) for the 
RE-strategy. The question naturally arises as to 
which of them is the most appropriate strategy 
to be used in adjoint-based adaptation methods.  

In the present work, we have tried to find 
an answer to the former question from a 
practical point of view (keeping always in mind 
the industrial application). A comparative study 
between the two adaptation strategies (CC and 
RE) has been performed for 2D and 3D inviscid 
transonic flows. For the 2D case, a NACA 0012 
airfoil at Mach number M∞ = 0.8 and 1.25ºα =  
incidence was adapted using the AEA method.  
The initial grid had 5990 nodes. The target 
functional was the total drag coefficient. The 
user prescribed tolerance was set to 0.001 (10 
drag counts), with a threshold 1λ =  which was 
held constant throughout the adaptation cycles. 
For the 3D case, an inviscid transonic flow over 
an ONERA M6 at angle of attack of 3.06ºα =  
and Mach number M∞ = 0.84 was tested. The 
adaptation parameters are the same as the 2D 
case and the initial grid has over 50000 nodes. 

Both the CC and RE-strategies were 
compared for the two test cases. The adapted 
drag values are displayed in Fig 2. This figure 
also shows the drag values obtained with the 
default TAU adaptation method, which is a 
feature-based adaptation based on the reduction 
of the local differences of some selected flow 
variables [15]. The uniform h-adaptation is also 
displayed in order to show the grid convergence 
properties of this case for the selected numerical 
scheme, as well as the drag value for asymptotic 
convergence. The results show that the AEA 
method can reach the final drag level with two 
orders of magnitude less points compared with 
uniform refinement and one compared to the 
feature-based adaptation. The RE-strategy is 

clearly superior to the CC-strategy, particulary 
in the 2D case, where the asymptotic value is 
reached with ten times less points; as for the 3D 
case, the differences are not so large, but the 
RE-strategy is still more competitive.  

 

 

Fig. 2. Drag convergence for the 2D case (left) and the 3D 
case (right) using two different adaptation strategies. 

 
For all the cases tested in the present study 

the CC-strategy always gives rise to adapted 
grids with more nodes than the RE-strategy. 
From an industrial point of view, the 
incremental percentage of points in each 
adaptation can be critical if the initial mesh is 
large (which is usually the case for complex test 
cases). Therefore, the RE-strategy is, from this 
viewpoint, the most desirable. 

 

 
 

 

Fig. 3. Initial (left) and final (right) grids for the 
NACA0012 with adjoint-based adaptation using the RE-

strategy. 

 
At any rate, both strategies clearly 

outperform the feature-based TAU adaptation 
strategy. In transonic cases, for example, such 
strategy would refine the shock wave 
indefinitely owing to the unbounded derivates 
across the discontinuity. Hence, the feature-
based strategy, after several cycles, over-refines 
the shock areas but not other areas which can 
have a greater impact on the final drag value 
such as the leading and trailing edge regions of 
the airfoil. This should be compared with the 
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adapted grids produced by the adjoint-based 
approach. The final grids after four adaptation 
cycles (using the RE-strategy) are shown in Fig. 
3. and 4. for the NACA0012 airfoil and 
ONERA M6 wing respectively. Fig.4. shows 
that, unlike the feature-based scheme, the AEA 
method avoids the over-refinement of the shock 
area and concentrates instead on regions where 
the discretization errors may have a greater 
influence on the computation of the selected 
functional output (e.g. the region upstream of 
the airfoil or the area neat the trailing edge). 

 

 
 

 
 

Fig. 4. Final grids for the ONERA M6 wing with adjoint-
based adaptation using the RE-strategy (left) and feature-

based adaptation (right). 

4.2 Influence of surface reconstruction  
An important issue of the adaptation process is 
in general the surface reconstruction strategy. 
This question is particularly tricky in the case of 
adjoint-based adaptation approaches, which 
admits initial grids significantly coarser than 
those used in feature-based approaches. The 
TAU adaptation module employs cubic surface 
reconstruction (via edge-based cubic spline 
interpolation using smoothed normal surface 
vectors at the edge nodes), and the question 
arises as to whether this reconstruction strategy 
is accurate enough for the adjoint-based 
approach. The ONERA M6 wing test case has 
been tested with adjoint adaptation for the drag 
functional using the original reconstruction 
module. The examination of the resulting chord-
wise Cp distributions at different span sections 
for the final adapted grid (starting from a 
relative coarse grid with 50000 nodes) reveals 
pressure oscillations in the mid and aft location 
of the sections (see Fig. 5.).  
 

  

  
Fig. 5.Pressure distributions of adapted grid using local 

surface reconstruction for the ONERA M6 wing. 

 
These oscillations stem from the type of 

surface grid reconstruction used by the TAU 
adaptation module. This type of reconstruction 
has a minor effect on the computed pressures 
when the surface grid resolution is sufficient to 
produce small errors in the interpolated points 
(see the outermost section, 0.9,y b =  in Fig. 5). 
However, when the resolution is too low to 
support the interpolation, the reconstructed 
surface has curvature oscillations which are 
reflected in the computed pressure distributions.  

In order to assess this effect, the adaptation 
process was repeated using CAD-based 
reconstruction of the surface grid. A set of 
modules developed by INTA [16] were 
introduced in the adaptation chain to tackle the 
surface reconstruction. A CAD-based 
description of the wing, based on surface Non-
Uniform Rational B-Splines (NURBS), is used 
to reconstruct the surface grid by performing a 
projection of the new nodes (created by 
refinement) onto the NURBS representation. 
The volume mesh must also be deformed in 
order to obtain good quality cells near the 
surface. This process proves to be reasonably 
robust for small surface deformations in the case 
of Euler meshes. 
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Fig. 6. Drag convergence for the ONERA M6 
wing with two types of surface reconstruction. 

 
The results obtained for the ONERA M6 

wing with the CAD-based surface 
reconstruction technique are shown in Fig. 6, 
which also depicts the values obtained with the 
cubic-spline surface reconstruction of TAU, 
both starting from a mesh with 50000 nodes. 
The adjoint-based adapted and corrected values 
are improved significantly with the CAD-
improved technique. The asymptotic drag level 
obtained using CAD-based surface 
reconstruction is nearly the same as that 
obtained by uniform h-adaptation from an initial 
mesh with 105 nodes. Fig.7. shows the chord-
wise wing surface pressure distributions for the 
adjoint-based adapted grid with CAD-based 
surface reconstruction. The oscillations are no 
longer present in the pressure distributions. 
 

  
Fig. 7. Pressure distributions for section of an ONERA 

M6 wing with CAD surface reconstruction.  

4.3 Non-expert initial grids 
One of the most attractive features of the AEA 
method is the capability to generate optimized 
grids for the chosen functional starting from 
relatively coarse grids. This is related to an old 
dream of the CFD engineers, i.e. to remove the 

dependence on user expertise in the grid 
generation phase. The adjoint-based method 
provides an approach that localizes mesh 
refinement to only those flow features that 
actually influence the accuracy of the chosen 
functional, and is largely independent of the 
initial grid. This section describes the results 
obtained for the adaptation process of an 
ONERA M6 wing starting from three different, 
extremely coarse grids generated with the 
prescription of having the minimum resolution 
necessary to solve the geometric details (we call 
those grids non-expert grids). The drag 
convergence results are displayed in Fig. 8.  
 

 
Fig. 8. Drag convergence for the ONERA M6 

wing with three initial non-expert grids. 

 
The RE-strategy with a prescribed 

tolerance of 0.001 was used in all cases. The 
corrected drag values converge to the same final 
asymptotic value within the user prescribed 
tolerance. Thus, the adjoint-based adaptation is 
able to adapt very poorly resolved grids to 
obtain accurate estimations of the selected 
functional output.  

 

  
Fig. 9. Initial and final grids (after 4 adjoint adaptation 
cycles) for the ONERA M6 wing. The initial grid has 

only 8500 nodes. 
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Fig. 9. shows the initial and final grids for 
the ONERA M6 wing starting from a coarse 
non-expert grid with only 8500 nodes. The 
mesh was generated with CentaurSoft with the 
only requirement of having a minimum 
resolution at the leading edge. In the final grid, 
the leading and trailing edge were refined as 
well as the shock wave areas. 

4.4 Complex geometry test case: Lift 
adaptation of the DLR-F6 WBNP 
The adjoint-based adaptation procedure is 
applied to a complex aircraft configuration in 
order to explore the potential application of this 
method to more realistic aircraft geometries. 
The chosen configuration is the DLR-F6 wing-
body-nacelle-pylon (WBNP) configuration. 
This configuration was introduced in the AIAA 
Drag Prediction Workshop II to investigate the 
drag increment due to engine installation. 
Transonic flow conditions of M∞ = 0.8 and 0 
degrees incidence were selected to test the 
adaptation process. Such off-design conditions 
were selected with the sole purpose of verifying 
the adaption process and not to validate with 
experimental results. In the present work, results 
are shown only for inviscid flows. Such a 
restriction does not prevent difficulties from 
appearing, as we will see momentarily. An 
initial grid containing about 275000 nodes was 
generated by INTA using Centaur Soft. 
Although this grid is relatively coarse it has the 
necessary resolution to resolve the main 
geometrical features of the configuration (see 
Fig. 10). 
 

  
Fig. 10. DLR-F6 WBNP configuration. Left: initial grid 

(270 knodes). Right: final adapted grid after three adjoint 
adaptations. 

The lift error prediction and grid adaptation 
procedure with user specified error tolerance of 
0.03 (and constant threshold of 1) is plotted as a 

function of mesh size in Fig. 11. The uniform h-
adaptation and TAU’s feature-based adaptation 
are also displayed in the same figure. The 
correct lift coefficient is obtained on the adjoint-
based adapted mesh with less than one-tenth of 
the size of the uniformly refined grid (7.5×105 
vs. 10.4×106 nodes, respectively). The feature-
based method is also able to adapt the mesh to 
yield reasonable results but the final mesh 
contains over three and a half more nodes than 
the adjoint-based one.  

 

Fig. 11. Lift convergence for the DLR-F6 WBNP 
configuration. 

 
Only two adjoint adaptation cycles were 

performed. The quality of the adapted mesh 
deteriorated after each adaptation cycle, which 
eventually prevented the convergence of the 
adjoint solution and consequently any further 
adjoint analysis. The improvement of the grid 
quality after each adaptation step (through grid 
smoothing techniques) and the improvement of 
the robustness of the discrete adjoint solver are 
two issues which have to be addressed in order 
to make the adaptation procedure robust enough 
to be used in industrial environments.  

The initial and adjoint-based adapted 
surface meshes are shown in Fig. 10, where the 
mesh on the symmetry plane also is also shown. 
Observe that the areas located on the fore and 
aft fuselage have been refined. A detail of the 
wing surface refinement is shown in Fig. 12. 
The adjoint-based method refines all relevant 
areas which may affect the lift coefficient (wing 
leading and trailing edge, shock location). Note 
that the wing was refined especially on the 
leading edge at the inboard wing area.  The 
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pylon and the nacelle were also refined. The 
Mach contour map is also depicted in Fig. 12. 

  

  

  
Fig. 12. Detail of initial and final adapted grids for the 

DLR-WBNP (above), and Mach number contours (below) 
on the suction side of the wing. 

4.5 Drag adaptation of the DLR-F6 WBNP 
Finally, the adjoint-based methodology is tested 
in an adaptation process with total drag as the 
target output function. The same off-design flow 
conditions as the in previous section were used 
for this case. A non-constant threshold scaling 
strategy was applied, in order to prevent a rapid 
growth of the number of nodes of the adapted 
grid during the first adaptation steps. The user 
specified error tolerance was prescribed to 10 
drag counts (0.001). The initial threshold value 
was set to 30 and reduced successively to 10 
and 5. The last adaptation was also obtained 
with a threshold value of 5, thus the true error 
tolerance is equivalent to 50 drag counts. Fig. 
13 shows the results for adjoint-based, feature-
based and uniform adaptation. The drag 
estimation is improved but the convergence 
failure of the discrete adjoint solver in the last 
adaptation cycle prevented the obtention of an 
asymptotic value within the tolerance range. 
Nevertheless, the final corrected value for the 
drag is nearly the same as the one obtained by 
uniform h-adaptation. 

 

Fig. 13. Drag convergence for the DLR-F6 
WBNP configuration. 

4.6 Robustness and computational efficiency 
Two relevant aspects (qualities) of every CFD 
technique are the robustness and the 
computational efficiency. The more robust and 
efficient a CFD technique is, the more likely it 
is that it will make it into industrial production 
environments. According to [17] the robustness 
of the (adaptation) process may be defined as its 
likelihood to produce the result (adapted mesh). 
On the other hand, the computational efficiency 
may be linked, for this process, to the additional 
CPU-time and memory overhead involved in 
the adaptation process.  

The experience gained through the 
application of the present adjoint adaptation 
method to several test cases showed us that the 
robustness of such method is mainly linked to 
the robustness of the direct and, especially, the 
adjoint solvers. For the present case, the 
robustness (or lack thereof) may be associated 
to the quality of the grids in each adaptation 
cycle. Table 1 shows the quality of the adapted 
meshes (by means of two different quality 
parameters, the mean ratio and the minimal 
dihedral angle [15]) at each adaptation cycle for 
the DLR-F6 WBNP case. What can be deduced 
from Table 1 is that the quality of the mesh is 
degrading through the adaptation process, 
especially when local surface reconstruction is 
used. The quality of each mesh can be improved 
if an additional module for mesh smoothing is 
introduced in the adaptation chain –see Fig.1. 
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 IMPLENTATION OF AN ADJOINT-BASED ERROR ESTIMATION AND GRID ADAPTATION MODULE… 

  
 

DLR - F6 configuration. Initial mesh: 270K points (Lift adaptation) 
 
  MESH N(q<0,2) N(alpha<5º) Nº points Size (MB) 

Initial mesh 0 0 275561 32,13 

1st Adaptation 0 0 2061293 384,64 

U
N

IF
O

R
M

 
A

D
A

PT
A

TI
O

N
 

2nd Adaptation 454 24 4547849 892,55 

Initial mesh 0 0 275561 32,13 

1st Adaptation 0 0 480446 85,53 

R
EM

A
IN

IN
G

 
A

D
A

PT
A

TI
O

N
 

2nd Adaptation 29 0 772098 145,64 

Initial mesh 0 0 275561 32,13 

1st Adaptation 145 0 892380 168,08 

TA
U

 fe
at

ur
e-

ba
se

d 
ad

ap
ta

tio
n 

2nd Adaptation 280 15 2647671 531,73 

Table 1. Bad elements (in red) generated in the adaptation 
process for the DLR-F6 WBNP configuration. 

 
As for the computational efficiency, table 2 

shows a CPU-time profiling (in % of the total 
process time) of the adaptation process for the 
DLR-F6 WBPN case. It can be seen that most 
of the CPU-time overhead is due to the Adjoint 
solver (which is of the order of the direct 
solver). This situation is even worse for Navier-
Stokes solutions if no especial convergence 
techniques are employed for obtaining the 
adjoint solutions. Therefore, this kind of 
adaptation seems unsuitable when the initial 
meshes are too large (typical sizes in industry) 
because they are very time consuming. The 
present adaptation technique seems to be more 
appropriate for coarse initial meshes. 
 

F6 WBNP configuration (772 Knodes) 

2nd RE - adaptation of a complete aircraft 

STEP % TOTAL TIME 

Flow Solver 45,8 

Adjoint Solver 45,9 

Uniformly Adaptation 3,4 

Error - estimation 1,5 

Adjoint Adaptation 1,3 

Smoothing 2,2 

Table 2. CPU-time profiling (percentages) for the DLR-
F6 WBNP configuration adaptation process. 

 
Likewise, even though the construction of 

the embedded uniform mesh does not seem to 
be very time consuming, memory requirements 
involved in this step may suppose a bottle neck 
given the sizes of the meshes typically used in 
real applications. This can be illustrated with the 
following simple example: Consider a typical 

coarse grid used in industry for a RANS 
computation of a wing-body configuration. 
Such grid may have about 3.8×106 nodes and 
10.5×106 cells (4.6×106 tetrahedra and 5.8×106 
prisms for a mesh with 25 viscous layers). The 
corresponding (uniformly refined) embedded 
grid would have about 60×106 elements and 
18.5×106 nodes (assuming that in the embedded 
grid the number of viscous layers is held 
constant). The preprocessor, adaptation and 
solver modules have to manage meshes with 
about 20×106 points already at the first 
adaptation cycle!  

5 Conclusions 
We have implemented and tested an adjoint-
based error prediction and grid adaptation 
methodology in a widely used CFD-software 
(DLR-TAU).  

The method outperforms conventional 
feature-based adaptation in that comparable 
accuracy is obtained with far smaller meshes. 
Moreover, the method can be applied to 
extremely coarse initial grids, provided that 
integrity of the geometry is preserved with a 
suitable surface reconstruction technique. The 
adjoint adaptation technique turns out to be a 
powerful method for obtaining grids especially 
tuned for accurate functional output calculations 
but at the same time it is a computationally 
expensive technique. 

The approach has a few potential 
drawbacks, which are inherent in the 
methodology itself, that could make the method 
difficult to apply at production level within 
industrial environments. On the one hand, the 
dependency on an auxiliary, uniformly refined 
mesh which has to be generated at each 
adaptation step can render the method 
unaffordable for high Re viscous flows around 
complex configurations, not only for the size of 
the involved auxiliary meshes but for the 
difficulty inherent in the refinement of highly 
anisotropic hybrid meshes. On the other hand, 
robustness and computational efficiency of the 
adjoint solver is still an issue to be addressed for 
the systematic application of the adjoint 
technology in the industry environment. 
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