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Abstract

This paper describes the theory and practical ap-
plication of Hierarchical Synchronous Parallel
Multi-objective Evolutionary Algorithms (HAP-
MOEA) for mission optimisation of Hybrid Pow-
ered Unmanned Aerial Systems (HPUAS). A real
design or simulation will have more than one
objective such as minimising fuel consumption,
drag and/or time to complete the mission. It
is usually the case that the problem is highly
non-linear and non-differentiable. New tech-
niques are required, and one of such techniques,
even though computationally more intensive than
gradient-based methods, are Evolutionary Al-
gorithms (EAs). This paper describes the de-
velopment and implementation of the hybrid-
powered UAV and the coupling of an advanced
EA methodology with simulation analysis tools.
Result will indicate the practicality and robust-
ness of the method in finding optimal solutions
and Pareto trade-offs between fuel consumption
and time to complete the mission of a hybrid
UAS by producing a set of non-dominated trajec-
tories and mission from which the designer can
choose.

1 Introduction

Unmanned Aerial Systems (UAS) are becoming
important military and commercial assets for di-

verse applications, ranging from reconnaissance
and surveillance, to aid relief and monitoring
tasks [1]. These vehicles are now available in a
broad size and capability range and are intended
to fly in regions where the presence of onboard
human pilots is either too risky or unnecessary.

Civilian applications for UAS technology are
quickly emerging as a large and lucrative new
aerospace market. Examples of civilian appli-
cations include coastal surveillance, power-line
inspection, traffic monitoring, bush-fire monitor-
ing, precision farming and remote-sensing.

A large portion of current UAS propulsion
systems use either Internal Combustion Engines
(ICE) or Electric Motor (EM) powerplants, often
sourced commercially off the shelf (COTS) and
then modified. Some developers have obtained
excellent endurance from these modified COTS
aeromodel ICE powerplants, but these units re-
main inflexible for a range of operational require-
ments such as manual starting, no in-flight restart
and fixed pitch propeller design.

[2] shows that at the cost of an increased
weight penalty, a suitable hybridisation of ICE
and EM powerplants can lead to overall improve-
ments in range, endurance, and payload capacity
whilst simultaneously allowing greatly enhaced
UAS operational flexibility.

The multi-physics aspects of these vehicles
can benefit from alternative approaches for de-
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sign and optimisation [3, 4].

2 UAS Mission Optimisation

UAS are being developed for environmental and
agricultural purposes such as weather forecast,
storm detection, bushfire detection, farm field
seeding and aerobiological sampling. All these
scenarios involve a common task currently car-
ried out by a human operator: Mission Planning.

Traditionally optimal path plans are found us-
ing deterministic optimisers, but a common prob-
lems is when the procedure becomes trapped in
local minima [5, 6]. Other techniques such as
EAs are robust to find global solutions but suffer
from large computational expenses. Therefore,
one of the main objectives in optimal mission
planning is to develop effective and efficient op-
timisation techniques in terms of computational
cost and solution quality [5, 6].

A good summary of path planning algorithms
was presented by LaValle in [7], while Francois
et al. [8] elaborated on the importance of path
planning, described the types of path planning
techniques and explaned why Evolutionary and
Genetic Algorithms are preferred as the most vi-
able search algorithm for a real-time UAS path
planner.

The following sections describe an advanced
EA used in the context of mission path planning.

3 Robust Framework

The complext task of aircraft design is now as-
sisted by highly sophisticated analysis tools such
as computational fluid dynamics (CFD), finite el-
ement analysis (FEA) and mission simulation.
The logical extension to this progress is undoubt-
edly optimisation.

Current optimisation efforts focus on the
use of gradient-based techniques, which are
mostly suitable for single-objective optimisation
or when the objectives are differentiable. The re-
cent emergence of new techniques such as Evolu-
tionary Algorithms (EAs) [4, 8, 9], although can
be computationally more intensive than gradient-
based methods, have proven to be beneficial in

the area of multi-disciplinary UAS design.
A real design of an UAS will have more

than one objective, such as minimising fuel con-
sumption, drag, as well as maximising range
and endurance. In this research, the Hierarchi-
cal Asynchronous Parallel Multi-objective Evo-
lutionary Algorithm (HAPMOEA) tool was used.
This tool uses advanced concepts for the so-
lution: a modified canonical evolution strategy
[10, 11], capabilities for multi-objective opti-
misation using a Pareto tournament selection
[12], capabilities for parallel computation using
a modified asynchronous approach [4, 13] and a
hierarchical/multi-fidelity approach for the solu-
tion [4, 8]. HAPMOEA has been compared and
has shown some computational benefits to other
EA methods [4, 14].

3.1 Hierarchical/Multi-Fidelity Population
Topology

A hierarchical/multi-fidelity population topol-
ogy, when integrated into an evolution algorithm,
means that a number of separate populations are
established in a hierarchical layout to solve the
given problem, rather than a single ‘cure-all’ type
single population layout. This method was pro-
posed by Sefrioui [8] and is shown in Fig. 1.

The bottom layer uses a simple model and
can be entirely devoted to exploration, the inter-
mediate layer is a compromise between exploita-
tion and exploration, while the top layer uses a
refined model and concentrates on promising so-
lutions.

In simulation tools, the accuracy of the so-
lution is often related to the sampling time, or
how often each instance of the simulation cycle
is calculated. The smaller the sampling time, the
more accurate the simulation will be to real-time
execution. However, a smaller sampling time im-
plies a long simulation time, due to limitations on
the computational power available.

Applying the hierarchical/multi-fidelity
topology to simulations, the top layer uses a
precise time-consuming sampling time, whereas
coarser sampling times are used in the inter-
mediate and bottom layers, resulting in a more
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Fig. 1 Hierarchical topology.

approximate model.

3.2 Parallel Computing

The algorithm used in this approach is a master-
slave pMOEA but incorporates the concept
of isolation and migration through hierarchical
topology binary tree structure, where each level
executes different MOEAs/parameters (heteroge-
neous). The parallel environment used is a clus-
ter of PCs, wherein the master carries on the op-
timisation process while remote nodes compute
the analysis solver environment. The message-
passing model used is the Parallel Virtual Ma-
chine (PVM) [15].

A schematic of the parallelisation approach
with asynchronous evaluation is shown in Fig. 2.
This algorithm has been tested in a cluster of het-
erogeneous CPUs, RAMs, caches, memory ac-
cess times, storage capabilities and communica-
tion attributes.

In this work, a cluster than can be configured
with up to 18 machines with performances vary-
ing between 2.0 and 2.4GHz was used. Studies
showing the performance of the algorithms are
presented in [14].

3.3 Asynchronous Solution

When considering the solution to a Multi-
objective/disciplinary Optimisation problem,
several issues arise, as many methods of solution
used in engineering today may take different

Fig. 2 Asynchronous Evaluation.

times to complete their operation [11]. The
classic example of this is a CFD, an FEA solver
or a MATLAB R© Simulink R© simulation.

With a typical industrial code used for simu-
lation and analysis of aircraft, the time for the so-
lution to converge to a specified level (either ma-
chine zero or an arbitrarily selected higher value)
can vary over a significant range. The time taken
for an iterative solution of non-linear partial dif-
ferential equations is strongly dependent upon
geometry or trajectory flown.

The previous generation of EAs have mostly
used a generation-based approach and so are the
traditional genetic algorithm and evolution strat-
egy. A difficulty with generational models is that
they create an unnecessary bottleneck when used
on parallel computers. If the population size is
approximately equal to the number of processors,
and most of the candidate offspring that are sent
for solution can be successfully evaluated, then
some processors will complete their task quickly
with the remainder taking more time. With a gen-
erational approach, those processors that have al-
ready completed their solutions will remain idle
until all processors have completed their work
[10].

The approach used here is to ignore any con-
cept of a generation-based solution. This ap-
proach is similar to the work by Wakunda and
Zell [13] and other non-generational approaches.
However, the selection operator is quite differ-
ent, as it couples one-by-one (steady-state) func-
tion evaluation with a direct multi-objective fit-
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ness criterion.
Whilst a parent population exists, offspring

are not sent as a complete ‘block’ space to the
parallel slaves for solution. Instead, one candi-
date is generated at a time, and is sent to any idle
processor where it is evaluated at its own speed.

When candidates have been evaluated, they
are returned to the optimiser and either accepted
by insertion into the main population or rejected.
This requires a new selection operator because
one offspring cannot now be compared against
another, or even against the main population due
to the variable-time evaluation. To overcome this,
the recently evaluated offspring was compared
against a previously established rolling bench-
mark and, if successful, it replaces, according to
some rule, a pre-existing individual in the popu-
lation.

This benchmarking is implemented via a sep-
arate evaluation buffer, B, which provides a sta-
tistical ‘background check’ on the comparative
fitness of the solution. The length of the buffer
should represent a reasonable statistical sample
size, but need not be too large; approximately
twice the population size is more than adequate.

When an individual has had a fitness as-
signed, it is then compared to past individu-
als (both accepted and rejected) to determine
whether or not it should be inserted into the main
population. If it is to be accepted, then some re-
placement strategy is invoked and it replaces a
member of the main population. The replace-
worst-always method is used exclusively in this
work.

3.4 Multi-Objective Optimisation

Most EAs configured for multi-objective optimi-
sation currently use the non-dominated sorting
approach. This is a straightforward way to adapt
an algorithm that is designed as a single-objective
optimiser into a multi-objective optimiser, and is
used by many researchers [12].

The problem with sorting approaches is that
the method is not a fully integrated one. Briefly,
a sorting method works by computing the set of
non-dominated solutions amongst a large statis-

tical sampling (either a large population or pre-
vious data), and assigning these solutions a rank
one. Then, ignoring these points, the process is
repeated until a ‘second’ Pareto front is found,
and this is assigned a rank two. This process
continues until all points are ranked, and then the
value of the rank is assigned to the individual as
a new single-objective fitness.

A problem arises now on whether it is fair
to assign individuals in the second rank numer-
ically half the fitness of the first, and whether the
third rank deserves a third of the fitness of the
first. This poses a dilemma regarding the level
of equality present amongst the solutions, as of-
ten solutions with excellent information may lie
adjacent to, but not in, rank one.

To solve this ‘artificial scaling’ problem, it is
possible to introduce scaling, sharing and niching
schemes. However, all of these require problem-
specific parameters or knowledge, even in adap-
tive approaches. It is of course always desirable
to compose an algorithm that does not introduce
such unnecessary parameters.

The on-the-fly selection operator was imple-
mented by means of a Pareto tournament selec-
tion operator. To implement an optimisation al-
gorithm that is equally applicable to both single-
and multi-objective problems, a suitable selection
operator capable of handling either situation must
be developed. An extension of the standard tour-
nament operator popular in many approaches was
proposed in [12].

The current operator is a novel approach in
that is requires no additional ‘tuning’ parameters,
works seamlessly with the asynchronous selec-
tion buffer, B, and is very easy to encode. To
determine whether a new individual, x, is to be
accepted into the main population, it is compared
with the selection buffer by assembling a small
subset of the buffer called the t tournament func-
tions, which is as follows:

Q = [q1 q2 · · · qn] (1)

Q is assembled by selecting individuals from
the buffer, exclusively at random, until it is full.
Then it ensures that the new individual is not
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dominated by any in the tournament. If this is
the case, then it is immediately accepted, and is
inserted according to the replacement rules.

The only parameter that needs to be deter-
mined in advance is the tournament size, which
is already present in a single-objective optimi-
sation. Selection of this parameter requires a
small amount of problem specific knowledge,
and should vary between Q = 1

2B (strong selec-
tive pressure) and Q = 1

6B (weak selective pres-
sure). The optimiser is not overly sensitive to
this value, provided the user errs on the side of
weak selective pressure (smaller tournaments) in
the absence of better information.

The egalitarian approach to the tournament,
by selecting individuals at random, ensures good
diversity amongst the selected individuals; no
niching or forced separation of individuals has
been found to be necessary. It can also be seen
that in the event that the fitness vectors have
only one element (a single-objective optimisa-
tion), this operator simplifies to the standard tour-
nament selection operator [12].

4 Multi-Discipliniary Design using Ad-
vanced Numerical Techniques

To demonstrate the application of HAPMOEA in
the area of Hybrid UAS mission planning, com-
puter simulations have been designed and imple-
mented. Computer simulations are used in lieu of
actual flight tests to reduce time and costs.

The design of the system was developed us-
ing HAPMOEA optimiser coupled with an Air-
craft Simulation Model (ASM), which is de-
scribed below.

4.1 Aircraft Simulation Model (ASM)

The computer simulations for demonstrating
HAPMOEA in Hybrid UAS mission planning
were conducted in the MATLAB R© Simulink R©

simulation environment combined with the
AeroSim Blockset [16], which offers a compre-
hensive aircraft simulation and analysis package
[17]. The AeroSim Blockset also offers a de-
tailed model of an AerosondeTM UAV, a real-

Fig. 3 Aircraft Simulation Model.

world UAS, with a complete set of parameter to
simulate the AerosondeTM in flight. A modified
version of this model, to incorporate the hybrid
propulsion system, was utilised in the construc-
tion of the ASM. The entire ASM is shown in
Fig. 3 [18], which includes the Aircraft Con-
trol and Flight Planner blocks to the original
AerosondeTM model for unmanned operations.

The current ASM has not yet taken into con-
sideration the effects of weather elements such
as wind on the performance of the aircraft during
flight. This will be included in future revisions of
the aircraft simulation model.

4.1.1 Modified Aerosonde UAV Block

The Aerosonde UAV block contains a detailed
model of an AerosondeTM UAV. Modifications
have been made in the Propulsion model inside
this block via the addition of an Electric Mo-
tor & Generator (EM&G) block to incorporate
the Hybrid-Electric Powerplant (HEP), shown in
Fig. 4 [19], that is a main aspect in this research.
Each component in the HEP, excluding the In-
ternal Combustion Engine (ICE) and Fuel com-
ponents which are already represented inside the
Aerosonde UAV block, is modelled by a module
inside the EM&G block, and these modules are
described below.

The Electric Motor (EM) module is based on
a Plettenberg HP220/25 motor with constant 18V
input [20]. The data values for HP220/25 is en-
tered and used in the module as a Look-Up Ta-
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Fig. 4 Parallel Aircraft Hybrid-Electric Power-
plant (HEP) Schematic.

ble (LUT), with linear interpolation used between
data values. The EM module acts as a supple-
mentary powerplant to the ICE when required, or
as the sole powerplant when the aircraft is flying
in Motor-only mode.

The Generator (GEN) module is also based
on a Plettenbery HP220/25 motor, with GEN be-
ing functionally the “reverse” of EM. Its only
function is to provide the current to charge the
battery when extra torque is available in the
propulsion system (i.e. from the ICE).

The Battery (BAT) module uses the data of
two Air Thunder 5000mAh 6-cell Lithium Poly-
mer (Li-Po) Battery Pack [21] in series to obtain
the required output voltage for the EM. When the
BAT module is in use, its State of Charge (SOC)
parameter is monitored as indication whether it
can still provide voltage to the EM, or if charging
is required.

The Aircraft Electrical Services (AES) in-
clude all electronics which draw current from
the BAT module, i.e. onboard avionics, camera,
etc. Currently, only avionics have been taken into
consideration in the implementation of this mod-
ule.

The Transmission (Tx) module is assumed to
be a Continuous Variable Transmission (CVT)
which has a gear ratio range from 0.455 to 2.47
[22].

Additionally, a Hybrid Propulsion Controller
(HPC) is also included in the EM&G block. This
controller enables the switching of HEP opera-

Fig. 5 The Strategy for the Switching of Operat-
ing Modes.

Fig. 6 Power (red) and torque (blue) values for
the IOL.

tion modes according to the strategy represented
in Fig. 5.

The controller utilises the Ideal Operating
Line (IOL) method of operating the ICE in order
to achieve the best performance while consuming
the least amount of fuel possible [23]. Using the
data values provided as part of the AerosondeTM

model in the AeroSimn Blockset, an analysis of
the AerosondeTM was carried out to obtain the
IOL for the ICE, which is shown in Fig. 6.

4.1.2 Flight Planner Block

The Flight Planner block, developed at QUT,
calls a MATLAB R© function which calculates the
necessary bearing/yaw adjustment from the cur-
rent position of the aircraft to reach a desired
waypoint according to a pre-specified list of way-
points. The waypoints are listed in the latitude,
longitude and altitude coordinates. This bear-
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Fig. 7 Mission Profile (not to scale).

ing/yaw adjustment, along with other parameters,
are passed to the Flight Control block.

4.1.3 Flight Control Block

The Flight Control block obtains output from the
Flight Planner block and uses PID and PI con-
trollers to compute the values for aircraft con-
trols. These values for the control inputs to the
Aerosonde UAV block to complete the loop for
unmanned aircraft operations.

5 Practical Test Cases

Practical test cases were set up to demonstrate
the capabilities of the HAPMOEA optimiser in
the area of UAS mission planning. The follow-
ing sections describe the process.

5.1 Mission Scenario

In order to demonstrate the capabilities of HAP-
MOEA in HPUAS mission planning, a baseline
mission scenario was constructed. This mission
scenario includes basic UAS operations such as
Climb, Cruise, Descent and Loiter, and follows
the mission profile in Fig. 7.

A long-distance mission scenario with a total
distance of approximately 400km has been con-
structed. This realistic mission scenario utilises
GPS waypoints located in central Queensland,
Australia, indicated in Fig. 8.

However, the waypoints which the HPUAS
has to pass through are not definite and may be
adapted to achieve the optimisation objectives de-
fined above. An example of such adaptation of
mission waypoints is demonstrated in Fig. 9.

Fig. 8 Baseline Mission Scenario with GPS
Waypoints in Central Queensland, Australia (im-
age generated using GoogleTM Earth.

Fig. 9 Example Comparison of a Set of Opti-
mised Waypoints (navy) for Minimum Fuel and
Flight Time to the Baseline Flight Mission (light
blue) (not to scale).
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5.2 Problem Definition

This multi-objective problem considers the way-
point optimisation for a HPUAS mission. The
objectives considered are the minimisation of
fuel consumption and the time required to ex-
ecute the mission. The HPUAS baseline flight
mission is defined using the GPS waypoints
shown in Fig. 8.

It needs to be noted that the leg from Way-
points 6 to 8 in the mission is the ‘loiter’ phase, as
can be seen from Fig. 7, during which some spe-
cial mission requirements are carried out. There-
fore, it is desired that these waypoints remain as
specified and not be involved in the optimisation
process.

5.3 Definition of Design Variables

The design variables used for HPUAS mission
waypoint optimisation are the locations of the
waypoints. The flight mission is made up of a
series of waypoints and each waypoint is defined
by its coordinates: latitude, longitude and alti-
tude. The entire mission will be passed through
the optimisation process in order to determine a
set of waypoints which whill achieve the optimi-
sation objectives.

In this paper, South latitudes and East longi-
tudes are taken as positive values, while North
and West as negative. This convention was cho-
sen for convenience as the waypoints considered
for the simulation are located in Australia. Also,
the latitudes and longitudes are measured in radi-
ans, and the altitudes in metres.

5.4 Definition of Fitness Objective Functions

The fitness functions are defined as the minimi-
sation of fuel consumption, FC, and the time re-
quired to execute the mission, Treq:

min( f1) : f1 = FC (2)
min( f2) : f2 = Treq (3)

5.5 Definition of Constraints

The process of optimising HPUAS mission way-
points takes into consideration of a number of
constraints, namely the upper and lower bounds
of waypoint coordinates and physical constraints.

5.5.1 Upper and Lower Bounds of a Waypoint

The upper and lower bounds of a waypoint de-
fines a set of values which a candidate waypoint,
the possible coordinates to be passed through
during the mission, is selected. The genera-
tion of a set of candidate waypoints forms a key
component of the optimisation process. These
upper and lower bounds of each coordinate -
namely latitude, longitude and altitude - are de-
fined taking into consideration the mission re-
quirements as well as airspace and class restric-
tions. The chosen set of waypoints is then used in
the ‘solver’ component of the optimisation pro-
cess to determine the fitness function of this par-
ticular set of waypoints.

The upper and lower bounds for altitude, in
metres, is calculated simply using a specified al-
titude margin, ∆alt. In this paper, the value of
∆alt was chosen to be 100m.

On the other hand, defining the bounds for
latitude and longitude of a waypoint is more com-
plex. This is due to the fact that, realistically,
when an aircraft is flying, the distance between
two waypoints is not the straight line route, but
the line vertically above the straight line route
following the earth’s surface, known as a ‘great
circle’. Therefore, spherical-triangle calculation
is used for range- and bearing-related computa-
tions along a great circle [24], such as those re-
quired for defining the bounds for latitude and
longitude of a waypoint. In this paper, the up-
per and lower bounds of the latitude and longi-
tude are defined and calculated as 10% of the
distance between the waypoint and the preceding
waypoint, found using a rearranged form of the
Haversine Formula [25].
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5.5.2 Physical Constraints

Several physical constraints were incorporated
into the ASM, shown in Fig. 3, to make the
simulation model more realistic. The majority of
these constraints were implemented as part of the
Flight Control block in the ASM, and these are:

• The throttle control must be within a range
from 1% to 100% (0.01 ≤ TC ≤ 1).

• The rudder deflection must be between
−20◦ and +20◦ (−20◦ ≤ δr ≤+20◦).

• The aileron deflection must be between
−10◦ and +10◦ (−10◦ ≤ δa ≤+10◦).

• The elevator deflection must be between
−20◦ and +20◦ (−20◦ ≤ δe ≤+20◦).

• The airspeed is controlled at 20m/s when
the aircraft at level flight and climbing, and
increased to 30m/s when descending.

All these constraints are applied in the ASM
and are part of the simulation process.

5.6 Implementation Design and Optimisa-
tion Rationale

In the implementation of the HPUAS mission
waypoint optimisation, the HAPMOEA opti-
miser is set up with only one layer. This layer has
a population size of 10, two parents in recombi-
nation, a buffer length of 12 and a tournament-
in-buffer ratio of 2.0 (refer to §3). The definition
of the lower and upper bounds vectors, lb and ub
respectively, are calculated as per §5.5.1.

The HAPMOEA optimiser calls the ASM,
using a fundamental sample time, ∆t, set at 0.1
seconds, to evaluate each set of candidate way-
points which has been generated in the process.
The outputs of the ASM are the fuel consumption
over the mission duration and the time required to
execute the mission. These form the objectives
which are to be minimised by the HAPMOEA
optimiser.

The optimisation rationale is displayed in Fig.
10.

Fig. 10 The HAPMOEA Optimisation Rationale
Flow Diagram.

# Pareto
Front
Members

Fuel Con-
sumption
(kg)

Mission
Time Re-
quired
(hrs)

Time
Taken
(hrs)

1 Pareto
Front
Member

0.703125 6.023 96

Baseline 0.639029 6.55 -

Table 1 Table of Statistics for Multi-Objective
Optimisation.

5.7 Optimisation Results and Post-
Processing of Optimal Solutions

The stopping condition used in the HAPMOEA
optimiser in the HPUAS mission waypoint opti-
misation is a total runtime of 96 hours on one ma-
chine only. Table 1 shows the run statistics and
the fitness values for a selected number of Pareto
front members. This table is a placeholder only,
for the time being, as results are still being com-
piled.

6 Conclusions

The basic conepts of a hierarchical, asyn-
chronous parallel multi-objective EA used to
solve the problem of optimising a Hybrid UAS
mission were presented in this paper. Even
though more computationally expensive, an EA
optimiser can provide an UAS mission plan-
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ner extended benefits in terms of improved en-
durance and/or range, and extra payload capac-
ity. The method can be used as an alternative
option to satisfy some of the needs for robust
multi-objective and multidisciplinary design op-
timisation problems. The method is easily cou-
pled, particularly adaptable, easily parallelised,
and required no gradient of hte objective func-
tion(s). The methodology is integrated in a single
framework that allows:

• Solving of single- and multi-objective,
non-linear, deceptive, discontinuous, and
multi-model problems;

• Incorporation of different game strategies -
Pareto, Nash, Stackelberg;

• Implementation of multi-fidelity ap-
proaches;

• Parallel computations; and
• Asynchronous evaluations.

Further extensions of the ASM, and the de-
veloping and conduction of flight experiments
with an UAS are presently under investigation.
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