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Abstract

Flight Testing is the best means to determine the
flying qualities of aircraft and demonstrate com-
pliance to airworthiness regulations. Further-
more, data recorded in flight can also be used
to create mathematical models of the aircraft for
further testing and development. These models
consist of system parameters known as stabil-
ity and control derivatives, which are determined
from flight and wind tunnel tests by parameter es-
timation techniques. Aircraft system identifica-
tion as this field is known can be applied to: cre-
ate models and data sets for aircraft simulators,
design flight control laws for stability augmenta-
tion systems, and more recently evaluate UAV’s.
Incentives to perform such a task in real-time in-
clude: developing fault-tolerant aircraft architec-
tures and improved flight test efficiency due to
rapid data analysis. This paper addresses the is-
sue related to smoothing and differentiating the
necessary data for system identification under the
constraints of post-manoeuvre performance. Ex-
amples of determining the reduced order models
for the SPPO mode of the Cranfield University
Jetstream-31 (G-NFLA) and a simulated UAV
are presented.

Nomenclature

E Expectation operator
I Identity matrix
M Pitching moment

N Noise model
VTAS True Airspeed, (kts)
W Total normal velocity (m/s)
X Matrix of regressors
Y Signal model
b Wing span, (m)
b(k) Fourier sine series coefficients
fc Cut-off frequency (Hz)
g Signal time history
h Altitude, (ft)
k Discrete frequency index
n Number of discrete points
p Roll rate, (deg/s)
q Pitch rate, (deg/s)
r Yaw rate, (deg/s)
y Observation vector
z Measurement vector
0 Null matrix
s Standard error

Greek letters

α Angle of attack, (deg)
β Angle of sideslip, (deg)
ǫ Equation error
η Elevator deflection, (deg)
θ Parameter estimate
φ(k) Wiener filter weighting

Superscripts

T Transpose
ˆ Estimate
˙ Derivative with respect to time
◦ Degrees
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Abbreviations

DCC Data compatibility check
DR Dutch roll
EE Equation error
FT Flight test (ing)
Global Global Fourier smoothing method
Local Local polynomial smoothing method
MAC Mean aerodynamic chord
MTOW Maximum take-off weight
PID Parameter identification
SNR Signal to noise ratio
SPPO Short period pitching oscillation
SysID System identification
c.g Centre of gravity

1 Introduction

During Flight Testing (FT) significant time is
dedicated to determining an accurate represen-
tative dynamic model of the test aircraft. Such
models can be used to validatea priori dynamic
characteristics that have been established using
wind tunnel testing and Computational Fluid Dy-
namics (CFD) to predict the aircraft’s behaviour
during the initial design stage. However, in the
field of small UAVs their sometimes unconven-
tional and complex shapes may lead to a more
feasible option being to determine the dynamic
characteristics from the first test flight. There-
fore, recent work at Cranfield by Carnduff [1]
has concentrated on developing suitable System
Identification (SysID) techniques for use with
UAVs.

The driving interest behind developing real-
time SysID for aircraft stems from the underlin-
ing need to maximise useful information about
the system’s behaviour during a given period of
time. Demand for such a capability is neces-
sary to minimise the duration of the FT cam-
paign as recorded data can be analysed by an
Engineer post-manoeuvre to determine if a sat-
isfactory data set has been recorded. Another
requirement for accurate model identification re-
lates to the pertinent issue of in-flight adaptive
and reconfigurable flight control. Research into
improved fault-tolerance has also been central to

the development of online aircraft SysID; exam-
ples of which include Chandleret al [2] and Ward
et al [3] that address the complex issue of dealing
with data from non-manoeuvering flight. Other
uses address the the need to develop good aero-
dynamic databases for flight simulator models,
[4], however, such tests tend to be performed to
demonstrate a proof-of match and therefore do
not depend on a real-time capability.

1.1 Aircraft System Identification

A brief explanation of key points relating to the
process of aircraft SysID will now follow, an in-
depth explanation can be found in Klein [5]. The
conventional method is shown in figure 1, the
process requires,a priori knowledge of the air-
craft and then follows five distinct steps: exper-
iment design, Data Compatibility Check (DCC),
model structure determination, parameter estima-
tion and model validation.

A priori 

knowledge Design of experiment

Compatability check

Model structure

determination

Parameter &

State estimation

Model verification

Measured

Input-output data

Initial estimates

Different set of 

data

Fig. 1 An overview of the SysID process, [6].

The experiment design relates to the type of
input used to perturb the aircraft from the steady
level flight condition, defined astrim. Following
this the DCC processes the data to estimate gross
errors, data drop-outs and ensure kinematic con-
sistency. In certain cases the model structure for
the aircraft is then determined from the data, the
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model is then populated with the estimated model
parameters and states. Finally, the representative
model is validated by using a separate data set
not previously used during the model identifica-
tion process. Should a validation fail, an alterna-
tive input is then selected and the identification
process repeated (represented by the dotted line
in figure 1). In the research presented the data
was already known to be compatible therefore
the DCC was ignored and the SysID process pro-
ceeded directly to the Parameter Estimation (PE)
step. Usinga priori knowledge of the aircraft
reduced order models for the SPPO mode were
postulated. Such simplifications enabled the in-
vestigation to focus on the effect of noise in the
measured data on the parameter estimation step.

1.2 Paper outline

The aim of the current work is to develop a
portable real-time tool-box capable of perform-
ing post-manoeuvre parameter estimation for
postulated reduced order SPPO, Dutch Roll and
Roll mode models. The primary benefits of cre-
ating the portable tool-box will include: a reduc-
tion in time taken to process/analyse data and a
reduction in costs of having to repeat FT points
(FT data is made available on an opportunis-
tic basis when an aircraft is flown for research
purposes). In order to achieve this reliable low
noise data needs to be obtained, however, this is
dependent on the quality of the instrumentation
used and the amount of atmospheric turbulence
present during the test. As a result an investiga-
tion into suitable filtering/smoothing techniques
before differentiation under the constraints of
post-manoeuvre performance was conducted us-
ing methods developed and presented by Klein
and Morelli [7]. Data from two sources were
analysed; firstly flight test data from the Univer-
sity Jetstream-31 (G-NFLA) which operates as
a flying classroom, and secondly, data from the
Aerosonde UAV in the Simulink simulation en-
vironment. This paper is divided into 5 sections,
section 2 outlines the methodology implemented
to process and collect the data, section 3 presents
the Jetstream SysID results followed by discus-

sion, the Aerosonde results and discussion then
follow in section 4 before the paper is concluded
with the key findings and future work outlined in
section 5

2 Method

A key aspect in accurate SysID is the quality of
the recorded data. Primary contributors to signal
noise include: instrument and sensor errors, poor
instrument isolation from aircraft vibrations, and
atmospheric turbulence. In the case of smaller
UAV’s not all the required parameters can be
recorded accurately or at all [8]. In addition, an
appropriate choice of excitation input is also nec-
essary to provide a sufficient signal capable of be-
ing detected above the noise. For the Equation
Error (EE) parameter estimation technique angu-
lar accelerations such aṡp, q̇ and ṙ are needed
and are usually determined by differentiation of
the measured angular ratesp, q andr [1].

Before progressing the differences between
filtering and smoothing should be outlined [7].
Filtering, at a given point in time, uses the pre-
vious data points up to and including the current
point to remove noise from a signal. In contrast
smoothing is performed using future and past
data points along with the current data point and
therefore can only be performed once the com-
plete data set is available. Filtering is the only
option for strict real-time applications. However,
in the case of post-manoeuvre data processing the
full data set is available and smoothing may be
performed.

2.1 Local polynomial fitting

An analytical time domain method for obtaining
smoothed derivatives is proposed by Klein and
Morelli [7] where a local quadratic least squares
fit of the data points is differentiated. Each data
point along with the four nearest neighbouring
ones are used to form the local quadratic. How-
ever, at the end points there are insufficient data
points, which require the equation to be modified
accordingly. The equations to be solved are:
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z1 =
1

70∆t
[−54z1 + 13z2 + 40z3 + 27z4 − 26z5]

z2 =
1

70∆t
[−34z1 + 3z2 + 20z3 + 17z4 − 6z5]

z3:n =
1

10∆t
[−2z1:n−4 − z2:n−3 + z4:n−1 + 2z5:n]

zn−1 =
1

70∆t
[34zn − 3zn−1 − 20zn−2 − 17zn−3

+ 6zn−4]

zn =
1

70∆t
[54zn − 13zn−1 − 40zn−2 − 27zn−3

+ 26zn−4]
(1)

where∆t is the sampling interval in seconds, and
n is the number of data points, equal to the length
of the data to be differentiated.

2.2 Global Fourier smoothing

An alternative method to the local time domain
smoothing and differentiation is the more ad-
vanced automatic global Fourier smoothing de-
veloped by Morelli [9], which analyses the com-
plete data set in the frequency domain before dif-
ferentiation. Fourier sine series describing the
measured data are calculated and from analysis of
the principal spectral components the determinis-
tic component of the signal can be distinguished
from that of the random noise. In order to smooth
the high frequency noise automatically analytical
models of the signal and noise need to be deter-
mined. These are necessary to determine the op-
timal filter known as a Wiener filter. Smoothing
is then achieved by the product of the data and
filter. Once obtained the smoothed data is dif-
ferentiated. For the purposes of clarity only an
overview of the automatic global Fourier smooth-
ing equations are presented, the interested reader
is directed to Morelli [9] for further information
regarding the analytical signal and noise models.

The Fourier transform assumes that the time
history is periodic, therefore the start and end
points of the data need to be removed by sub-
tracting a linear trend from the data,z(i) before
reflecting the data about its origin:

g(i) = z(i)− z(1)− (i− 1)

[

z(n) − z(1)

n − 1

]

(2)

wherei = 1, 2 ... n. The vector can then be ap-
proximated by a Fourier sine series as it is an odd
function of time without the end point disconti-
nuities:

ĝ(i) =
n−1
∑

k=1

b(k) sin

[

k

(

π
i − 1

n − 1

)]

(3)

whereb(k) are the Fourier sine series coefficients
given by:

b(k) =
2

n − 1

n−1
∑

k=2

g(i) sin

[

k

(

π
i − 1

n − 1

)]

(4)

where the discrete frequency index,k =
1, 2 ... n − 1. The Wiener filterφ(k) is obtained
from analytical models of the signal,Y and noise,
N , of the Fourier sine series coefficients [9]:

φ(k) =
Y 2(k)

Y 2(k) + N2(k)
(5)

A example showing plots for the signal and noise
models used to determine the cut-off frequency,
fc is illustrated in figure 2. The shape of the fil-
ter, Φ(k) in figure 3 is given by equation 5, the
location of the inflection atΦ = 0.5 is dependent
on the data and is equal to the cut-off frequency,
fc. The Fourier smoothed signal is then obtained
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Fig. 2 Signal spectral content example

by multiplying the Wiener filter and Fourier sine
series:

ĝs(i) =
n−1
∑

k=1

φ(k)b(k) sin

[

k

(

π
i − 1

n − 1

)]

(6)
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Fig. 3 Wiener filter example

finally the linear trend removed from the data is
restored and the Fourier smoothing is complete:

zs(i) = ĝs(i)+z(1)+(i−1)

[

z(n) − z(1)

n − 1

]

(7)

Now the smoothed signal can be differentiated
with respect to time, yielding:

ż =

[

z(n) − z(1)

n − 1

]

+
n−1
∑

k=1

φ(k)b(k)

(

kπ

n − 1

)

cos

[

kπ

(

i − 1

n − 1

)]

(8)

2.3 Equation Error method

In considering the real-time nature of the pro-
posed tool box, methods that are iterative such as
the Maximum Likelihood estimation technique
[10] need to be avoided. A non-iterative tech-
nique that has been successfully applied to FT
data is the Equation Error (EE) technique that es-
timates the parameters by using an ordinary least
squares regression, [5]. Re-arranging the equa-
tions of motion into state space form, in which
dependent variablesy are equal to the product of
the unknown parameters,θ and their regressors
X yields:

y(t) = θ0+θ1X1(t)+θ2X2(t) . . .+θnXn(t) (9)

In order to account for the error, equation 9 is
modified to become the measurement equation:

z(i) = y(i) + ǫ(i)

= θ0 +
n

∑

i=0

θjXj(i) + ǫ(i), i = 1, 2 ... n

(10)

placing equation 10 in matrix form:

z = Xθ + ǫ (11)

and assuming that the error,ǫ can be represented
as white noise with zero mean and variance:E[ǫ]
= 0 andE[ǫǫT ] = σ2 I allows the least squares
approach to be applied. Therefore, re-arranging
equation 11 yields the unknown parametersθ,
[11]:

θ̂ = (XT X)−1XT z (12)

2.4 Reduced order models

Froma priori knowledge, the standard rigid body
equations of motion can be used to formulate a
model which should adequately describe the air-
craft dynamics. One assumption when using such
models is that the longitudinal and lateral dynam-
ics can be decoupled. The following body axes
SPPO model taken from Cook [12] was used for
this study:

[

Ẇ

q̇

]

=

[

zw zq

mw mq

] [

W

q

]

+

[

zη

zη

]

[

η
]

(13)

2.5 Signal to noise

When dealing with experimental data it is useful
to know the Signal to Noise Ratio (SNR), which
provides quantification of how much a signal has
been corrupted by noise. The ratio is given by the
logarithmic equation:

SNR = 20 log
10

(
Psignal

Pnoise

) (14)

wherePsignal andPnoise represent the root mean
square power values:

Px =

√

xT
× x

n
(15)
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wherex is the data either for the deterministic
part of the signal or the noise andn is the length
of the data.

2.6 Excitation inputs

Several types of inputs have been developed in
order to sufficiently excite the aircraft dynamics
[13], [14]. The input used to excite the Jetstream
was an impulse. Such a manoeuvre is used to
demonstrate the SPPO mode and does not con-
sist of a typical SysID input because it excites a
limited range of frequencies. However, large data
sets of the Jetstream aircraft are readily available.
Three inputs that are routinely used for system
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Fig. 4 Sample types of excitation inputs
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Fig. 5 Aerosonde model validation input

identification include: the doublet, a ‘3211’ and
a frequency sweep, these are shown in figure 4
and were applied to the Aerosonde UAV. Further-
more, as the Aerosonde example was a simula-
tion this enabled a perfect data set to be repro-

duced, which poses a problem for model valida-
tion. However, by using a different input such as
the boxcar input (figure 5) the pitch rate response
from simulation could be compared with the pre-
dicted pitch rate responses from the three models
determined using the different excitations.

3 Jetstream investigation

Fig. 6 Cranfield’s Jetstream-31 G-NFLA

The BAe Jetstream-31 is a successor to the
Handley Page HP-137 designed in 1965 as a pas-
senger aircraft capable of carrying 18 passen-
gers at a cruising speed of 230 kts (at 25,000ft)
with a maximum range of 680 nm (1260 km) and
MTOW 6,950 kg. In its current guise (figure 6)
the aircraft provides Cranfield University with an
instrumented flying laboratory used to demon-
strate the principles of flight dynamics to stu-
dents. The aircraft’s role as a flying laboratory re-
quires that excitation inputs suitably demonstrate
the dynamic modes, in the case of the SPPO
mode an impulse input is used. However, due
to the fact that copious data records are read-
ily available the Jetstream is a useful source for
the purposes of investigating aircraft SysID. On-
board instrumentation such as the inertial mea-
surement unit, accelerometers andα-vane pro-
vide the required regressors for the EE method
(section 2.3). Furthermore, the recorded data is
pre-filtered onbord by a hard-wired filter (a low
pass second order butterworth filter) with a cut-
off frequency of 8Hz.
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3.1 Results Jetstream

The results presented below are for the follow-
ing flight condition: VTAS = 173 kts (89 m/s),
altitude = 6080 ft (1853.2 m) and a c.g. of 23
% MAC. Applying the global Fourier smoothing,
the Fourier series for the pitch rate are shown in
figure 7 along with the signal and noise models
required to calculate the Weiner filter (equation
5). The SPPO model parameter estimates for
both methods are presented in table 1. Finally,
the pitch rate response for the two models’ vali-
dated using a seperate set of data are included in
figure 8.
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Fig. 7 Signal spectral content: Jetstream impulse

θ̂ Global s Local s

zw -0.232 0.172 -0.862 0.065
zq 24.290 4.411 79.525 2.084
zη -17.550 5.274 -0.831 3.210
mw -0.054 0.010 -0.071 0.011
mq 0.445 0.294 0.381 0.345
mη -2.014 0.359 -5.072 0.685

Table 1Derivatives and standard errors: Jetstream

3.2 Discussion Jetstream

Referring to figure 7 the frequency content in the
measured data for the impulse elevator deflec-
tion is shown. The high peaks present at low
frequencies (0 - 0.1Hz) indicate that the exci-
tation was insufficient to provide large Fourier
coefficients over a wider frequency bandwidth.
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Fig. 8 Pitch rate response: Jetstream validation

This resulted in a low cut-off frequency, equal to
0.48Hz. Which excluded several smaller peaks
that occured up to approximately 1Hz.

Comparing the estimated parameters for both
methods (see table 1), significant differences oc-
cur for the values ofzq, zη andmη parameters.
Furthermore, themq estimates were both posi-
tive, explaining the predicted models’ oscillatory
behaviour this may have been caused due to dif-
ferentiation of thew and q data. However, the
local method’s predicted pitch rate showed light
damping and can be explained due to the greater
magnitude ofzw. Identified models from both
smoothing techniques were unable to capture the
true aircraft SPPO dynamic response. The SNR
value for the pitch rate response was calculated
to be 6.20 as opposed to the higher value of 13
for the Aerosonde discussed in the next section.
Therefore, some of the error for the parameter es-
timates of the Global smoothing method can be
attributed to the low signal information content
due the use of an impulse excitation. Previous
work has shown that replacing differentiation of
the measured variablew with ẇ results in a better
model identification [8].

The validation of SysID results, produced
poorly damped responses for both smoothing
methods (figure 8). The Global method response
exhibited a highly oscillatory response. In com-
parison, the Local method better predicted the
initial response (T = 3 to 4 s), before exhibiting a
lightly damped oscillation.
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4 Aerosonde investigation

The Aerosonde UAV is a small aircraft (b
= 2.9 m) designed primarily for weather-
reconnaissance and remote-sensing missions, it
has a twin tail boom with a rear mounted pusher
propeller configuration with a speed range of 40
- 60 kts and a MTOW of 15kg (figure 9). Using
the simulation environment enables further anal-
ysis to be focused on specific aspects, such as
the effect of varying perturbation inputs. There-
fore, the effect of varying the input excitation for
representative sensor noise was investigated us-
ing a Simulink model. The flight condition used
was VTAS = 44.7 kts (23 m/s), altitude = 3281
ft (1000 m) and a c.g. of 15 % MAC. Standard
white noise was generated using the associated
Simulink block and added to the required regres-
sor measurements. Noise power was set at: gyro-
scope = 2.75×10−6, accelorometer = 2.5×10−4,
α and β-vanes = 2×10−8 and pitot, (VEAS) =
1×10−6. The three types of excitation inputs de-
scribed in section 2.6 were applied to the elevator.

Fig. 9 The Aerosonde UAV [15]

4.1 Results Aerosonde

Strip plots of the pitch rate and elevator input data
used in the analysis for the three different cases
are shown in figures 10 to 12 with theirtrim val-
ues removed. The Global smoothing method’s
Fourier sine coefficients, signal and noise mod-
els are plotted against frequency in figures 13 to
15. The parameter estimates for both methods are

shown in tables 2 to 4. Using the Linmod Matlab
function linearised parameters for the Aerosonde
Simulink model were extracted for comparison
with the estimated parameters, and these are in-
cluded in the first column of each table. Finally,
the validation pitch rate responses are presented
in figures 16 to 18.
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Fig. 11 Aerosonde ‘3211’
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Fig. 12 Aerosonde frequency sweep
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Fig. 13 Signal spectral content: Aerosonde doublet
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Fig. 14 Signal spectral content: Aerosonde ‘3211’

0 0.5 1 1.5 2 2.5 3
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Frequency (Hz)

F
ou

rie
r 

si
ne

 s
er

ie
s 

b k

 

 

b
k

Signal model
Noise model

Fig. 15 Signal spectral content: Aerosonde fre-
quency sweep

θ̂ Lin Global s Local s

zw -4.115 -0.059 0.139 -3.940 0.303
zq 24.30 0.356 0.330 19.623 0.945
zη -2.343 0.188 0.898 -2.890 2.365
mw -4.289 -3.0e−4 0.001 -5.116 0.170
mq -6.027 8.0e−4 0.001 -3.354 0.668
mη -32.45 0.002 0.004 -23.790 1.752

Table 2 Derivatives and standard errors: Aerosonde
doublet

θ̂ Lin Global s Local s

zw -4.115 -3.048 0.456 -3.856 0.179
zq 24.30 16.854 1.670 20.652 0.663
zη -2.343 -1.227 3.429 -2.955 1.612
mw -4.289 -4.067 0.268 -4.515 0.151
mq -6.027 -1.782 0.882 -4.121 0.594
mη -32.45 -17.359 1.981 -25.592 1.521

Table 3 Derivatives and standard errors: Aerosonde
‘3211’

θ̂ Lin Global s Local s

zw -4.115 -0.037 0.054 -3.847 0.083
zq 24.30 0.193 0.109 20.640 0.252
zη -2.343 0.029 0.333 -2.782 0.600
mw -4.298 0.091 0.119 -4.587 0.028
mq -6.027 0.005 0.388 -5.555 0.104
mη -32.45 0.799 0.891 -30.620 0.254

Table 4 Derivatives and standard errors: Aerosonde
Frequency sweep
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Fig. 16 Pitch rate response: Aerosonde doublet
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Fig. 17 Pitch rate response: Aerosonde ‘3211’
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Fig. 18 Pitch rate response: Aerosonde fre-
quency sweep

4.2 Discussion Aerosonde

Analysing the Global method results, the spectral
frequency plots show that large Fourier sine co-
efficients are present at low frequencies (0 - 0.1
Hz) for the doublet and frequency sweep. How-
ever, such large coefficients are not visible in the
‘3211’ plot, figure 14. As a result thefc deter-
mined using the Global method for the doublet

and frequency sweep occurs at 0.67 Hz and 0.48
Hz respectively. In contrast, the ‘3211’fc equals
2.43 Hz, resulting in more information from the
measured signal being recovered. Comparing the
SNR values for the pitch rate data, the doublet
and ‘3211’ values were close, 14.0 and 13.46 re-
spectively with the frequency sweep yielding a
lower value of 5.11. However, the large dou-
blet SNR did not produce good results due to
the large initial Fourier coefficient peak (figure
13) responsible for the lowfc. On comparison
of the parameter estimates under the Global col-
umn with the linearised values both the doublet
and frequency sweep parameters (tables 2 and 4)
are significantly smaller than the reference lin-
earised values. The ‘3211’ parameters follow the
linearised values well, with distinguishable dif-
ferences forzw, zq, mq andmη. Furthermore, the
corresponding pitch rate validation plots for the
doublet and frequency sweep underline the effect
of the Global method selecting too low afc for
the doublet and frequency sweep.

Referring to the parameter estimates listed
under the Local column and comparing them
with the linearised model values the doublet and
‘3211’ parameters are of the same magnitude and
sign. However, the closest match is achieved by
the frequency sweep parameter estimates along
with the lowest overall standard errors, high-
lighted by the pitch rate response figure 18. The
largest differences between parameter estimates
were the same for the three inputs and occured for
the zq, mq andmη parameter estimates. It must
be stated that some of the differences between the
estimated and linear parameters can be accounted
for by the fact that the linearised model has 6 de-
grees of freedom in comparison to the reduced
order model.

Overall the ‘3211’ method was found to be
best suited to sufficiently excite the Simulink
model over a wider frequency bandwidth. In ad-
dition, the Local smoothing method provided the
most consistent results for the three types of in-
puts used.
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5 Conclusions and Further work

An investigation into the performance of two
different smoothing techniques applied to flight
test and simulated data before differentiation has
been performed. Using the EE method parame-
ter estimates for the reduced order SPPO models
for the BAe Jetstream-31 aircraft and a simulated
Aerosonde UAV were obtained.

For the global Fourier smoothing method the
results were affected by the type of input used
to excite the aircraft, which changed the signal
to noise ratio. In addition, the best results were
achieved when the perturbation to the aircraft
produced low Fourier coefficients at low frequen-
cies. This highlighted the method’s sensitivity to
large Fourier peaks which subsequently effected
the value offc. Overall, it was found that the lo-
cal polynomial smoothing method provided the
best results for both aircraft. For the simulation
case the ‘3211’ excitation input provided com-
parable results between the two methods, as it
enabled frequency content to be spread across
the bandwidth. However, the closest match was
achieved using the frequency sweep and the Lo-
cal method.

Following the current findings, the Local
polynomial method would be best suited for the
development of a post-manoeuvre tool-box using
differentiation to determine the regressors. How-
ever, previous work has been performed using re-
construction as an alternative to overcome the ad-
ditional error incurred when differentiating. Fur-
thermore, analysis of the two smoothing tech-
niques could be expanded to consider the lateral
modes: Dutch Roll and Roll. Finally, having
gained an understanding for the near real-time
constraints future work will need to address the
issue of a real-time application, where smooth-
ing is not possible and needs to be replaced by
filtering.

Acknowledgments

This research is funded by a CASE award sup-
ported jointly by EPSRC and BAe Systems. The
author would like to thank Dr A. K. Cooke for

his supervision and approachability and Dr S.
D. Carnduff for his time and informative discus-
sions.

References

[1] S. D. Carnduff. “System identification of Un-
manned Aerial Vehicles”. Phd thesis, Cranfield
University, Cranfield, Bedfordshire, 2008.

[2] M. Prachter P.R.Chandler and M. Mears. “Sys-
tem identification for adaptive and reconfig-
urable control”. Journal of Guidance, Control,
and Dynamics, Vol 18 (3):pp 516–524, May -
June 1995.

[3] J.F. Monaco D. G. Ward and M. Bodson. “De-
velopment and flight testing of a parameter
identification algorithm for reconfigurable con-
trol”. Journal of Guidance, Control and Dynam-
ics, Vol 21 (6):pp 948–956, November - Decem-
ber 1998.

[4] R. Jategaonkar.“Flight Vehicle System Identifi-
cation: A Time Domain Methodology”. AIAA,
Reston, Virginia, 2006.

[5] V. Klein. “Estimation of aircraft aerodynamic
parameters from flight data”. Progress in
Aerospace Sciences, Vol 26 (1):pp 1–77, 1989.

[6] V. Klein. “A review of system identification
methods applied to aircraft". Technical Report
Joint Institute for Acoustics and Flight Sciences
Report: N83 33901, The George Washington
University, 1983.

[7] V. Klein and E. A. Morelli. “Aircraft System
Identification: Theory and Practice”. AIAA,
Reston, Virginia, 2006.

[8] P-D. Jameson and A.K. Cooke. “Devloping sys-
tem identification for uavs”. In25th Bristol
International UAV Systems Conference, Bristol,
United Kingdom, 12 - 14 th April 2010.

[9] E. A. Morelli. “Estimating noise chracteris-
tics from flight test data using optimal fourier
smoothing”. Journal of Aircraft, Vol 32 (4):pp
689–695, July - August 1995.

[10] K. W. Iliff. “Parameter estimation for flight ve-
hicles”. Journal of Guidance, Control, and Dy-
namics, Vol 12:pp 609–622, September - Octo-
ber 1989.

[11] L. Ljung. “System Identification: Theory for

11



PIERRE-DANIEL JAMESON

the user 2nd editon”. Prentice Hall PTR, New
Jersey, 1999.

[12] M. V. Cook. “Flight Dynamic Principles : A
linear systems approach to aircraft stability and
control” . Elsevier, Amsterdam, 2007.

[13] J. A. Mulder. “Design and evaluation of dy-
namic flight test manoeuvers”. Phd thesis, Delft
University of Technology, Delft, 1986.

[14] E. A. Morelli. “Practical input optimisa-
tion for aircraft parameter estimation experi-
ments”. Phd thesis, George Washington Uni-
versity, Washington, DC, 1990.

[15] Photo Aerosonde, Atlantic 1998, Wallpaper free
for common use, taken from Aerosonde Pty Ltd.
www.aerosonde.com, 11/04/2005.

6 Copyright Statement

The author confirms that he, and/or his company
or organisation, hold copyright on all of the orig-
inal material included in this paper. The author
also confirms that he has obtained permission,
from the copyright holder of any third party ma-
terial included in this paper, to publish it as part
of his paper. The author confirms that he gives
permission for the publication and distribution of
this paper as part of the ICAS2010 proceedings
or as individual off-prints from the proceedings.

12


