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Abstract 

To improve A/C safety and autonomy, the early 
detection of unexpected events likely to happen 
during flight is of primary importance for 
handling the Flight Control System and 
providing enhanced cueing of the envelope 
limits to the pilot. The approach proposed for 
achieving this on-line monitoring relies on a 
real time parameter identification technique. 
Owing to its low computational cost and its 
robustness regarding measurement noises, an 
output error method in the frequency domain is 
developed to estimate the stability and control 
derivatives of a linearized state-space model. It 
is the major piece of a monitoring process 
including also pre and post-processing stages, 
to prevent from and to filter out inaccurate 
estimations. Some evaluation results are shown 
to demonstrate the reliability of the approach. 
They involve actuator Fault Detection, Isolation 
and Estimation as well as icing detection, and 
are compared to a time domain batch algorithm 
used as a reference method. 

1  Introduction 

Despite efforts undertaken to improve safety, 
commercial aircraft accidents continue to occur 
due to unexpected events like actuator failures 
or icing. Therefore, a mid-term challenge for 
Flight Control Systems (FCS) is to recover 
safely from large aerodynamic changes, 
structural damage, or system faults. Concerning 
actuator failures, the usual solution consists in 
introducing more and more functionally 
redundant elements in order to achieve the level 
of reliability necessary for the certification. This 
solution penalizes the overall system perfor-

mance in terms of weight, power consumption, 
maintenance needs, etc...  

Otherwise, safety requirements for 
commercial and military airplanes have led to 
introduce redundant control surfaces into their 
design, to handle a degradation of the basic 
airframe configuration (damaged surface). 
Reconfigurable control [18] can then provide 
the redistribution of forces and moments along 
the remaining effectors by using mechanical 
redundancy. More recently, low-weighted UAV 
have also been developed for remote sensing, 
for which autonomy requires the ability to 
accommodate failures. 

The design of a reconfigurable FCS 
including fault detection results from a trade-off 
between the speed/accuracy of the response and 
the robustness/generality of the technique, to 
minimize both detection delay and rate of false 
alarms. Usual Fault Detection, Isolation, and 
Estimation (often referred as FDIE) requires to 
discover that the plant is not behaving as 
expected (FD), to determine the real location of 
the fault (FI), and to find out its exact magni-
tude (FE). Assuming that a post-fault model is 
available with an updated set of parameters got 
by Parameter IDentification (PID), the Fault 
Accommodation (FA) process is completed by 
scheduling or redesigning the Fault Tolerant 
Control (FTC) laws [2,7].  

Apart from effector faults and damage, 
icing is also a major cause of aviation accidents 
(hundreds of related reports), and is always 
involved in fatal crashes despite the efforts 
undertaken to improve the active/passive anti-
icing systems [5]. Current IPS (Ice Protection 
Systems) consist of deicing/anti-icing systems 
that remove or inhibit ice accretion, as well as 
stall protection systems that limit the pilot 
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authority to keep the airplane within a safe 
flight envelope. As icing sensors are not always 
available on some commuter A/C, advisory IPS 
systems are not so safe. Even when sensors are 
available, they don't evaluate the degradation of 
the flight dynamics, e.g. due to wing or tail 
icing. Therefore, for advanced systems like the 
Ice Management System (IMS) developed 
during the Smart Icing Systems project, an 
appropriate PID method proves also to be 
necessary [12]. Accordingly, different algo-
rithms were studied for icing characterization, 
which are nothing but a special case of FDI. 

There are two categories of methods for 
FDI, according to whether they make use of a 
model or not. The latter involve rule-based 
expert systems or pattern recognition techni-
ques, e.g. using artificial Neural Networks (NN) 
to learn the diagnosis through repeated training. 
More conventional FD approaches rely on the 
use of static or dynamic models, and faults 
appear as parameter or state changes determined 
by means of estimation techniques.  

Unlike the costly physical redundancy 
involving several sensors, measured data are 
compared to analytically obtained values of the 
variables, by making use of present and past 
measurements as well as mathematical models 
describing their relationship (system-wide vs 
component level monitoring). Thus, the process 
involves two steps: residual generation from 
 the resulting discrepancies, addressed by deter-
ministic or statistical approaches, and then 
decision making. 

State estimation and observer-based 
schemes have been widely studied for residual 
generation [7,15]. Actuator FDIE has also been 
directly attempted by switching and tuning 
amongst a set of models. The A/C dynamic 
response is compared to the output of different 
models, e.g. a bank of parallel Kalman Filters 
(KF), each matching a particular fault status of 
the system [6]. This method can only be applied 
as long as the expected faults can be 
hypothesized by a reasonable number of KF. 
That's why extended KF is often used instead 
[4], to estimate the unknown fault parameters 
(e.g. position of a stuck actuator). However, 
these schemes might perform poorly in real-life 
problems due to discrepancies between the 

actual system and the filter model, and to the 
processing of non-white and biased residuals. 
More recently, the modeling of any off-nominal 
behavior by using on-line approximation 
structures (e.g. NN-based) has also been 
proposed, but the lack of rigorous analytical 
proofs of convergence prevents at the moment 
from certifying such approaches for civil A/C. 

Moreover, the complexity of these techni-
ques often exceeds the present limitations of on-
board computers, both for code implementation 
and CPU power. Otherwise, real time PID is 
often required for indirect adaptation or FTC 
requiring an updated model. So, when detection 
precedes accommodation (FDIA) or involves an 
explicit model (IMS), it makes sense to rely on 
parameter estimation for the FDI stages too. We 
only need to assume that the dynamic model can 
be locally represented by a linear structure with 
varying parameters to account for changes in the 
flight condition, failures, or damage.  

Using PID for FD makes up a special class 
of model-based methods, the residuals referring 
to model parameters instead of system variables 
[16]. Real time PID faces several problems: 
external disturbances (e.g. turbulence), measu-
rement noises, and data information content. 
The technique must estimate changes in the 
dyna-mics within a short delay despite state and 
output noises. Time domain methods (TD-PID) 
usually involve sequential batch or recursive 
Least-Squares (LS) and require the adjustment 
of several tuning parameters. Poor information 
content (e.g. in cruise condition when variables 
remain constant during extended periods of 
time) requires strong forms of regularization in 
the estimation process [15]. 

On the contrary, frequency domain 
techniques (FD-PID) have many attractive 
features. The computation time is greatly 
reduced by processing only a limited amount of 
data within the frequency bandwidth of interest. 
Due to weak excitation signals and large 
residual errors, a measure of confidence is 
essential to the accommodation logic and can be 
easily computed via the standard deviation of 
the estimation errors. Furthermore, the availabi-
lity of efficient tools for going from time to 
frequency domain, like the Fourier Transform 
(FT), greatly eases the use of FD-PID.  
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FT Regression (FTR) was thus selected 
over other algorithms during the Intelligent 
Flight Control System project [17], and its 
interest highlighted for a decade [13,14]. More 
significantly, these tools allow using the Output 
Error (OE) method (the most powerful to 
process measurement noises which spoil the 
A/C states and thus bias the LS estimates), 
which is not conceivable in the time domain.  

De facto, processing short data records and 
estimating a limited set of parameters result in a 
well-conditioned optimization problem, and in a 
fast convergence within one or two iterations 
most of the time. As shown by this paper, the 
computational complexity of an OE approach 
remains quite acceptable against a simpler FTR, 
Equation Error type (EE). Regarding implemen-
tation on aboard computers, there is not much 
difference between EE and OE algorithms; both 
of them requires to solve a set of linear equa-
tions and can either be used for A/C monitoring.  

Regarding the IMMUNE project (cf. the 
companion paper [3]), the proposed PID method 
is useful both for event detection (ED) via the 
variation of aerodynamic parameters, and for 
event handling since an updated model is often 
required for indirect adaptation or FTC techni-
ques [10]. In practice, it delivers a near real time 
estimation of the stability/control derivatives 
involved in the A/C modelling. 

2  Theoretical Development 

2.1 From Time to Frequency Domain 

The transition from time to frequency domain is 
classically realized thanks to the standard FT of 
the signals. As they are only available over a 
limited period of time [0,T], the finite FT is used 
instead, which leads to the following relations 
for a signal x(t), its time derivative, and a 
constant bias b 
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Practically, from a sampled signal x(t), the 
finite FT can be approximated by a rectangular 
nume-rical integration using N values equally 
spaced over the interval [0,T] 
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The Fast Fourier Transform (FFT) is an 
efficient tool for computing the Discrete Fourier 
Transform (DFT) )(

~ ωX . From N data samples, 
this algorithm calculates N values of the DFT 
over the frequency interval [0,2πN/T], equally 
spaced too with a step ∆ω =  2π/T. It makes very 
simple operations possible to evaluate the DFT 
at time n∆t from its previous value at time 
 (n-1)∆t (by denoting φ = ω∆t) 
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For a given frequency ω (and thus a given 
φ), updating the DFT requires only 2 multipli-
cations and 1 addition, i.e. a very low computa-
tional effort [9]. When using this recursive FT 
(RFT), older information can be overweighted 
regarding to recent ones, which can result in 
much delay in the monitoring process. To 
remove the effect of oldest data, it is usual to 
work on a limited time window L = l∆t 
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2.2 From Equation Error 
      to Output Error Minimization 

The EE approach is famous (see e.g. [8]). It 
consists in minimizing the errors between 
model-predicted and measured forces/moments. 
When using an OE method, unlike EE, the 
estimation of state/output biases plus initial 
conditions is usually advisable to cope with i/o 
measurement offsets or model structure 
uncertainties. Consequently, the time domain 
state equations take the following form 
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with initial condition x(0) = x0 . Matrices 
A,B,C,D include the stability and control 



G. HARDIER, A. BUCHARLES 

4  

derivatives Θ  to be estimated, assumed to be 
constant or at least to vary slowly during the 
flight with respect to the updating process. The 
state vector x comprises aircraft speeds and 
angular velocities in body axis, as well as Euler 
angles. The control vector u collects the control 
surface deflections, whereas the output 
measurement vector y includes state compo-
nents, air data angles α,β and load factors Nxyz.  

A matrix E was added to (5.2) to account 
for a possible dependence of some outputs on 
state derivatives (which happens e.g. with load 
factors). Though E could be gathered with C,D 
terms, this formulation permits to improve the 
algorithm and the sensitivity computations. By 
using (1) with ω multiples of the sampling 
frequency, (5) greatly simplifies to end up in 
(omitting Θ  to alleviate the writing) 
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where ∆x=x(0)-x(T) denotes the discrepancies 
between initial and final conditions, δ(ω) = 1 for 
ω = 0, and δ(ω) = 0 else. This Dirac function δ 
comes from the biases of (1.3) for which 
[1 - exp(-jωT)] / jω = T  for k = 0 (and 0 else), 
for ω =  2kπ /T. Localized effects in the time 
domain are thus translated into broadband 
effects in the frequency domain, and vice versa. 
The initial and final conditions result in a bias 
which impacts on all frequencies, but the biases 
which act as broadband inputs in the time 
domain modify only the zero frequency.  

To get the most out of these specificities, it 
is therefore worthwhile to discard the zero 
frequency during the identification stage, which 
avoids estimating the state/output biases. Eq. (6) 
are thus simplified by removing bx and by terms, 
and the parameters to be estimated reduce to the 
aerodynamic derivatives enclosed in Θ  and to 
the vector ∆x. 

In the time domain, the cost function to be 
minimized is usually chosen to be a weighted 
sum of the sampled errors at time t between the 
measured outputs z(t) and the predicted outputs 
y(t,Θ), computed from the current value of the 
estimated parameters Θ. Summation is taken 

over the N samples of the time interval [0,T], 
and the weights correspond to the covariance of 
the measurement noises (a priori known or 
jointly estimated in the Maximum Likelihood 
version). To get the equivalent cost function in 
the frequency domain, we can turn to Parseval's 
theorem conveying the principle of energy 
preservation between the two domains.  

Thus, by denoting ε (ωk,Θ ) = Z (ωk) - Y (ωk,Θ ) 
and †  representing the complex conjugate 
transpose operator, it can be shown that the 
resulting cost function is expressed by 
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where the summation is now taken over the M 
frequencies of interest (equally spaced with a 
sampling period ∆f ), issued from the FT of the 
signals z(t) and y(t,Θ). In the case of a priori 
knowledge, a second term should be added in 
the previous cost expression to penalize the 
variations of the Θ parameters from their initial 
values. 

The usual way of minimizing a criterion 
such as the one of (7) consists in using a 2nd 
order optimization technique (Newton type), 
and the pros of this algorithm are kept in the 
frequency domain approach. By differentiating 
(7), it is easy to prove that the expressions of the 
gradient and Hessian matrix (usual Gauss-
Newton approximation) simply differ from the 
time domain one by taking the real parts of the 
summations (see e.g. [9]) 
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where the sensitivity matrix ∂Y (ωk,Θ )/∂Θ is 
denoted by S (ωk,Θ ).  

Thanks to the linear modeling, this matrix 
can be computed analytically without resorting 
to a finite difference evaluation. The sensiti-
vities (∂X/∂Θ , ∂Y/∂Θ  then) can be expressed in 
terms of the partial derivatives ∂A/∂Θ, ∂B/∂Θ, 
∂C/∂Θ, etc... which can be easily derived from 
the set of linearized equations given in §3.1. 
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3 Practical Use of the PID for Monitoring 

3.1 Nonlinear and Linearized A/C Models 

The simplified model of (5), to be used for on-
line PID, results from a linearization of the A/C 
non-linear modeling about the equilibrium 
conditions (or mean values computed over the 
time window). The general equations of motion 
(6 DoF) describing the flight dynamics are not 
listed herein (see e.g. [1,9]). Assuming a sym-
metrical aircraft in relation to the vertical plane 
and no wind, they express in body axes the state 
derivatives in terms of the aerodynamic forces 
Fxyz and moments Mxyz, plus the engine thrusts. 
The state vector comprises the aircraft airspeed 
u,v,w at the CG location, and the roll, pitch, yaw 
rates p,q,r in body axis. The flight mechanics 
equations are supplemented by the usual kine-
matic relations expressing the derivatives of 
Euler attitude angles ϕ,θ,ψ and altitude h. On 
the other hand, the measurement equations give 
access to the flight parameters (α,β  ), (p,q,r), 
(ϕ,θ,ψ ), (Nx,Ny,Nz), h and airspeed V in terms 
of their corresponding measured values at the 
locations of the IRS and Air Data probes (for α, 

β ). These nonlinear equations serve also as a 
reference basis for comparisons of the results 
obtained by the FD-PID and TD-PID (cf. §4). 
When using the latter method, the aerodynamic 
parameters will be estimated from the same data 
during a separate batch identification process, 
and the results used as reference values for 
evaluating the linear estimates of the on-line 
PID method. 

At the beginning of each PID stage, from 
the aerodynamic expressions of forces and 
moments, a numerical linearization procedure 
enables to get the initial set Θ0 of dynamic and 
control derivatives to be estimated from the 
current data. The discrepancy between Θ0 and 
the estimated vector Θ  will also be used by the 
decision process to detect if some event 
occurred during the monitored period (cf. §3.2). 
To be implemented aboard, this nonlinear model 
must be reliable, computationally efficient, and 
require a low storage capacity. Accordingly, a 
modeling of the aerodynamic coefficients by 
means of local NN is contemplated, linearized 
onboard to get the reference A,B matrices. It 

uses a set of Radial Basis Function modules for 
a white-box representation of the forces and 
moments (this topic is beyond the scope of this 
paper; see www.cert.fr/dcsd/idco/idlon-rn/ for 
more details). Practically, the longitudinal and 
lateral/directional cases are treated separately in 
the identification process. Without going into 
details, for the lateral case given below as an 
example, the linearized aerodynamic deve- 
lopments express as (i stands for y, l, n, i.e. for 
lateral force, roll moment, and yaw moment) 
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with usual notations for the expansion of the 
dynamic/control derivatives (δa,δr aileron and 
rudder deflections).  

According to the FDI process, two 
different models need to be considered. During 
the first stage (FD), "ambiguous" actuators (i.e. 
those for which a detected fault cannot be 
attributed directly to a single surface) are 
merged into a unique equivalent actuator. This 
is the case in longitudinal for right/left elevators 
(RE/LE), and for right/left Outer/Inner Ailerons 
δoa, δia in lateral (OA/IA). During the second 
stage (FI), these actuators are splitted and their 
real individual deflection restored to enable the 
improvement of the diagnosis.  

The FD and FI models share the same state 
components xT = [v  p  r  ϕ ] and outputs 
zT = [β    p   r   ϕ    Ny], whereas the input vector 
is  uT = [δa   δr]  for the FD stage, but is 
extended as  uT = [δria   δlia   δroa   δloa   δr]  for 
the FI stage. The merged equivalent aileron 
deflection δa is determined by summing the 
effect of inner and outer (left and right) angles, 
weighted by their corresponding lever arms. 

3.2 Pre-Processing the Data 
      and Post-Processing the Results 

It is essential to develop practical means to 
avoid inaccurate estimation when information is 
too poor, and to provide confidence in the 
reliability of the parameters else. This problem 
is strengthened herein by two facts: � the 
length of the signals processed will be keeped as 
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short as possible (for reducing the detection 
delay) � for the FD stage, ordinary control 
signals resulting from pilot or autopilot orders 
will be favoured against peculiar excita-tion 
signals commonly used for PID purposes. In the 
frequency domain, it is relatively easy to check 
the information content of the signals. Without 
any extra calculation, and from Parseval's 
theorem, the power contained in the different 
data can be derived from the FT required for the 
PID method. A set of tests can thus be imple-
mented, e.g. from the power E(u)/E(z) of the i/o 
signals and from the percentage P(z) of data 
samples in the bandwidth with a coherence zuγ  
greater than a minimum threshold minγ  
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The coherence function )(ωγ zu , between 
the vector u of inputs and the output z, takes its 
value in [0-1] at frequency ω. It indicates the 
part of the output spectrum linearly issued from 
the inputs for each ω. For standard PID, a value 
greater than γmin = 0.8 is usually considered to 
be satisfactory for processing the data with good 
confidence. This coherence can be easily 
computed, even in the MISO case, by using the 
FT already available for the i/o signals 

)(

)()()(
)(

1

ω
ωωωωγ

zz

uzuu
†
uz

uz S

SSS −
=                (9) 

where Suu(ω) and Szz(ω) represent the power 
spectral densities, while Suz(ω) represent their 
cross power spectral density. The pre-
processing of the (windowed) identification 
signals stems from a combination of these tests, 
and from their application to the set of i/o 
variables. Thresholds were defined for these 
tests and tuned up from simulation scenarios 
(§4). They should be roughly tabulated in terms 
of flight conditions, since useful signals have 
generally much lower amplitude and power in 
cruise conditions for instance, than they have 
after take-off or before landing. It is also 
noteworthy that some derivatives can be locked 
to their nominal values if the data content is 
judged insufficient to provide a reliable esti-
mation of these parameters. As a result of this 

preprocessing, the PID step can be skipped, 
waiting for better excitation signals. Apart from 
avoiding the risk to cope with unreliable 
parameter estimates (likely to be eliminated by 
the post-processing), this precaution saves 
useless CPU time and prevents from encounte-
ring numerical problems due to ill-conditioning 
during the optimization. 

On the other hand, the famous Cramer-Rao 
inequality permits to check the reliability of the 
estimates. Eq. (8.2) yields an estimated para-
meter covariance matrix according to 

1
ˆ

2 ][ )()ˆcov(
−

=∂∂∂≈= ΘΘΘΘΘΘΛ TJ          (10) 

From Λ, two statistical metrics relative to 
the estimates can be easily checked: the Cramer-
Rao (CR) bound 2/1

iiiC Λ=  for the i th parameter 
θ i, and the parameter insensitivity I i defined by 

12 1 −= iiiI Λ . I i represents a conditional standard 
deviation, all other parameters keeping their 
optimum values, while Ci represents an uncon-
ditional standard deviation, the other parameters 
taking any value inside the confidence ellipsoid.  

However, Ci corresponds only to a lower 
bound and can't be used directly since its value 
is usually too optimistic [11]. This problem 
comes from colored output residuals (modeling 
errors + not white noises). Thus, the power of 
noises is not evenly spread over the entire 
frequency range, but is concentrated within a 
limited bandwidth corresponding to the rigid 
body dynamics. In the frequency domain, the 
processing takes only place within this band, 
and thus fits much more the noise assumptions. 
From experience, corrective factors decrease to 
values from 2 to 3 (instead of 5 to 10 in the time 
domain).  

In the following, we will choose ii CC 3* = . 
Usual guidelines for reliable estimates suggest 
also to consider upper limits for the uncer-
tainties, i.e. CiiC τθ ≤ˆ/*  and IiiI τθ ≤ˆ/ , with 
advocated values τC =20% and τI =10% [1]. 
Applying this material to the process of moni-
toring results in the following steps (by denoting 
θ i0 the initial value of the parameter θ i ): 

� if *
0

ˆ
iii C|| ≤−θθ  or CiiC τθ ≤ˆ/*  or IiiI τθ ≤ˆ/  

then the parameter variation is assumed non 
significant; else, the PID estimate is validated 
for a possible event detection 
� compute a confidence index in the result 
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)ˆ/,1min(1 0
* ||Cci iii θθ −−= , taking its values 

between 0 and 1 (Fig. 1) 
� use the relative variation of the coefficient 

00 /ˆ
iii || θθθ −  to decide how significant the 

failure can be. 
Thus, this post-processing stage permits to 

get highest confidence in the estimation, and to 
filter out any inaccurate result which could 
increase the rate of false alarms. 
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Fig. 1. Confidence index from CR bounds. 

3.3 Main Stages of the Event Detection 
      and Isolation Process 

The comprehensive scheme of Fig. 2 lets appear 
3 instantiations of the FD-PID devoted to the 3 
successive steps of the monitoring process (ED, 
FI if necessary, and possibly FE). Practically, if 
a partially resolved fault is revealed at the end 
of the preliminary ED stage, after a request to 
the supervisor asking for an agreement, a set of 
superimposed excitation signals is added to the 
pilot or autopilot orders to ease the determi-
nation of the individual surface involved in the 
fault (FI among a set of "ambiguous" effectors). 
The choice of these signals results from a 
balance between unsuitable motions in terms of 
crew and passenger comfort and the need to get 
reliable parameter estimates. Herein, it is solved 
by using sine wave excitations, which are 
simultaneously applied to the "ambiguous" 
control surfaces at selected frequencies different 
from each other. This means permits to avoid 
correlation problems between the inputs, while 
keeping very low levels of signals [17]. To 
avoid unsuitable motions as much as possible, 
weak amplitudes (e.g. 1º for elevators and 5º for 
ailerons) and high frequencies (from 0.5 to 1Hz) 
were selected for these sine functions. 

When a (successful) FD or FI emphasizes 
some specific faults (jam, ended runaway, stuck 
actuator), they are expressed at this stage by a 

null residual efficiency. The reason is that the 
frequency method can't distinguish between a 
100% loss of efficiency (LoE) and a locked 
surface when the zero frequency is removed 
from the processing. However, when the faulty 
actuator has been isolated, it is possible to 
interpret a non zero time domain bias - like bx in 
(5) - as a constant surface deflection, by using 
the nominal value of its control derivative 
coefficient. Conversely, the estimation of a null 
bx would confirm the assumption of a total LoE 
for the actuator. The purpose of the FE is thus to 
proceed to the estimation of the bx components 
from the same isolation data, in order to clear up 
this ambivalence and to perfect a complete 
description of the fault. Consequently, the use of 
the FD-PID for isolation or estimation is not 
systematic, and is reserved to "ambiguous" 
effectors or cases (special types of faults).  

 

Fig. 2. Overall scheme of the FDIE process. 

The monitoring loop involves also two 
important parameters. � The width of the 
receding time window balances the amount of 
information conveyed by the data (impacting on 
the accuracy of the estimates) against the 
sensitivity to ED. A too large window would 
produce transient values between nominal/faulty 
parameters and erroneous linear assumptions in 
case of varying flight conditions. � The 
updating rate results from another tradeoff 
between the detection delay and the CPU power 
of onboard computers. The periodicity of the 
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updates should also be less than the size of the 
receding window but should keep the same 
order of magnitude. A careful evaluation 
through as set of simulations led to choose a 
window of length 20s and an updating rate of 
10s, except in turbulent conditions where the 
width of the window was doubled to improve 
the signal-to-noise ratio. With these choices, the 
procedure runs 8 times faster than real time on a 
standard PC. For longitudinal plus lateral moni-
toring at the same rate, this yields a ratio of 4. 

4  Simulation Results 

4.1 Icing Detection via On-line PID 
      of the Longitudinal Model 

A Matlab/Simulink© desktop simulator was 
developed during the IMMUNE project. The 
A/C model is representative of the behavior of a 
generic long range commercial aircraft (cf. 
overview [3]). It permits to simulate iced flight 
conditions by using an additive icing model 
computing the aerodynamic coefficients in a 
wide range of situations: no icing, icing with 
deicing system on/off, level of ice more or less 
severe. The icing detection is restricted to the 
longitudinal parameters for which the most 
significant variations of magnitude are 
expected. Only the main coefficients of the 
model are freed to ease the PID from poor 
excitation signals. The damping derivatives are 
thus frozen to their reference values to prevent 
from correlation issues. Thus, the set of coef-
ficients is restricted to Czα ,Czδe,Cmα ,Cmδe and 
possibly Cz0,Cm0 when the zero frequency is 
not excluded (TD-PID).  

At the beginning of the simulated tests, the 
airplane (in clean configuration) is trimmed at 
the following equilibrium condition: altitude 
700ft, speed 200kts, weight 155t, balance 30%. 
The Test#1 corresponds to a pilot-input pitch 
doublet, and the Test#2 to a heading change 
maneuver from stick orders with autopilot 
disengaged. As previoulsy mentioned, for each 
evaluation scenario, an OE batch TD-PID is run 
in parallel to the FD-PID in order to ease the 
analysis of on-line results and to serve as a 
comparison basis. By processing the same noisy 

signals in batch mode, this alternative PID is 
assumed to produce the best parameter 
estimates which can be derived from the 
available data. It deals with the same parameters 
plus the bias components. However, it relies on 
the nonlinear A/C modeling instead of linea-
rized versions, and the estimated parameters 
correspond to linear increments added to the 
nonlinear aerodynamic coefficients. The results 
are given in Table 1, estimates being declared 
non significant (ns) for Czδe,Cmδe by the post-
processing stage, regarding the corrected CR 
bounds (the same with TD-PID).  

Results are satisfactory for Test#1, similar 
estimates being provided by both methods, in 
agreement with the reference values. Test#2 
reveals a discrepancy, the results of the FD-PID 
departing noticeably from the reference, espe-
cially for the lift coefficient. This is explained 
by the type of this test, a lateral-directional 
maneuver with a low excitation level of the 
longitudinal actuators. However, even in this 
(poor) case, the coefficient variations and confi-
dence index are significant enough to output a 
warning message to the decision module. 

Table 1. Iced aircraft: coefficients changes (%) 

 Czα Cz0 Cmα Cm0 
reference value -20.4 +45.5 +19.1 -28.8 

FD-PID -16.0 - +17.9 - 
Test #1 

TD-PID -18.6 +38.9 +18.1 -26.9 
FD-PID -48.0 - +27.1 - 

Test #2 
TD-PID -25.8 +63.1 +20.2 -33.3 

4.2 Actuator FDIE via On-line PID 
      of the Lateral and Longitudinal Models 

To simplify, the successive FD/FI/FE stages 
were gathered into a single flight, corresponding 
to an approach: airplane in high lift configu-
ration initially trimmed at 700ft, 150kts (weight 
155t, balance 30%). Maneuvers involve small 
heading adjustments with AP engaged. Only the 
lateral results are presented for the FD stage. 
The first 2 minutes of the test are devoted to FD, 
while the next 20s are kept for FI/FE, assuming 
that an external decision process (supervisor) 
has ordered the addition of isolation signals to 
the actuator deflections from 125 to 145s (see 
Fig. 3 for a display of the main lateral states and 
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control orders). For the same reasons as in §4.1, 
the estimation process is restricted to Cyβ,Clβ, 
Clδia,Clδoa,Cnβ,Cnδr and optionally Cy0,Cl0,Cn0. 
The sequence of faults/damage is scheduled as 
follows: at t=30 the right IA is subject to a 50% 
LoE, just as the right elevator at t=60, finally the 
left OA is jammed at 5º of deflection at t=90 
and simultaneously the rudder is subject to a 
40% LoE. At first, the working of the on-line FD 
process is thus simulated from 0 to 120s (cf. 
Table 2). Fig. 4 represents the estimates norma-

lized against the expected values for the 11 runs 
of the FD stage from 0 to 100s (11 windows). 
Error bars represent CR uncertainties, squares 
(�) predicted values, white circles (○) valid 
results, and black ones (●) invalid estimates 
rejected by the PID process. These results show 
that the pre and post-processing stages are very 
useful to filter out unsuited time windows, when 
the data content doesn't allow for a reliable 
estimation; e.g. all or part of the coefficients can 
be frozen after the pre-processing (see it 2). 

 

 

 

Fig. 3. Lateral/directional states and splitted control surfaces during FD/FI stages. 
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Table 2. Estimated/expected reductions (% ) 
of control derivatives during the FD stage 

it. Clδa Cnδr it. Clδa Cnδr 
1 0 / 0 0 / 0 7 10.6 / 11.4 0 / 0 
2 - / 0 - / 0 8   ns   / 11.4 0 / 0 
3 11.3 / 11.4 0 / 0 9 29.8 / 38.6 42.8 / 40 
4 10.5 / 11.4 0 / 0 10 37.2 / 38.6 33.8 / 40 
5   ns   / 11.4 0 / 0 11 38.2 / 38.6 25.4 / 40 
6 11.0 / 11.4 0 / 0    

number of the sliding time window
from t=0 to t=100

-- 11.4%11.4%

-- 38.6%38.6%

-- 40%40%

locked coef

estimate agreed
by post-processing

A

estimate dismissed
by post-processing

□ prediction

○ valid estimation +/- 3σσσσ

● invalid estimation +/- 3σσσσ

Cyββββ

Clδδδδa Clββββ

Cnδδδδr Cnββββ

number of the sliding time window
from t=0 to t=100

-- 11.4%11.4%

-- 38.6%38.6%

-- 40%40%

locked coef

estimate agreed
by post-processing

A

estimate dismissed
by post-processing

□ prediction

○ valid estimation +/- 3σσσσ

● invalid estimation +/- 3σσσσ

Cyββββ

Clδδδδa Clββββ

Cnδδδδr Cnββββ

 

Fig. 4. Lateral/directional FD during approach. 

The reference targets, which should ideally 
be estimated owing to the faults, are displayed 
as horizontal arrows labeled with the 
percentages of expected decreases. It's note-
worthy that the expected 11.4% and 38.6% 
reductions for Clδa are not round figures due to 
the difference of efficiency between IA and OA, 
lumped into the equivalent aileron deflection δa. 
As mentioned in §3.3, the left OA jam at 90s 

amounts at this FD stage to a 100% LoE for this 
surface (it 10-11). Some apparent discrepancies 
between expected and estimated values can also 
be explained by the short length of the time 
interval, leading to transient values when the 
fault occurs within the window (e.g. Clδa at it 9). 
At last, a balance really do exist concerning the 
input powers, since fast variations of states (like 
α or β) can compromise the validity of the 
linearity assumptions. This is the case around 
100s, which explains the poorer accuracy of Cnβ 
and Cnδr at it 10-11. Despite these imper-
fections, the quality of the estimates, and their 
consistency over the successive runs, appear to 
meet the requirements of this FD stage. 

The faulty situations detected for ailerons 
from it 3 remain "ambiguous" cases since they 
can't be assigned to a single control surface at 
this stage. At the end of the FI stage processing 
the window from 125 to 145s, all the faults were 
properly isolated (Tables 3-4 and Fig. 5), and 
the left OA (LOA) was rightly credited with a 
100% LoE (see Clδloa). In Tables 3-4, only the 
estimates denoted with (*) were validated by the 
post-processing. Others are reasonably accurate 
but uncertainty is too high. Longitudinal FI is 
the most difficult case due to a very low signal-
to-noise ratio (only 1º for sine signals). A partial 
indetermination between RE and LE remains 
(check by summing Table 4 corresponding 
variations). Besides, TD-PID results are even 
worse thanks to the noise filtering outside the 
selected bandwidth which benefits to FD-PID. 

Table 3. Estimated variations (%) 
of lateral control derivatives after FI stage 

 Clδria Clδlia Clδroa Clδloa Cnδr 
expected 

value 
-50 0 0 -100 -40 

FD-PID -49.5(*) -0.2 +1.8 -100(*) -37.3(*) 
TD-PID -50(*) -1.4 +0.2 -100(*) -38.6(*) 

However, it is not possible at this stage to 
conclude about the LOA total LoE: complete 
breakdown, float failure, lock-in-place surface ?. 
As quoted in §3.3, the FE step serves to refine 
the diagnosis by simply extending FD-PID to 
the zero frequency. After having the efficiencies 
of the faulty actuators adjusted by using the 
results of the FI stage, the only remaining 
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parameters to be estimated are Cy0,Cl0,Cn0. As 
expected, only the Cl0 estimate appears reliable 
and leads to a bias equal to 0.016. By dividing 
this value by the OA efficiency, an equivalent 
deflection of 4.7º is got, close to the ideal value 
of 5º. The same results are got with the TD-PID. 

Table 4. Estimated variations (%) 
of longitudinal control derivatives after FI stage 

 Czδre Cmδre Czδle Cmδle 
expected 

value 
-50 -50 0 0 

FD-PID -61.8 -40.7(*) +10.6 -11.4 
TD-PID -66.4 -37.3(*) +9.6 -8.1 

□ prediction

○ estimation +/- 3σσσσ

Clδδδδria Clδδδδlia

Clδδδδroa Clδδδδloa

Cnδδδδr

□ prediction

○ estimation +/- 3σσσσ

□ prediction

○ estimation +/- 3σσσσ

Clδδδδria Clδδδδlia

Clδδδδroa Clδδδδloa

Cnδδδδr

 

Fig. 5. FI results for lateral control derivatives. 

5  Conclusions 

To fulfill the requirements of an onboard 
implementation, a FD-PID algorithm was deve-
loped based on an OE formulation, for estima-
ting in real time the parameters of a linear(ized) 
A/C modeling. The contemplated applications 
involve the early detection of unexpected events 
(e.g. icing), the global process of actuator fault 
diagnosis, and the updating of models to be used 
by FTC methods. They extend from military 
and civil A/C to the UAV domain. The metho-
dology includes pre and post-processing stages 
in addition to the central estimation part, as well 
as the superimposition of predefined excitation 
signals for the isolation of some ambiguous 

effector faults if necessary. The approach, eva-
luated through a set of realistic flight scenarios 
involving on-line monitoring of the control 
surfaces, showed that the method was able to 
provide satisfactory results (regarding the 
parameter estimates but also their accuracy) 
despite of high measurement noises, moderate 
turbulence and low information content in the 
data. To ensure a realistic evaluation of the 
performances, only usual (poor) flight maneu-
vers were exploited with the AP engaged or 
disengaged. The computational feasibility of an 
aboard implementation was also demonstrated. 
Owing to its characteristics, the FD-PID 
algorithm requires a few iterations to converge, 
and the memory requirements are limited thanks 
to the moving data windowing.  

As far as actuator failures are concerned, 
LoE, jams, runaways and float failures can be 
detected and recognized through the three steps 
of the FDIE procedure. For longitudinal 
failures, the tests have shown that usual 
maneuvers (like altitude changes) are not 
always sufficient to monitor the stabilizer and 
elevators in certain flight conditions (e.g. 
cruise). Moreover, they stressed the trade-off 
between the level of excitation, likely to 
produce fast and large variations of the angle of 
attack (AoA), and the underlying assumption of 
linearity peculiar to the frequency domain 
method. As a result, the most suitable flight 
conditions for longitudinal FD correspond to 
low/medium AoA, in clean or high lift 
configurations. This holds also for lateral FD. 
On the other hand, usual maneuvers (like small 
heading changes) are generally adequate for the 
monitoring process of lateral failures, which 
proves to be more robust and less sensitive to 
turbulence than the longitudinal one. Consi-
dering icing detection, the model used herein 
has a very weak effect on the aerodynamic coef-
ficients at low AoA, since it changes mainly the 
nonlinear behavior regarding the stall AoA. 
Consequently, significant variations of parame-
ters appear only when non linearities begin to 
arise, and the flight conditions favorable to an 
early detection of the icing are therefore 
medium/high AoA, in clean lift configuration. 

Future works should address the usual 
weak points of most on-line PID methods, i.e. 
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their robustness to unmodeled disturbances 
(turbulence) and to low data information content 
during extended periods of time. For the first 
point, it should be checked to what extent a 
supplementary EE approach (less sensitive to 
state noises) could provide better results in case 
of strong turbulence. From the OE formulation, 
its implementation would be straightforward 
and its use could be reserved to high state-to-
measurement noise ratios. The problem of poor 
data content is somewhat more difficult. 
Currently, it falls to the pre-processing stage to 
filter out these periods to prevent from useless 
PID and possibly inaccurate estimations. This 
stage could be refined by calling for adaptive 
thresholds in the decision making, e.g. 
depending on the flight condition and/or the 
type of maneuver. More generally, to maintain 
detection capabilities during long intervals of 
steady flight, the question of adding artificial 
excitations to the control orders should be consi-
dered, as it was done for the FI stage. 

Finally, with the prospect of a global 
FDD/FTC system, the combined monitoring + 
handling performances should be evaluated. 
Depending on the type of FTC method (self-
adaptation or reconfiguration), the accom-
modation process will make use of all or part of 
the PID results (isolated faults, estimated stuck 
deflections, adjusted model, coefficients used 
for gain scheduling,...). 

References 

[1] Carnduff SD and Cooke AK. Formulation and system 
identification of the equations of motion for a 
dynamic wind tunnel facility, Cranfield University, 
Rept No 0801, 2008. 

[2] Chandler PR, Buffington J and Patcher M. 
Integration of on-line system identification and 
optimization-based control allocation, AIAA GNC, 
paper 4487, Boston, USA, 1998. 

[3] Döll C, Hardier G, Varga A and Kappenberger C. 
IMMUNE project: an overview, 18th IFAC ACA 
symposium, Nara, Japan, 2010. 

[4] Ducard G and Geering, HP. A reconfigurable FCS 
based on the EMMAE method, ACC, Minneapolis, 
USA, pp. 5499-5504, 2006. 

[5] Gingras DR, Barnhart B et al. Envelope protection 
for in-flight ice contamination, 47th AIAA ASM, paper 
1458, Orlando, USA, 2009. 

[6] Hanlon PD and Maybeck PS. Multiple-model 
adaptive estimation using a residual correlation 
Kalman filter bank, IEEE trans. on aerospace and 
electronic systems, 36 (2), pp. 393-406, 2000. 

[7] Hwang I, Kim S, Kim Y and Seah CE. A survey of 
fault detection, isolation, and reconfiguration 
methods, IEEE trans. on control systems technology, 
18, 18 pages, 2010. 

[8] Jategaonkar RV. Flight vehicle system identification: 
a time domain methodology, AIAA Ed. Series, 
Reston, pp. 177-218, 2006. 

[9] Klein V and Morelli E. Aircraft system identification 
: theory and practice, AIAA Ed. Series, Reston, pp. 
225-287, 2006. 

[10] Lafourcade L, Cumer C and Döll C. Control 
reallocation after surface failures using Model 
Predictive Control, 18th IFAC ACA symposium, Nara, 
Japan, 2010. 

[11] Maine RE and Iliff KW. Use of Cramer-Rao bounds 
on flight data with colored residuals, Jal of guidance, 
control, & dynamics, 4 (2), pp. 207-213, 1981. 

[12] Melody JW, Basar T et al. Parameter identification 
for inflight detection and characterization of aircraft 
icing, Control engineering practice, 8, pp. 985-1001, 
2000. 

[13] Morelli E. Real-time parameter estimation in the 
frequency domain, Jal of guidance, control, & 
dynamics, 23 (5), pp. 812-818, 2000. 

[14] Morelli E. Practical aspects of the equation-error 
method for aircraft parameter estimation, AIAA AFM, 
paper 6144, Keystone, USA, 2006. 

[15] Pachter M, Smith L and Chandler PR. Regularization 
techniques for real-time identification of aircraft 
parameters, AIAA GNC, New Orleans, USA, pp. 
1466-1480, 1997. 

[16] Patton RJ, Simani S and Fantuzzi C. Model-based 
fault diagnosis in dynamic systems using 
identification techniques, Advances in Industrial 
Control, Springer, London, pp. 1-156, 2003. 

[17] Smith MS, Moes TR and Morelli E. Real-time 
stability and control derivative extraction from F-15 
flight data, NASA TM-212027, 2003. 

[18]  Zhang Y and Jiang J. Bibliographical Review on Re-
configurable Fault-Tolerant Control Systems, Annual 
Reviews in Control, 32 (2), pp. 229-252, 2008. 

Copyright Statement 
The authors confirm that they, and/or their company or 
organization, hold copyright on all of the original material 
included in this paper. The authors also confirm that they 
have obtained permission, from the copyright holder of 
any third party material included in this paper, to publish 
it as part of their paper. The authors confirm that they 
give permission, or have obtained permission from the 
copyright holder of this paper, for publication and distri-
bution of this paper as part of the ICAS2010 proceedings 
or as individual off-prints from the proceedings. 


