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Abstract  

This paper proposes a fully-coupled thermo-

mechanical analysis of multilayered plates and 

shells. In the proposed refined plate/shell 

models, the temperature is considered as a 

primary variable of the problem as the 

displacement and it is directly obtained from the 

governing equations. Such models are very 

promising for multilayered structures because 

they permit both equivalent single layer and 

layer wise approaches and they have the order 

of expansion in the thickness direction as a free 

parameter (from linear to fourth order). Three 

different problems can be analyzed: evaluation 

of temperature field effects in the free vibration 

analysis of multilayered plates and shells; 

evaluation of temperature field effects in the 

stress analysis of multilayered structures 

subjected to mechanical loads;  thermal stress 

analysis of multilayered structures with imposed 

sovra-temperature. 

1  Introduction  

Several thermal environments are applied to 

aerospace structures, typical examples are high 

temperatures, high gradients and cyclic 

temperature changes [1]. The well-known 

mechanical loads and the described thermal 

variations are the most important causes of 

failure mechanisms in aerospace structures [2], 

[3]. For these reasons, the effects of both high-

temperature and mechanical loads must be 

included in the structural models for the analysis 

of multilayered plates and shells [4].   

The thermo-mechanical models proposed 

in this work are defined as fully-coupled 

because the temperature field is considered a 

primary variable of the problem as the 

displacement [5], [6], in this way the effects of 

the thermal field can be evaluated in the static 

and dynamic analysis of multilayered plates and 

shells [7], and such models can also be applied 

to the thermal stress analysis of aerospace 

structures [8] without the necessity of a priori 

defining the temperature profile (by assuming it 

linear in the thickness direction or by solving 

the Fourier heat conduction equation). 

          In the open literature, a small amount of 

work has been devoted to the coupled thermo-

mechanical analysis of structures (both 

thermoelastic and thermoplastic analysis), and 

only few of them give numerical results. Some 

interesting works about this topic are Yang et al. 

[9], Altay and Dokmeci [10], [11], Cannarozzi 

and Ubertini [12]. A first tentative to evaluate 

the thermo-mechanical coupling in plates and 

shells has been made by the authors in [7]: the 

case of an isotropic plate with an applied 

mechanical load has been considered, as just 

suggested in Nowinski book [1]  the coupling is 

about 0.5% (both static and dynamic cases). An 

exhaustive discussion about the variational 

statements which permit the coupling between 

different physical fields (mechanical, thermal, 

electric and magnetic) has been given by the 

authors in [13], then these variational statements 

have been refined and applied to the thermo-

mechanical cases in [5] and [6]: details about 

the formulation and further comments about the 

results (not given in the present work for sake of 

brevity) can be found in these works. 

          The static and dynamic analysis have 

been accomplished using several higher-order 

two-dimensional theories, obtained in the 

framework of Carrera's Unified Formulation 

(CUF) [14].  In the case of multilayered 
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structures, these models can be equivalent single 

layer or layer wise, and the order of expansion 

in the thickness direction is taken as a free 

parameter (N=1 to N=4). In the proposed 

multilayered structures, the use of layer wise 

kinematics results mandatory in order to recover 

the typical zigzag form of displacements and 

temperature through the thickness direction. The 

governing equations are obtained by extending 

the Principle of Virtual Displacements (PVD) to 

the thermo-mechanical coupling by simply 

adding the internal thermal work: consistent 

constitutive equations must be considered in this 

case. The governing equations are solved in 

closed form using Navier's solution. 

2  Geometrical Relations  

The aerospace structures considered in this 

work are the well-known plate and shell 

geometries. They are defined as two-

dimensional structures because one dimension 

(in general the thickness) is negligible with 

respect to the other two in the in-plane 

directions. Such structures are considered as 

multilayered made, see Fig. 1. 

       The geometrical relations for shells, in the 

case of thermo-mechanical problems, link the 

mechanical strains with the displacement vector 

(first two lines in Eq. 1) and the spatial gradient 

of temperature with the scalar temperature 

(second two lines in Eq. 1). The relations split in 

in-plane (p) and out-of-plane (n) components 

are: 

(1) 

the displacement components are u=(u,v,w) for 

each layer k, and the sovra-temperature θ is a 

scalar for each layer k. The meaning of the 

involved matrices is: 

(2) 

(3)

 
matrices A containes the information for the 

shell geometry (radii of curvature Rα and 

Rβ, and parametric coefficients Hα and Hβ). 

Matrices D containes the differential operators. 

 

   

 
Figure 1. Geometry and notations for multilayered plates 

(a) and shells (b). 

 

Geometrical relations for shells in Eq. 1 

degenerate in those for plates when the radii of 

curvature are infinite: so matrices in Eq. 2 are 

zero and parametric coefficients Hα and Hβ in 

matrices of Eq. 3 equal one. Details about shell 

and plate geometries can be found in [15]. 
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3 Carrera’s Unified Formulation  

Carrera's Unified Formulation (CUF) [14] 

permits to obtain, in a unified manner, a large 

variety of plate/shell theories. According to 

CUF, the governing equations are written in 

terms of a few fundamental nuclei which do not 

formally depend on the order of expansion N 

used in the thickness direction and on the 

description of variables (equivalent single layer 

(ESL) or layer wise (LW)). The application of a 

two-dimensional method for plates/shells 

permits the unknown variables to be expressed 

as a set of thickness functions that only depend 

on the thickness coordinate z and the 

correspondent variable which depends on the in-

plane coordinates α and β. The generic variable 

f(α,β,z), for instance a displacement, and its 

variation δf(α,β,z) are written therefore 

according to the following general expansion: 

             (4)      

with τ,s=1,…,N,  and bold letters denote arrays. 

(α,β) are the in-plane curvilinear coordinates 

and z the thickness one. In the case of plate 

geometry the curvilinear coordinates (α,β,z) are 

replaced with the rectilinear ones (x, y, z). The 

summing convention, with repeated indexes τ 

and s, is assumed. The order of expansion N 

goes from first to fourth-order, and depending 

on the used thickness functions, a theory can be: 

ESL, when the variable is assumed for the 

whole multilayer and a Taylor expansion is 

employed as the thickness functions F(z); LW, 

when the variable is considered independent in 

each layer and a combination of Legendre 

polynomials are used as the thickness functions 

F(z). In the thermo-mechanical models, 

proposed in this work, displacements can be 

modelled in both ESL or LW form, temperature 

is always considered in LW form. A two-

dimensional thermo-mechanical model is 

defined therefore as ESL or LW, depending on 

the choice made for the displacement vector. 

3.1 Equivalent Single Layer Approach  

The displacement u=(u,v,w) is described 

according to equivalent single layer (ESL) 

description if the unknowns are the same for the 

whole multilayered plate/shell [14]. The z 

expansion is obtained via Taylor polynomials, 

that is: 

(5) 

with τ=0,1,…,N; N is the order of expansion 

that ranges from 1 (linear) to 4: 

        (6) 

Eq. 5 can be written in a vectorial form: 

                           (7) 

with τ,s=0,1,…,N. 

       Simpler theories, such those which discard 

the εzz  effect, can be obtained from refined ESL 

models: it is sufficient to impose that the 

transverse displacement w is constant in z. First 

order Shear Deformation Theory (FSDT)  is 

obtained from an ESL model with linear 

expansion in the thickness direction z, by 

imposing a constant transverse displacement w 

in z. Classical Lamination Theory (CLT)  is 

obtained from FSDT via an opportune penalty 

technique which imposes an infinite transverse 

shear rigidity. All the ESL theories, with 

constant or linear transverse displacement w, 

which means zero or constant transverse normal 

strain εzz, show Poisson's locking phenomena: it 

can be overcame via plane stress conditions in 

constitutive equations [16]. 

3.2  Layer Wise Approach 

When each layer of a multilayered plate/shell is 

described as independent plates/shells [14], a 

layer wise (LW) approach is accounted for. The 

displacement u=(u,v,w)  is described for each 

layer k, in this way the zigzag form of 

displacement, in multilayered transverse-

anisotropy structures, is easily obtained. The z 

expansion for displacement components is made 

for each layer k: 

(8) 

with τ,s=0,1,…,N, N is the order of expansion 

that ranges from 1 (linear) to 4. k=1,….,Nl, 

where Nl indicates the number of layers. Eq. 8, 

written in a vectorial form, is: 
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                              (9) 

with τ,s=t,b,r and k=1,….,Nl. t and b indicate 

the top and bottom of each layer k, respectively; 

r indicates the higher order of expansion in the 

thickness direction: r=2,…,N. In this case the 

thickness functions Fτ and Fs are a combination 

of Legendre polynomials (for details see [14]) in 

order to easily obtain the compatibility 

conditions for displacements at each layer 

interface. In LW models, even if a linear 

expansion in z is considered for the transverse 

displacement w, Poisson's locking phenomena 

does not appear: the transverse normal strain εzz  

is piece-wise constant in the thickness direction 

[15]. 

       In the case of thermo-mechanical problems, 

the primary variables are the displacement 

vector u=(u,v,w) and the scalar sovra-

temperature θ (temperature T1 referred to the 

external room temperature T0, θ= T1- T0). By 

considering the higher spatial gradient of the 

temperature field, the variable θ in each layer k 

is always modeled as LW: 

                          (10) 

with τ,s=t,b,r and k=1,….,Nl. The thickness 

functions are a combination of Legendre 

polynomials as in Eq. 9. The sovra-temperature 

θ can be considered as an external load [8] or as 

a primary variable [5], [6] . A two-dimensional 

model for thermo-mechanical problems is 

defined as ESL or LW depending on the choice 

made for the displacement vector: the 

temperature is always considered in LW form. 

4 Constitutive Equations  

Constitutive equations, for the thermo-

mechanical problem, are obtained in according 

to that reported in [5], [6] and [13]. The 

coupling between the mechanical and thermal 

fields can be determined by using 

thermodynamical principles and Maxwell's 

relations [9]-[13]. For this aim, it is necessary to 

define a Gibbs free-energy function G and a 

thermomechanical enthalpy density H: 

                      (10) 

where σij  and εij  are the stress and strain 

components. η is the variation of entropy per 

unit of volume, and θ the sovra-temperature 

considered with respect to the reference 

temperature T0. The function F is the dissipation 

function,  it depends by the spatial temperature 

gradient: 

                              (11) 

where κij  is the symmetric, positive 

semidefinite conductivity tensor. In the second 

term, τ0  is a thermal relaxation parameter which 

multiplies the temporal derivative of the heat 

flux hi. The thermal relaxation parameter is 

omitted in the present work.  

      The thermomechanical enthalpy density H 

can be expanded in order to obtain a quadratic 

form for a linear interaction: 

 (12)  

                             
where Qijkl is the elastic coefficients tensor 

considered for an orthotropic material in the 

problem reference system. λij are the thermo-

mechanical coupling coefficients, χ=ρ/CvT0 

where ρ is the material density, Cv is the 

specific heat per unit mass and T0 is the 

reference temperature. 

        The constitutive equations are obtained by 

considering the following relations: 

             (13) 

By considering Eqs. 12 and 13, the constitutive 

equations for the thermo-mechanical problem 

are obtained: 

                                   (14) 

The split stress and strain components vectors 

are: 
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         (15) 

The vectors (3X1) of heat flux and spatial 

gradient of the temperature, split in in-plane and 

out-of-plane components, are: 

   (16) 

      
By considering Eqs. 14, their split equations in 

vectorial form are: 

                 (17) 

The explicit forms of the split matricies in Eqs. 

17 are: 

Elastic coefficients matrices: 

   (18) 

Thermo-mechanical coupling coefficients: 

                  (19) 

Conductivity coefficients: 

           (20) 

      In order to use the relations given in Eqs. 17 

in the proposed variational statements, that will 

be presented in the next section, it is convenient 

to split them in in-plane components (subscript 

p) and out-of-plane components (subscript n). 

Other two new subscripts are introduced: the 

subscript C for those variables, in the variational 

statements, which need the substitution of 

constitutive equations; the subscript G for those 

variables, in constitutive equations, which need 

the substitution of geometrical relations. 

Constitutive equations discussed for shell 

geometry, can be also used for plate 

configurations simply replacing the curvilinear 

coordinates (α,β,z) with the rectilinear ones 

(x,y,z). 

5 Considered Variational Statements 

In this section two different extensions of the 

Principle of Virtual Displacements (PVD) are 

given: the first is for the partially coupled 

thermo-mechanical analysis, the second one is 

for the fully coupled thermo-mechanical 

problem. In the case of a partially coupled 

analysis the PVD is the same of the mechanical 

case, but the stresses are considered as an 

algebraic addition of the pure mechanical and 

pure thermal parts [8]. For the fully coupled 

analysis, the virtual internal thermal work is 

added to the virtual internal mechanical one [5], 

[6]. 

5.1 PVD for Partially Coupled Thermo-

Mechanical Case  

In the case of the thermal stress analysis of 

plates and shells, a possible extension of the 

PVD considers the temperature as an external 

load without any coupling between the 

mechanical and thermal fields [8]. In the 

variational statement obtained in Eq. 22 the 

stresses are seen as an algebraic addition of 

mechanical (d) and thermal (t) contributions: 

(21) 

where the arrays λp and λn permit the partial 

coupling between the mechanical field and the 

temperature. 

        By considering a laminate of Nl layers, and 

the integral on the volume Vk of each layer k as 

an integral on the in plane domain Ωk plus the 

integral in the thickness-direction domain Ak, it 

is possible to write: 
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                          (22) 

where δLe and δLin are the external and inertial 

virtual works at the k-layer level, respectively. 

The governing equations are: 

(23) 

with related boundary conditions on the layer 

edge Γk: 

       (24) 

the three terms at the right of the equal in Eq. 23 

are the inertial load, the thermal load and the 

mechanical load, respectively. From Eqs. 23 and 

24, simply discarding the thermal contribution, 

it is possible to obtain the governing equations 

and the boundary conditions for the pure 

mechanical case: the variational statement in 

this case is obtained from Eq. 22 simply 

discarding the thermal contribution for the 

stresses. In order to define the thermal load, the 

temperature profile must be a priori given: by 

linearly assuming it in the thickness direction 

(θa) or by calculating it with solving the Fourier 

heat conduction equation (θc). 
  

5.2 PVD for Fully Coupled Thermo-

Mechanical Case  

In case of fully coupling between the thermal 

and mechanical fields, the variational statement 

is the PVD with the introduction of the virtual 

internal thermal work. This variational 

statement is: 

        (25) 

where δLe and δLin are the external and inertial 

virtual works at the k-layer level, respectively. 

    The governing equations have the following 

form: 

  (26) 

The arrays pus and pθs indicate the variationally 

consistent mechanical and thermal loadings, 

respectively. Along with these governing 

equations the following boundary conditions on 

the edge Γk  of the in-plane integration domain 

Ωk hold: 

         (27) 

As indicated in [7] , the sovra-temperature θ is a 

variable of the problem. The displacements u 

can be seen in ESL or LW form. Independently 

by the choice made for the displacements, the 

sovra-temperature is always seen in LW form. 

      As discussed in Altay and Dokmeci [10], 

[11] and Cannarozzi and Ubertini [12], the 

variational statement includes only the internal 

thermal work made by the gradient of 

temperature in the case of applied temperature 

at the top and bottom of the structure; it includes 

only the internal thermal work made by the 

temperature in the case of applied mechanical 

load on the structure or free vibration problem. 

   In the case of temperature imposed at the top 

and bottom of the structure, in the Eq. 25 does 

not exist a virtual variation of temperature, and 

the variational statement is: 

                          (28) 

      In the case of mechanical load applied on 

the structure or the free vibration analysis, in the 

Eq. 25 does not exist a gradient of  temperature 

variation, and the variational statement is: 

                            (29) 

5.3 Navier Solution  

Navier-type closed form solution is obtained via 

substitution of harmonic expressions for the 

displacements and temperature as well as 

considering the following material coeffcients 

equal zero: Q16 = Q26 = Q36 = Q45 = 0 and λ6 = 
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κ12 = 0. The following harmonic assumptions 

can be made for the variables, which correspond 

to simply supported boundary conditions: 

       (30) 

 
with k=1,….,Nl and τ,s=t,b,r (r=2,…,N). The 

amplitudes are indicated with the symbol ^. 

        By starting from the fundamental nuclei 

described in this section, matrices can be 

obtained for the considered multilayered 

plates/shells by simply expanding and 

assembling via the indexes k,τ,s. By expanding 

via indexes τ,s the order of expansion N from 1 

to 4 in the thickness direction is considered. The 

matrices are obtained for each considered layer, 

and the index k permits the multilayer 

assembling procedure, which can either be ESL 

or LW. 

5.4 Acronyms  

A system of acronyms is here given in order to 

define the several refined two-dimensional 

models developed for plates and shells. The 

choice made in this paper is that displacements 

can be in ESL or LW form, but the temperature 

is always considered in LW form. Therefore, a 

two-dimensional model is defined as ESL or 

LW, depending on the choice made for the 

displacement. ESL models are indicated as 

ED1-ED4, where E means the ESL approach, D 

means that the Principle of Virtual 

Displacements or their extensions to thermo-

mechanical analysis have been employed; the 

last digit, from 1 to 4, indicates the order of 

expansion in the thickness direction for both 

displacements and temperature. In the case of 

LW models, the letter E is replaced by a letter 

L, therefore the relative models are indicated as 

LD1-LD4. In the case of a thermo-mechanical 

analysis, additional parenthesis are introduced 

in the acronyms: (θa) is added in the case of 

partially coupled thermo-mechanical analysis 

with a linear assumed temperature profile; (θc) 

is used to indicate the case of partially coupled 

thermo-mechanical analysis with a calculated 

temperature profile; (TM) means a fully coupled 

thermo(T)-mechanical(M) analysis. No 

parenthesis are added in the case of a pure 

mechanical problem. 

6 Results and Discussion 

The results discussed in this section consider 

three main topics: -  evaluation of the thermo-

mechanical coupling in the case of free 

vibration problem; - evaluation of the thermo-

mechanical coupling for a static analysis with an 

applied mechanical load; - static analysis of 

structures subjected to an imposed temperature 

at the external surfaces. Further results and 

comments will be given at the conference. 

      The free vibration problem considers a 

square simply supported plate made of two 

isotropic layers with the same thickness 

(h1=h2=htot/2). The bottom layer is in Al2024 

(Young's modulus E = 73GPa, Poisson's ratio 

ν= 0.3 and mass density ρ = 2800 Kg/ 3
m . The 

thermal properties are the specific heat per unit 

mass Cv = 897 J/KgK and the thermal 

expansion coefficient α = 25X
610−  1/K) and the 

top layer is in Ti22 (E = 110GPa, ν = 0.32 and ρ 

= 4420 Kg/ 3
m . Its thermal properties are Cv = 

560 J/KgK and α = 8.6X
610− 1/K). By imposing 

the wave numbers m and n in the x and y 

directions, respectively, the considered two-

dimensional theory gives a number of 

frequencies equal the number of degrees of 

freedom through the thickness direction. Tab. 1 

considers the fundamental frequency f in Hz for 

m=n=1 for thickness ratios a/h=5, 10, 50 and 

100. For each thickness ratio the difference 

between the pure mechanical frequency and the 

thermo-mechanical one is less than 0.3%, this 

means that such an effect can be discarded in 

the free vibration analysis. The plate is 

multilayered, so advanced LW models are 

requested in order to identify the correct values 

of the frequency and the correct evaluation of 

the thermo-mechanical coupling.  In Fig. 2, the 

global thermo-mechanical coupling is evaluated 

for all the frequencies  fi (not only the 

fundamental one), and for several imposed 
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waves number (m=n) different plate 

configurations are considered (thick and thin 

plates, and one-layered and two-layered plates).  

The global thermo-mechanical       

 

 
Table 1. Free vibrations of the two-layered isotropic plate: 

fundamental frequency f in Hz for m=n=1. The difference 

in percentage is put in brackets. 

 

 
Figure 2. Global energetic thermo-mechanical coupling in 

one-layered and two-layered isotropic plates for different 

values of wave number (from m=n=1 to m=n=10000) and 

thickness ratio (a/h=10 and a/h=100). 

2 2
*

2
( )TMi i

i
i

f f

f

−
∆ = ∑ calculated by using LD4 and 

LD4(TM) theories. 

 

coupling  does not depend on the thickness 

ratio, wave number, lamination sequence and 

investigated frequency. 

     The second assessment considers the same 

lamination sequence of the case 1, but the 

geometry is a cylindrical shell panel with radius 

of curvature in β direction Rβ= ∞  and radius in 

α direction Rα=10m. The in-plane dimensions 

are a=π/3Rα and b=1m, the considered 

thickness ratio is Rα/h=50 with applied 

mechanical load at the top in z direction pz=-

200000Pa. In Fig. 3 the differences in terms of 

transverse displacement w are given through the 

thickness direction when the thermo-mechanical 

coupling is considered. If a bending problem is 

investigated, a temperature profile θ is 

generated with an increasing of temperature for 

the compressed part of the shell and a 

decreasing of temperature for its enlarged part. 

For this static case the thermo-mechanical 

coupling is very small (less than 0.5%) and it 

can be discarded as in the free vibration 

problem. In these two assessments the use of 

fully coupled thermo-mechanical models is not 

mandatory and the use of a refined pure 

mechanical plate/shell model is enough. 

 

Figure 3. Two-layered isotropic shell with applied 

mechanical load in the case of Rα/h=50. Transverse 

displacement through the thickness (top figure) and sovra-

temperature through the thickness (bottom figure). 

 

        The third assessment considers the same 

shell of the second case, but with a sovra-

temperature θt=1.0K at the top and θb=0.0K at 

the bottom. The static case in terms of 

transverse displacement w is given in Fig. 4, the 
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results can be provided by assuming a linear 

temperature profile (θa), by calculating it via 

Fourier heat conduction equation (θc) or by 

using a fully coupled thermo-mechanical (TM) 

model where the temperature profile is a 

primary variable of the problem. The shell has 

two layers with different elastic and thermal 

properties, so the temperature profile is never 

linear even if the shell is thin (Rα/h=50): the 

assumed temperature profile gives erroneous 

results, while (θc) and (TM) models gives 

correct and coincident results. It is evident that 

TM models are more efficient because in them 

we do not need to solve the Fourier heat 

conduction equation. 

 

 
Figure 4. Two-layered isotropic shell with imposed sovra-

temperature values in the case of Rα/h=50. Transverse 

displacement through the thickness (top figure) and sovra-

temperature through the thickness (bottom figure). 

7 Conclusions 

A fully coupled thermo-mechanical analysis has 

been proposed for one-layered and multilayered 

plates and shells. Both displacements and 

temperature are considered as primary variables 

of the problem, and they can be directly 

obtained from the solution of the governing 

equations. These features lead to some 

advantages: 

-  the effect of the thermo-mechanical coupling 

has been evaluated for free vibration analysis; 

the fully coupled thermo-mechanical analysis 

permits the frequency values and the vibration 

modes to be evaluated in terms of the 

displacement and temperature. The effect of 

thermo-mechanical coupling has been evaluated 

for the dynamic case through comparisons with 

pure mechanical analysis. The coupling effect is 

very small and it can therefore be discarded in a 

free vibration analysis; 

- in the case of an applied mechanical load to 

the structure, the fully coupled thermo-

mechanical analysis permits the displacement 

and the temperature generated by the strains to 

be evaluated. The effect of the thermo- 

mechanical coupling has been evaluated through 

comparisons with pure mechanical analysis. The 

coupling effect is very small and it can therefore 

be discarded in such an analysis; 

-  in the case of an applied temperature to the 

external surfaces of the shell, the fully coupled 

analysis permits such values to be easily 

imposed in the governing equations, and the 

relative displacements and temperature profile 

are directly obtained from the solutions of such 

equations. The advantages, with respect to a 

partially coupled thermo-mechanical analysis, 

have been clearly indicated. In this latter case, in 

fact, the temperature profile must be a priori 

defined (assuming it linear in the thickness 

direction or calculating it by solving the Fourier 

heat conduction equation) to determine the 

thermal load. 
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