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Abstract

This paper presents support vector regression
(SVR)-based adaptive controller for the longitu-
dinal dynamics of a generic hypersonic aircraft.
SVR has been proven to generate global solutions
contrary to neural networks, because SVR basi-
cally solves quadratic programming (QP) prob-
lems. With this advantage, the nominal dynam-
ics of the input-output feedback-linearized hy-
personic airplane is trained off-line. In order
to compensate the offline-training error and un-
known uncertainties in the control process, and
to avoid the controller singularity problem, an
adaptation algorithm of the offline-trained SVR
is proposed using the concept of virtual control
input. Stability of the overall system is analyzed
by the Lyapunov stability theory. Numerical sim-
ulations validate the performance of the proposed
approach.

1 Introduction

Dynamics of hypersonic aircrafts has highly non-
linear characteristics because flight conditions
are set at high altitudes and Mach numbers. This
means that there exist modeling inaccuracies and
uncertainties in the generic hypersonic air vehi-
cle model, and they can significantly deteriorate
the control performance of the aircraft. As a re-
sult, adaptive or robust control, which compen-
sates the effects of the uncertainties and model-
ing inaccuracies, respectively, has been studied

with various ideas such as adaptive sliding model
control [1], neural network (NN) based adaptive
control [2] or nonlinear dynamic inversion (NDI)
with stochastic robustness analysis [3].

In this study, support vector regression
(SVR)-based adaptive controller is proposed.
SVR transforms the original problem into a
quadratic programming (QP) problem whose
global solution can be obtained by QP solvers,
thus, it can be solved without the issues of the lo-
cal minima [12, 13]. Furthermore, it is straight-
forward to design the parameters of the SVR
since it has a fixed structure. With this advan-
tage, the nominal dynamics of the input-output
feedback-linearized hypersonic airplane can be
trained off-line. In order to handle the offline-
training error or uncertainties and modeling inac-
curacies, an adaptation rule of the offline-trained
SVR is proposed using the concept of the virtual
control input [5, 6]. The proposed adaptive al-
gorithm enables the controller to avoid the singu-
larity problem by utilizing the affine property of
the hypersonic aircraft dynamics [7, 8]. Stability
of the overall system is also analyzed by the ul-
timately bounded property in the nonlinear sys-
tem theory. Finally, numerical simulations vali-
date the performance of the proposed approach.

2 ε-Support vector regression

Support vector machines have recently become
popular learning tools for the classification and
regression [12, 13]. Typically, SVM classifica-
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tion is used to build a function that predicts bi-
nary values. On the other hand, SVM regression,
or SVR, generates functions whose outputs are
scalars. Unlike least-square or empirical meth-
ods, SVM regression maintains the same motiva-
tion as SVM classification: minimizing a bound
on the expected error for future test data. Thus,
SVR inherits interesting generalization proper-
ties and sparsity from SVM. This section briefly
reviews ε-SVR algorithm [4].

Consider the training dataset D =
{Xk,Yk}N

k=1, where Xk is the kth input data
in the input space X ⊂ ℜn and Yk is the
corresponding output value in the output space
Y ⊂ℜ. ε-SVR model is trained by the following
relationship between the input and output data
points:

F(Xk) =< w,Φ(Xk)>+c (1)

where w is a vector in the feature space F ⊂Rn,
Φ(Xk) is a mapping from the input space to the
feature space F , c is the bias term, and < ·, · >
stands for the inner product in F .

The ε-SVR model based on Vapnik’s ε-
insensitive loss function can be formulated in the
primal space, as the following[12]:

min
w,c,ξ ,ξ ∗

JP
ε =

1
2
‖w‖2 +C

N

∑
i=1

(ξi +ξ
∗
i ) (2)

subject to the constraints
Yi−< w,Φ(Xi)>−c ≤ ε +ξi
< w,Φ(Xi)>+c−Yi ≤ ε +ξ ∗i

ξi, ξ ∗i ≥ 0, i = 1,2, · · · ,N
(3)

where ε is the maximum value of tolerable error,
ξi’s and ξ ∗i ’s are slack variables, ‖ · ‖ is the Eu-
clidean norm, and C is a regularization parame-
ter that represents a trade-off between the model
complexity and the tolerance to the error larger
than ε .

The dual form of (2) becomes a quadratic
programming (QP) problem as follows:

min
η ,η∗

JD
ε =

1
2

N

∑
i=1

N

∑
j=1

κ(Xi,X j)(ηi−η
∗
i )(η j−η

∗
j )

+ε

N

∑
i=1

(ηi +η
∗
i )−

N

∑
i=1

Yi(ηi−η
∗
i ) (4)

subject to 0≤ ηi,η
∗
i ≤C, ∑

N
i=1(ηi−η∗i ) = 0, i =

1, · · · ,N where κ(Xi,X j) is a kernel function
given by κ(Xi,X j) = Φ(Xi)

T Φ(X j) = κi j. Moti-
vated by Mercer’s condition, the kernel function
handles the inner product in the feature space and
hence the explicit form of Φ(Xk) does not need
to be known [12]. In this study, the Gaussian
radial basis kernel function is used κ(Xi,X j) =

exp
(
− (Xi−X j)

T (Xi−X j)

σ2

)
.

The solution of the QP problem (4) is the op-
timum values of ηi’s and η∗i ’s. The value of the
bias c in the model can be determined by the con-
dition that at the point of the solution the prod-
uct between dual variables and constraints has to
vanish [13]. When only the support vectors are
considered, the model becomes

F(Xk) =
NSV

∑
i=1,(i∈SV )

ζiκ(Xk,Xi)+ c (5)

where ζi = ηi−η∗i , and NSV denotes the number
of support vectors in the model. The obtained ε-
SVR model is sparse in the sense that the whole
training data are represented by the support vec-
tors only and many of ζi’s are zero.

The control design presented in this pa-
per employs the ε-SVR model (5) to ap-
proximate any nonlinear function G(Xk) over
a compact set X ⊂ Rn. The nonlin-
ear function G(Xk) is expressed as G(Xk) =

∑
NSV
i=1,(i∈SV )

ζ ∗i κ(Xk,Xi) + c∗ + ε = w∗T φ(Xk) +

ε, where w∗ =
[
ζ ∗1 ζ ∗2 · · · ζ ∗NSV

c∗
]T

is ideal
weights, ε is the approximation error in the
sense of ε-insensitive model, and φ(Xk) =
[κ(Xk,X1) κ(Xk,X2) · · · κ(Xk,XNSV ) 1]T .

Assumption 1 There exists an ideal constant
vector of weights w∗ that minimizes |ε| for all
Xk ∈X :

w∗ , arg min
w∈RNw

{
sup

Xk∈X

∣∣G(Xk)−wT
φ(Xk)

∣∣} .

(6)
where Nw = NSV + 1. The ideal weight vector,
which consists of the ideal Lagrange multipliers
corresponding to the support vectors and bias
term, is required for the stability proof.
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3 Hypersonic air vehicle model

Let us consider the longitudinal dynamics of the
hypersonic aircraft [1, 2, 3]:

V̇ =
T cosα−D

m
− µ sinγ

r2 , (7)

γ̇ =
L+T sinα

mV
− (µ−V 2r)cosγ

V r2 , (8)

ḣ = V sinγ, (9)
α̇ = q− γ̇, (10)
q̇ = Myy/Iyy, (11)

where

L =
1
2

ρV 2SCL, (12)

D =
1
2

ρV 2SCD, (13)

T =
1
2

ρV 2SCT , (14)

Myy =
1
2

ρV 2Sc̄ [CM(α)+CM(δ )+CM(q)] ,

(15)
r = h+RE , (16)

CL = 0.6203α, (17)

CD = 0.6450α
2 +0.0043378α +0.003772,

(18)

CT =

{
0.02576β if β < 1

0.0224+0.00336β if β > 1
,

(19)

CM(α) = −0.035α
2 +0.036617α +5.3261−6,

(20)

CM(q) =
c̄

2V

(
−6.796α

2 +0.3015α−0.2289
)

q,

(21)

CM(δe) = ce(δe−α). (22)

The engine dynamics are modeled by a second
order system:

β̈ =−2ζ ωnβ̇ −ω
2
n β +ω

2
n βc. (23)

In the dynamics of the hypersonic aircraft, states
variables are composed of velocity V , angle of
attack α , altitude h, pitch rate q and flight path

angle γ , and control inputs are throttle setting βc
and elevator deflection δe. The interested outputs
for the input-output feedback linearization are V
and h.

As shown in [1], the above dynamics (7)-(11)
are input-output feedback-linearized as in the fol-
lowing manner:

ξ̇1 = ξ2,

ξ̇2 = ξ3,

ξ̇3 = f1(ξ )+g11(ξ )u1 +g12(ξ )u2,

ξ̇4 = ξ5,

ξ̇5 = ξ6,

ξ̇6 = ξ7,

ξ̇7 = f2(ξ )+g21(ξ )u1 +g22(ξ )u2, (24)

where ξ1 = V , ξ4 = h, u1 = βc, u2 = δe and
the detailed materials on the above input-output
feedback-linearized system are given in [1]. For
the sake of the simplicity, (24) is represented as:

ξ̇ = Aξ +B
(

f (ξ )+g(ξ )u
)
, (25)

where ξ = [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ]
T , u = [u1 u2]

T ,

A =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


,B =



0 0
0 0
1 0
0 0
0 0
0 0
0 1


,

f (ξ ) =
[

f1(ξ )
f2(ξ )

]
,

and

g(ξ ) =
[

g11(ξ ) g12(ξ )
g21(ξ ) g22(ξ )

]
.

In this study, it is assumed that f (ξ ) and g(ξ ) are
unknown smooth function and matrix function,
respectively, and their nominal functions f̄ (ξ )
and ḡ(ξ ) are known. Then, (25) is represented
as:

ξ̇ = Aξ +B
(

f̄ (ξ )+∆ f +
(
ḡ(ξ )+∆g

)
u
)

(26)

where ∆ f and ∆g are unknown uncertainties.
Since g(ξ ) is a smooth matrix function, it is
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bounded within some compact set. Therefore, the
following assumptions are satisfied as commonly
made in the literature [7, 8].

Assumption 2 The sign of the eigenvalues of
g(ξ ) is known, and there exist positive constants
gub and glb such that gub ≥ ‖g(ξ )‖ ≥ glb > 0,
∀ξ ∈Ω⊂R7. In fact, g(ξ ) in (25) has 2 positive
eigenvalues for all ξ .

Assumption 3 There exists a constant gd
ub > 0

such that ‖ġ(ξ )‖ ≤ gd
ub, ∀ξ ∈Ω⊂ R7.

Assumption 4 The nominal dynamics in (26),
i.e., ξ2,ξ3,ξ5,ξ6,ξ7, f̄ (ξ ) and ḡ(ξ ) are known.

Assumption 5 The uncertainties ∆ f , ∆g are
generated by the following modeling inaccura-
cies

m = m0(1+∆m), Iyy = I0(1+∆I),
S = S0(1+∆S), c̄ = c̄0(1+∆c̄),
ρ = ρ0(1+∆ρ), ce = ce0(1+∆ce),

where the maximum values of all the additive un-
certainties are set to 0.1.

4 Control system design for the hypersonic
aircraft

4.1 Offline training of the input-output
feedback-linearized hypersonic aircraft

In order to design the velocity and altitude track-
ing control system, we define e1 and e4 as

e1 = ξ1−Vr, (27)
e4 = ξ4−hr, (28)

where Vr and hr are reference signals for V and h.
Then, if (26) are represented as the known f̄ (ξ )
and ḡ(ξ ) only, error dynamics is given by

ė1 = e2,

ė2 = e3,

ė3 = f̄1(ξ )+ ḡ11(ξ )u1 + ḡ12(ξ )u2−
...
V r,

ė4 = e5,

ė5 = e6,

ė6 = e7,

ė7 = f̄2(ξ )+ ḡ21(ξ )u1 + ḡ22(ξ )u2−
....
h r,

(29)

where ei = ξi −V (i−1)
r , i = 2,3 and e j = ξ j −

h(k−1)
r , j = 5,6,7, k = 2,3,4.

If the control input u(= [u1 u2]
T ) is designed

in the following manner

u = ḡ−1(ξ )
(
− f̄ (ξ )+ν

)
(30)

where ν = [ν1 ν2]
T ,

ν1 = −k1e1− k2e2− k3e3 +
...
V r,

ν2 = −k4e4− k5e5− k6e6 +
....
h r,

and ki(> 0, i = 1, · · · ,7)’s are properly chosen,
then the final error dynamics is given by

ė = Āe (31)

where

Ā=



0 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
−k1 −k2 −k3 0 0 · · · 0

0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

0 0 0 −k4 −k5 · · · −k7


≤ 0,

(32)
e = [e1 e2 · · · e7]

T , and (31) becomes an
asymptotically stable system.

Since the control input (30) is based on the
nominal model only, it is not possible to control
the real plant (26) using (30). In order to compen-
sate the unknown uncertainty included in (26),
the control input (30) is trained offline using the
SVR algorithm and then, adapted online.

The SVR-based offline-training for (30) is
performed as:

ḡ−1(ξ ) f̄ (ξ ) = ŵT
f gφ f g(ξ )+ εt, f g, (33)

ḡ−1(ξ ) = ŵT
g φg(ξ )+ εt,g, (34)

where εt, f g, εt,g are inherent offline-training er-
rors. Then, (30) is rearranged as:

u = −ḡ−1(ξ ) f̄ (ξ )+ ḡ−1(ξ )ν

= −ŵT
f gφ f g(ξ )+ ŵT

g φg(ξ )ν . (35)

The reason why the offline-training of
ḡ−1(ξ ) f̄ (ξ ), ḡ−1(ξ ) is performed instead of that
of f̄ (ξ ), ḡ(ξ ), which has been studied in [5, 6],
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is that ḡ(ξ ) can be singular in the adaptation pro-
cess if we do not add some manipulation on the
adaptive rule. The above approach has been stud-
ied originally in [7, 8] under the backstepping ap-
proach. In this study, it is applied to the feedback
linearization framework by introducing the vir-
tual control for each ξi.

4.2 Adaptive feedback linearization for the
hypersonic aircraft

Even though the error dynamics in (31) is com-
monly used in the feedback linearization-based
control literature, it is not applicable in our study
because the uniformly ultimately boundeness of
the error dynamics and the controller singularity
problem cannot be considered simultaneously us-
ing the error dynamics (31). In order to settle
these two issues concurrently, the new error dy-
namics is reformulated by introducing the virtual
control [6].

Let z1 = ξ1−Vr and z4 = ξ4− hr. Then, the
derivatives of z1 and z4 are given by

ż1 = ξ̇1−V̇r = ξ2−V̇r, (36)
ż4 = ξ̇4− ḣr = ξ5− ḣr. (37)

In order to control z1 and z4, a new variables z2
and z5 are defined as z2 = ξ2− ξ̄2, z2 = ξ5− ξ̄5,
respectively. Then, (36) and (37) become

ż1 = ξ2−V̇r = z2 + ξ̄2−V̇r, (38)
ż4 = ξ5− ḣr = z5 + ξ̄5− ḣr. (39)

If ξ̄2 and ξ̄5 are defined as

ξ̄2 =−k1z1 +V̇r, (40)
ξ̄5 =−k4z4 + ḣr, (41)

and used as the virtual control for z1 and z4 dy-
namics, then ż1 and ż4 are obtained by

ż1 = −k1z1 + z2, (42)
ż4 = −k4z4 + z5. (43)

According to the definition of z2, ż2 is ob-

tained by

ż2 = ξ̇2− ˙̄
ξ2 = ξ3− (−k1ż1 +V̈r)

= ξ3− (−k1(−k1z1 + z2)+V̈r)

= −k2
1z1 + k1z2 +ξ3−V̈r

= −k2
1z1 + k1z2 + z3 + ξ̄3−V̈r, (44)

where z3 = ξ3− ξ̄3. ξ̄3 is defined as

ξ̄3 = k2
1z1− (k1 + k2)z2 +V̈r. (45)

Using the virtual control ξ̄3, ż2 is derived as

ż2 =−k2z2 + z3. (46)

Similar to the above, ż5 and ż6 are derived as:

ż5 = −k5z5 + z6, (47)
ż6 = −k6z6 + z7, (48)

where z6 = ξ6− ξ̄6, z7 = ξ7− ξ̄7 and

ξ̄6 = k2
4z4− (k4 + k5)z5 + ḧr, (49)

ξ̄7 = −k3
4z4 +(k2

4 + k4k5 + k2
5)z5

+(k4 + k5 + k6)z6 +
...
h r. (50)

Finally, the time derivatives of z3 and z7 are de-
scribed as

ż3 = ξ̇3− ˙̄
ξ3 = f1 +g11u1 +g12u2 + k3

1z1

−(k2
1 + k1k2 + k2

2)z2 +(k1 + k2)z3−
...
V r,

(51)

ż7 = ξ̇7− ˙̄
ξ7 = f2 +g21u1 +g22u2− k4

4z4

+(k3
4 + k2

4k5 + k4k2
5 + k2

5)z5

−(k2
4 + k4k5 + k2

5 + k4k6 + k5k6 + k2
6)z6

+(k4 + k5 + k6)z7−
....
h r. (52)

Then, the transformed error dynamics is given by

ż1 = −k1z1 + z2,

ż2 = −k2z2 + z3,

ż3 = f1 +g11u1 +g12u2− c1z1− c2z2

−c3z3−
...
V r,

ż4 = −k4z4 + z5,

ż5 = −k5z5 + z6,

ż6 = −k6z6 + z7,

ż7 = f2 +g21u1 +g22u2− c4z4− c5z5

−c6z6− c7z7−
....
h r, (53)
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where

c1 = −k3
1,

c2 = k2
1 + k1k2 + k2

2,

c3 = −(k1 + k2),

c4 = k4
4,

c5 = −(k3
4 + k2

4k5 + k4k2
5 + k2

5),

c6 = k2
4 + k4k5 + k2

5 + k4k6 + k5k6 + k2
6,

c7 = −(k4 + k5 + k6).

For the sake of the simplicity, (53) is rearranged
as:

ż1 = Azz1

ż2 = f (ξ )+g(ξ )u−Π

= g(ξ )
[

g−1(ξ ) f (ξ )+u−g−1(ξ )Π

]
(54)

where z1 = [z1 z2 z4 z5 z6]
T , z2 = [z3 z7]

T ,

Az =


−k1 1 0 0 0 0 0

0 −k2 1 0 0 0 0
0 0 0 −k4 1 0 0
0 0 0 0 −k5 1 0
0 0 0 0 0 −k6 1

 ,
and

Π =

[
Π1
Π2

]
=

[
c1z1 + c2z2 + c3z3 +

...
V r

c4z4 + c5z5 + c6z6 + c7z7 +
....
h r

]
.

Then, the control input u is defined as using (33),
(34)

u =−ŵT
f gφ f g(ξ )+ ŵT

g φg(ξ )Π−K2z2 (55)

where

K2 =

[
k3 0
0 k7

]
.

By applying the above control input to (54), we
obtain

ż1 = Azz1

ż2 = g(ξ )
[

g−1(ξ ) f (ξ )− ŵT
f gφ f g(ξ )

+ŵT
g φg(ξ )Π−K2z2−g−1(ξ )Π

]
= g(ξ )

[
w̃T

f gφ f g(ξ )− w̃T
g φg(ξ )Π−K2z2 + ε

]
(56)

where w̃ f g , w∗f g− ŵ f g, w̃g , w∗g− ŵg,

g−1(ξ ) f (ξ ) = w∗f g
T

φ f g(ξ )+ εa, f g

g−1(ξ ) = w∗g
T

φg(ξ )+ εa,g

ε = εa, f g− εt, f g +(εt,g− εa,g)Π

w∗f g and w∗g are the ideal weights for g−1(ξ ) f (ξ ),
g−1(ξ ), respectively, and εa, f g, εa,g are the inher-
ent online-approximation errors.

Theorem 1 The error states z1,z2 and the
weight estimation error w̃ f g and w̃g are uniformly
ultimately bounded in the following compact set
D:

D=

{
z1 ∈ℜ5,z2 ∈ℜ2, w̃ f g ∈ℜNSV, f g+1,

w̃g ∈ℜNg,2+1
∣∣ zT

1 z1 + zT
2 g−1(ξ )z2

+ 1
max{γ f g,γg}

(
tr
[
w̃T

f gw̃ f g
]
+ tr
[
w̃T

g w̃g
])

< C
τ

}
where

C =
k f g

2
‖w∗f g‖2

F +
kg

2
‖w∗g‖2

F +
‖ε‖2

4k22
,

and subscript F is the Frobenius norm, if the fol-
lowing adaptation rule is chosen

˙̂w f g = γ f gφ f g(ξ )z2−κ f gγ f gŵ f g (57)
˙̂wg = −γgφg(ξ )Πz2−κgγgŵg (58)

with positive constants γi, ki (i = f g,g).

Proof. Consider the following Lyapunov
function:

V =
1
2

zT
1 z1 +

1
2

zT
2 g−1(ξ )z2 +

1
2γ f g

tr
[
w̃T

f gw̃ f g
]

+
1

2γg
tr
[
w̃T

g w̃g
]
. (59)

Let us first differencitate the Lyapunov
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function (59). Then

V̇ = −
2

∑
i=1

(
kiz2

i − zizi+1
)
−

6

∑
j=4

(
k jz2

j − z jz j+1
)

−z2
T g−1(ξ )ġ(ξ )g−1(ξ )z2 + z2

T g(ξ )−1ż2

+
1

γ f g
tr
[
w̃T

f g ˙̃w f g
]
+

1
γg

tr
[
w̃T

g ˙̃wg
]

≤ −zT
1 K′1z1− z2

T g−1(ξ )ġ(ξ )g−1(ξ )z2

−zT
2 (K21 +K22)z2 +

1
γ f g

tr
[
w̃T

f g
(

˙̃w f g

+γ f gφ f g(ξ )z2
)]

+
1
γg

tr
[
w̃T

g
(

˙̃wg− γgφg(ξ )Πz2
)]

+zT
2 ε

= −zT
1 K′1z1− z2

T(K21 +g−1(ξ )ġ(ξ )g−1(ξ )
)
z2

+
1

γ f g
tr
[
w̃T

f g
(

˙̃w f g + γ f gφ f g(ξ )z2
)]

+
1
γg

tr
[
w̃T

g
(

˙̃wg− γgφg(ξ )Πz2
)]

−zT
2 K22z2 + zT

2 ε (60)

where

K′1 =


k′1 0 0 0 0
0 k′2 0 0 0
0 0 k′4 0 0
0 0 0 k′5 0
0 0 0 0 k′6

 ,

ki = k′i +1/2, k′i > 0, i = 1,4,
k j = k′j +1, k′j > 0, j = 2,5,6,

K2 = K21 +K22,

K21 =

[
k31 0
0 k71

]
, K22 =

[
k32 0
0 k72

]
,

and

ki = ki1 + ki2 +1/2, ki1,ki2 > 0, i = 3,7.

In the above, 1 and 1/2 are used to cancel the
cross terms zizi+1, i = 1,2,4,5,6.

When Assumptions 2 and 3 hold, the fol-
lowing inequality is satisfied:

−z2
T (K21 +g−1(ξ )ġ(ξ )g−1(ξ )z2

≤−

(
k21−

gd
ud

2glb
2

)
‖z2‖2, (61)

where k21 = λmin(K21) and λ (·) is the eigen-
values of (·). Then, k21 is chosen as

k∗21 ,

(
k21−

gd
ud

2glb
2

)
> 0. (62)

The term −zT
2 K22z2 + zT

2 ε is bounded in the
following manner:

−zT
2 K22z2 + zT

2 ε ≤ −k22

(
‖z2‖2− εT

k22
z2

+
‖ε‖2

4k2
22

)
+
‖ε‖2

4k22

≤ ‖ε‖2

4k22
, (63)

where k22 = λmin(K22).
Then, with the adaptation rule in (57) and

(57), V̇ satisfies the following inequality:

V̇ ≤ −k′1‖z1‖2− k∗21‖z2‖2−
k f g

2
‖w̃ f g‖2

F

−
kg

2
‖w̃g‖2

F +
k f g

2
‖w∗f g‖2

F +
kg

2
‖w∗g‖2

F +
‖ε‖2

4k22
(64)

where

tr
[
k f gw̃T

f gŵ f g
]

= tr
[

k f gw̃T
f g

(
w∗f g− w̃ f g

)]
≤ k f g‖w̃ f g‖F‖w∗f g‖F − k f g‖w̃ f g‖2

F

≤ k f g
2 ‖w

∗
f g‖2

F −
k f g
2 ‖w̃ f g‖2

F

,(65)

tr
[
kgw̃T

g ŵg
]

= tr
[

kgw̃T
g
(
w∗g− w̃g

)]
≤ kg‖w̃g‖F‖w∗g‖F − kg‖w̃g‖2

F

≤ kg
2 ‖w

∗
g‖2

F −
kg
2 ‖w̃g‖2

F

,

(66)
and k′1 = λmin(K′1). Note that ˙̃wi = ẇ∗i − ˙̂wi =
− ˙̂wi (i = f g,g) is used to derive (64).

In order to derive uniformly ultimate
boundedeness, we choose

k∗21 ≥
µ

glb
(67)

for some µ > 0, by designing k21 in the fol-
lowing manner:

k21 >
µ

glb
+

gd
ub

2glb
2 . (68)
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Then, the time derivative V̇ of the Lyapunov
function (64) is given by

V̇ ≤ −k′1‖z1‖2− µ

glb
‖z2‖2−

k f g

2
‖w̃ f g‖2

F

−
kg

2
‖w̃g‖2

F +C

≤ −k′1‖z1‖2−µzT
2 g−1(ξ )z2−

k f g

2
‖w̃ f g‖2

F

−
kg

2
‖w̃g‖2

F +C (69)

where

C =
k f g

2
‖w∗f g‖2 +

kg

2
‖w∗g‖2 +

‖ε‖2

4k22
,

and

0 < τ < min
{

k′1, µ,
k f gγ1

2
,

kgγ2

2

}
. (70)

Therefore, the error states z1,z2 and the
weight estimation error w̃ f g and w̃g are uni-
formly ultimately bounded in the compact set
D.

5 Numerical simulations

This section presents the numerical simulation
results for the proposed SVR-based adaptive con-
trol scheme. As explained before, the proposed
control scheme consists of two steps: first, the of-
fline training of the nominal plant and second, the
online adaptation with the offline-trained model.

In order to train the nominal ḡ−1(ξ ) f̄ (ξ ) and
ḡ−1(ξ ) offline, input-output data pairs are ex-
tracted from the response of the nominal plant
about the sinusoidal reference signal with the
controller (30). The simulation for the offline
training data is performed for 100 seconds with
0.01 sampling time, thus, the length of data is
10,000. The offline-training has been performed
using LIBSVM [14].

Figs.1-3 show the results of the offline-
trained ŵT

f gφ f g(ξ ) and ŵT
g φg(ξ ), and the number

of the support vectors for each SVR is given in
Table 1. As shown in Figs. 1-3 and Table 1,
the offline-trained ŵT

f gφ f g(ξ ) and ŵT
g φg(ξ ) show

Table 1: The number of support vectors for
ḡ−1(ξ ) f̄ (ξ ) and ḡ−1(ξ )

ŵ f g,1 ŵ f g,2 ŵg,11 ŵg,12 ŵg,12 ŵg,12

# of
SVs

46 96 63 44 52 44

Fig. 1 : Results of the offline-trained ḡ−1 f̄

the sufficient approximation performance, and do
not need the total input data in order to learn the
nominal system, thanks to the sparse property ex-
plained in Sec. 2.

In the online process, the offline-trained
ḡ−1(ξ ) f̄ (ξ ) and ḡ−1(ξ ) are adjusted to compen-
sate the difference ∆ f ,∆g between the nominal
model f̄ (ξ ), ḡ(ξ )and real system f (ξ ),g(ξ ). In
order to validate the performance of the proposed
adaptive rule, the simulations are performed on
(25) without any uncertainties. The reference
commands Vr,hr are given in Fig. 4. As shown in
Fig. 5, the performance of the proposed adaptive
control is better than that of the offline-trained
control only even when there is no uncertainty,
because the exact or global estimation of the non-
linear function cannot be achieved by the SVRs
trained over some extracted domain. In Fig. 6,
7, the weights of the ŵT

f gφ f g(ξ ) and ŵT
g φg(ξ ) are

adjusted to learn the nonlinear term which is not
trained offline exactly.
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Fig. 2 : Results of the offline-trained ḡ−1
11 , ḡ

−1
12

Fig. 3 : Results of the offline-trained ḡ−1
21 , ḡ

−1
22

Fig. 4 : Reference commands Vr, hr

Fig. 5 : Tracking errors with no uncertainty

Fig. 6 : Norm histories of ŵ f g

Fig. 7 : Norm histories of ŵg

9
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Fig. 8 : Tracking errors with uncertainty

Fig. 9 : Norm histories of ŵ f g

Fig. 10 : Norm histories of ŵg

Fig. 11 : Control input histories

Finally, the additive uncertainties in Assump-
tion 5 are added to the nominal values. As shown
in Fig. 8, the performance of the SVR-based
control is improved with the adaptation, while
the non-adaptive control (i.e., using the offline-
trained SVRs only) degrades the overall perfor-
mance. The boundedness of the weight norm and
control input are shown in Figs. 9, 10 and 11.

6 Conclusions

In this study, an adaptive feedback linearization-
based control algorithm is presented using sup-
port vector regression for hypersonic aircraft con-
trol. The main idea of the proposed algorithm is
that the offline estimator is designed by the SVR
algorithm and the adaptation rule for the weight
value of the offline-trained SVR is derived by
defining a virtual control. By introducing the vir-
tual control, online adaptation rule of the offline-
trained SVR is derived using all the error states,
and by utilizing the affine property of the sys-
tem dynamics, the controller singularity problem
can be avoided. Uniformly ultimate boundedness
of the overall error dynamics is analyzed by the
Lyapunov stability. Finally, numerical simulation
was performed in order to validate the effective-
ness of the proposed algorithm using the longitu-
dinal dynamics of the hypersonic aircraft.
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