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Abstract  
With unstructed elements as basic element and 
normal orthogonal basis as test functions, a p-
multigrid solution strategy is developed for 
discontinuous Galerkin discretizations of the 
two-dimensional Euler equations. This solver is 
used to compute transonic flow over the airfoil 
NACA0012 and RAE2822. The numerical flux of 
Euler equations are calculated by using Roe 
scheme. Along the direction of time, an explicit 
Runge-Kutta scheme is applied for the p level 
(i.e. the higher order accuracy), while an 
implicit scheme is applied for the p-1 level(i.e. 
the lower order accuracy). The performance of 
the solver in term of convergence efficiency is 
investigated. Compared with the single grid (SG) 
solver, the p-multigrid (MG) solver is found to 
deliver nearly optimal convergence rate. At last, 
some reason of the acceleration about it is 
analyzed. 

1  Background  
In recent years, with the aviation-

astronautics science and technology rapid 
development, there have many new 
requirements to computational fluid dynamics 
(CFD) methods, especially in aspect of 
enhancing the convergence rate and accuracy. 
However, many of the traditional CFD methods 
have been very difficult to meet the need. So 
scientists and engineers have conducted a long-
term in-depth study, especially since the 1990s, 
the Runge-Kutta discontinuous Galerkin(RKDG) 
method has been given by Cockburn and Chi-
Wang Shu as the representative[1], which has 
become a hot issue, and reached a high-
precision approach to many problems. For 

discontinuous Galerkin (DG) formulations, the 
element-to-element coupling exists only through 
the flux at the shared boundaries between 
elements, therefore, the shockwave is easier to 
capture using RKDG method to solve 
aerodynamics problems.  

However,  to improve accuracy and 
enhance the convergence rate is often a conflict, 
DG method is no exception. To enhance the 
precision approach based on the need to 
improve the function of the space dimension, 
each corresponding to the number of degrees of 
f reedom have increased and each uni t 
corresponds to the number of degrees of 
freedom have increased. On the other hand, in 
order to meet the convergence requirements of 
t h e  d i s c o n t i n u o u s  G a l e r k i n  f o r m a t , 
a large number of numerical integration need to 
be calculated on the cell[2]. All this has greatly 
increased the CPU time, to a certain extent, 
limited the application of DG method. 

In order to resolve this contradiction, this 
article applied multi-grid technology to DG 
method format. Different from the traditional 
multi-grid algorithm design, this paper 
established the p-Multigrid algorithm which 
needn’t adjust the physical scale of the grid, but 
through adjusted basis function of the space 
dimension to achieve the method directly. 

The organization of this paper is as follows. 
The governing equations to be solved are 
discribed in Section 2. Section 3 discribes the 
spatial discretization used in this work, 
including the implicit solution for the low level 
of the multigrid solver. Section 4 discribed the 
initial and boundary conditions. In Section 5, 
the operators for the multigrid solver are 
constructed. Section 6 discribed the two level 
multi-grid solvers and in Section 7 the 
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computational result is showed, including some 
analysis. Finaly, Section 8 summarizes the 
conclusions of this paper. 

2  Governing Equations  
The conservative form of the compressible 

Euler equations describing the conservation of 
mass, momentum and total energy are given in 
vectorial form 

0)()(
=

∂
∂

+
∂

∂
+

∂
∂

y
QG

x
QF

t
Q  (1) 

The expression of each vector is as follows: 
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where ρ is the fluid density， ),( vu are the fluid 
velocity Cartesian components, p is the pressure 
and E is the total energy per unit volume 
respectively. For an ideal gas, the equation of 
state related the total energy to pressure by: 
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where 4.1=γ is the ratio of specific heats. 

3  Spatial Discretization 
First, the computational domain Ω  is 

divided into a set of non-overlapping unstructed 
elements 
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. In this article, a set of triangle 

elements are obtained. The partial solution 
space of DGM is defined as a set of the 
multinomial with different exponent 
number ,which is recorded as )(kVh . On each 
unit,the finite element solution is expressed as: 
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where n  is the dimension number of the partial 
solution space, and jϕ ),,2,1( nj ⋅⋅⋅= is the basis 
functions. According to variational principle, it 

is necessary to suppose the test function space 
to be the same with the solution space[3]. In the 
following process, inner product operation is 
made in such scheme : 
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Let ),( yx nn  be the normal vector in the 
boundary of the current element,the direction of 
which is outward, and define the flux vector as: 
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According to Green’s theorem, the weak form 
of equations (4), namely, the discontinuous 
Galerkin equation is obtained: 
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where nH 



⋅  is the numerical flux between the 
current and the neighboring cells. Here, Roe’s 
upwind scheme is applied[4]. By means of linear 
substitution, each element is mapped into an 
isosceles triangle under the computation 
coordinate system, namely, 
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 (8) 

According to the Gram-Schmidt principle[5], the 
following standard orthogonal basis is 
established: 
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and the basis functions have following nature: 
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For simplicity, 1e , 2e , 3e are taken as the basis 
functions for the p level (i.e. the higher order 
accuracy) discretization. Let 

),(),( ηξϕ jj eyx = )3,2,1( =j , the mass matrix 
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and its inverse correspond to the discontinuous 
Galerkin equation degenerated to diagonal 
matrix, respectively. Thus, it is clear that the 
computational process obtains an obvious 
simplification. Consider the triangle element, 
Gauss integral is applied to replace the one in 
element interior and boundary. Similar with the 
situation in FVM, local time steps is used on 
each element. Unified a four-order explicit 
Runge-Kutta scheme, the stability of the 
algorithm is enhanced. Such is the discretization 
of the p level. Finally, the steady state of the 
flowfield is obtained . 
     Consider the discretization for the p-1level 
(i.e. the lower order accuracy), the constant 
basis is taken as the test function: 

1=e , iih QeQQ ==  (31) 

In order to accelerate the convergence rate, 
an implicit discretization is used on this level: 
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where, V is the area of the element, and ijS is 

the length of each boundary. n
i

n
ii QQQ −=∆ +1 . 

For simplicity, Taylor’s law is applied: 
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Where 
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Jacobian Matrix is: 
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And its spectrum radius is: 
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where a  is local sound speed. 
Consider the current element, it is obvious 

that: 
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So, for each element, an implicit liner system is 
obtained as following: 
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4. Initial and Boundary Conditions 
Consider the flowfield of the airfoil, in the 

initialization, the state of each element is 
consistent with the one on the far field. For 
discontinuous Galerkin equation, it is necessary 
to initialize the coordinate of the finite element 
solution, namely the time-dependent variables 
in the partial space, i.e. the finite element 
solution needs to approach the initialization of 
the flow field squarely. Furthermore, the 
streamline must be consistent with the wall. 

5. Operator Definition 
Consider the two terms of discretized 

system above, both of them can be given by[6]: 

ppp fQR =)(  (119
) 

where )( pp QR is the associated nonlinear 
system, and pf  is a source term(zero for the 
fine-level problem). The discrete residual pr is 
defined as: 

)( pppp QRfr −=  (20) 

In order to define the residual restriction 
operator, the basis function for p-1 level is 
expressed by the one for p level[7]: 
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In the linear space generated by the basis 
functions, it is obvious that the vector group 

},,{ 321
ppp ΦΦΦ is linear independence and the 

vector group },,,{ 321
1

1
pppp ΦΦΦΦ − is linear 

dependence. According to the knowledge in 
advanced algebra, the expression form about 
formula (22) is only. The coefficient 1−p

ijα can be 

easily obtained: 
2
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the residual restriction operator, 1−p
pI , is 

obtained as: 
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In the computational domain, D , the state 
variables 1−pQ  is the best square approaches of 

pQ : 
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After the simplification of equation(24), it is 
obtained that 
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So, the state restriction operator, 1~ −p
pI ,is 
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At last, according to physics significance, the 
state prolongation operator can be easily 
obtained as: 
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Now, it is obvious that most elements of the 
restriction and prolongation operator are equal 
to zero as a result of the normal orthogonal basis 

being used. In practice, operators with this 
nature make the computational process simple 
obviously. 

6.Two Level Multigrid Solver 
Now, a two level multigrid solver is 

designed as the following four steps: 
 

Step 1:  
On the p level, Runge-Kutta scheme is applied 
along the direction of time; 
Step 2:  
Restrict the state and residual vectors from the p 
level to the p-1 level, i.e. 
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Step 3: 
Equations are obtained on the p-1 level as 
follows 
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According to Taylor’s law, 
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Further, a simplification of equations (29) are 
obtained 
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It is known that the large-scale sparse linear 
system can be solved by LUSGS algorithm 
easily. 
Step 4:  
Prolongate the p-1 level error and correct the p 
level state: 
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p
pp QIQQ  (32) 

 
Now, a V-circle of the two level p-multigrid 
solver is completed. After several V-circle, the 
flowfield of the airfoil NACA0012 can be 
computed rapidly by this solver. 
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7.Computational Result and Analysis 
Around the airfoil NACA0012 and 

RAE2822, unstructed elements are generated, 
and the grid becomes highly concentrated 
approach to the wall, as Figures.1-2 shown 
below: 

 
Fig 1. Grid for the computational domain (NACA0012) 

 
Fig 2. Grid for the computational domain (RAE2822) 
 
Consider the transonic flow over the airfoil 

NACA0012. Let 8.0=∞Ma , 25.1=α  be the 
boundary condition in the far field. Then, the 
flow field is computed by single grid (SG) and p 
multigrid (MG) solver respectively. 
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Fig 3.Distribution of pressure coefficient(NACA0012) 

 
Fig 4. Distribution of isopiestics (NACA0012) 
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Fig5. The 2L norm of the residual vs. number of iterations  

(NACA0012) 
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Fig6. The 2L norm of the residual vs. CPU times  

(NACA0012) 
Figure 3 shows the distribution of pressure 

coefficient around the airfoil. It is obvious that 
the result obtained by MG solver is completely 
consistent with the one obtained by SG solver. 
Particularly, it is difficult to separate the curve 
near the shockwave computed by MG solver 
from the one computed by SG solver. So, it is 
believed that the precision of MG solver is not 
reduced compared to SG solver. Futhermore, 
not only the strong shock wave but also the 
weak one is captured, which is more splendid 
than the performance of FVM. Figure 4 shows 
the Distribution of isopiestics around the airfoil. 
Figure 5 shows the 2L  norm of the residual vs. 
number of iterations, and Figure 6. shows the 2L  
norm of the residual vs. CPU time. Thanks to 
the application of p-multigrid solver, 80~90 
percent iterations and CPU time is saved, 
approximately. Clearly, p-multigrid solver 
designed in this article has a positive effect on 
the convergence rate. It implies that the implicit 
scheme on the lower level of p-multigrid correct 
the finite element solution effectively. In the 
process of iteration, longer time step can be 
used in the implicit scheme, rather than in the 
explicit one. Simultaneously, the system is 
simplified according Taylor’s law as equations 
(30), in which residual does not need to be 
caculated complicated furthermore. So, the 
implicit scheme plays a decisive role in the 
aspect of enhancing the algorithm efficiency. 
In order to confirm the effect of the p-multigrid 
method futhermore, the transonic flowfield of 

the airfoil RAE2822 is simulated. Let 
729.0=∞Ma , 31.2=α  be the boundary condition 

in the far field, and the result is shown as 
Figures 7-10. 
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Fig 7.Distribution of pressure coefficient(RAE2822) 

 
Fig 8. Distribution of isopiestics (RAE2822) 
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Fig9. The 2L norm of the residual vs. number of iterations 

(RAE2822) 
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Fig10. The 2L norm of the residual vs. CPU times  

 (RAE2822) 
 
Clearly, the effect of acceleration obtains a 

perfect demonstration again. 

8. Concluding Remarks and Work in 
Progress 

A high-order discontinuous Galerkin 
discretization using normal orthogonal basis 
functions has been developed and implemented 
using a p-multigrid approach. Euler equations 
has been solved by this solver efficiently and 
the transonic flowfield is simulated perfectly. 
Compared with the single grid solver, a great 
quantity CPU time is saved. Future work will 
concentrate on extending the techniques to the 
N-S equations. In addition, implicit scheme will 
be applied in every level of the p-multigrid 
solver with the aim of raising the convergence 
rate and stability. 
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