
PRELIMINARY DESIGN OF FUTURE RECONFIGURABLE IMA
PLATFORMS - SAFETY ASSESSMENT

Pierre Bieber1, Julien Brunel1 , Eric Noulard1 , Claire Pagetti1 , Thierry Planche2 , François
Vialard2

1 ONERA, Toulouse, France, 2 Airbus France, Toulouse, France

Keywords: IMA, reconfiguration, safety assessment

Abstract

The next generation of IMA platforms should in-
clude reconfiguration capabilities in order to limit
the effect of hardware failures on aircraft opera-
tional reliability. In this paper, we describe the
safety assessment of a preliminary design of a re-
configurable IMA platform. The research lead-
ing to these results has received funding from the
European Community’s Seventh Framework Pro-
gramme (FP7 / 2007-2013) under Grant Agree-
ment n◦ ACP7-GA-2008-211439.

1 Introduction

The trend for modern military and civilian air-
crafts is to support aircraft applications with an
Integrated Modular Avionics (IMA) platform.
The current generation of IMA (IMA-1G) re-
places separate and dissimilar equipments, with
fewer common processing modules, sharing the
necessary communication links. The number of
processing units in the A380 is half that of pre-
vious generations. Reductions in airline operat-
ing costs are expected to be significant. Indeed,
the decrease of the number of computers and ca-
bles (for power supply or communication) con-
tributes to the reduction of the aircraft weight that
leads to a better fuel consumption efficiency. The
reduction of the number of types of equipments
will help the airline to buy and store less types of
spare parts, this should lead to maintenance sav-
ings.

A typical IMA platform is described in Fig. 1.

Its hardware architecture is made of a set of com-
puting modules (numbered 1 to 5) that are con-
nected to communication switches (labelled S1
to S4). Computation Processing Modules (CPM)
are grouped into clusters, such that all computing
modules in a cluster are connected to the same
communication switch.

S1 S2

S3 S4

A1 A2 A3 A4

OS / API IMA

2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

Fig. 1 Architecture of Reconfigurable IMA Platform

Avionics applications (labelled A1 to A4) are
hosted in the partitions running on the computing
modules. Data flows exchanged by applications
hosted on different computing modules are trans-
mitted through communication switch paths that
connect the two computing modules.

1.1 Reconfiguration purposes

The SCARLETT project1 funded by the Eu-
ropean Union and led by Thales as a coordi-
nator is currently studying the next generation
IMA. Among other objectives, the project aims
at adding reconfiguration capabilities to the IMA-
1G platform. Fig. 1 shows in red the new spare
computing modules that are added to the plat-
form architecture. Reconfigurable IMA should

1http://www.scarlettproject.eu/, Point of contact: di-
dier.hainaut@fr.thalesgroup.com

1

P. BIEBER, J. BRUNEL, E. NOULARD, C. PAGETTI, T. PLANCHE AND F. VIALARD

be able to change the configuration of the plat-
form by moving applications hosted on a faulty
computing module to spare computing modules.
The main goals to be achieved by the reconfig-
urable IMA platform are:

1. Improve the operational reliability of the
aircraft while preserving current levels of
Safety.

2. Avoid unscheduled maintenance and asso-
ciated costs.

3. Limit the impact of reconfiguration on cer-
tification practices and effort.

Aircraft systems have to enforce stringent
safety requirements that address the effects of
failures on the life of passengers. To fulfill these
requirements a minimum level of redundancy is
associated with an application on the basis of
the severity of the effects of its loss. For in-
stance, three occurrences of an application man-
aging cabin air pressure would be required be-
cause loss of cabin pressurization is catastrophic
whereas no occurrence of an application manag-
ing in-flight entertainment is required as it is con-
sidered as a comfort application whose loss has
no safety effects.

Operational reliability addresses the effect of
failures on economical aspects of flight oper-
ations. One source of improvement is to de-
crease the number of flight delays or cancella-
tions caused by faulty computing modules. Be-
fore each flight, the health status of all equip-
ments is assessed in order to check whether for
all applications the correct level of redundancy is
available. If this is not the case the aircraft cannot
be used (it is NOGO). It should be possible to re-
store the minimum level of redundancy by mov-
ing the applications running on the faulty module
to a non-faulty one. This should also help to de-
fer maintenance operations until the aircraft has
reached an appropriate location.

Other works, such as [Ell97, See96, SH95,
AFAL07, SSE+10], have investigated reconfig-
urable avionics platforms.

1.2 Safety assessment objectives and
methodology

Aircraft manufacturers have to show compliance
with international regulations using means that
have been accepted by the certification authori-
ties. This includes showing that safety require-
ments are enforced, establishing the predictabil-
ity of communication and computing real-time
performances and developing software and hard-
ware according to strict development guidelines.

The safety experts must prove that the ad-
dition of any new system does not degrade the
safety of the aircraft. The purpose of the paper
is to formally show that the preliminary design
of the reconfigurable IMA-2G satisfies its safety
requirements. To reach this objective we have
applied a methodology, summarized in figure 2,
which is decomposed as follows:

1. Selection of high level safety require-
ments: A list of high level safety require-
ments that the reconfiguration mechanisms
shall enforce is produced. This list would
include requirements such as the loss of re-
configuration has a minor safety effect;

2. Hazard Analysis (HA): The objective of
this analysis is to study the effect of failures
of elements of the reconfiguration system
architecture. Practically, this architecture
is represented as a set of interacting func-
tions. For each combination made of one
function and a failure mode of interest, a
dysfunctional behaviour is associated with
the function. Its effect on reconfiguration
and on the platform is then analysed. If
the effect exceeds the one expected by the
safety requirement, there must be a mitiga-
tion mean so that the effect remains accept-
able;

3. Safety validation: The goal of this step
is to verify that the architecture of the re-
configuration system enforces the safety
requirements. The idea is to formally
model the functional and dysfunctional be-
haviours of the reconfigurable IMA-2G us-

2

Preliminary Design of Future Reconfigurable IMA Platforms - Safety Assessment

ing the AltaRica language. Safety re-
quirements are also formally described in
the language as a particular component
called the observer. From this model,
sequence generation tools automatically
generate failure scenarios leading to po-
tentially unsafe situations and verify that
safety requirements are satisfied.

Selection of safety requirements:
- loss of reconfiguration: minor
- . . .

Hazard analysis:
function failure mode effect mitigation
fault detection lost lost no

err err yes

Safety validation:
- formal model of architecture and requirements
- sequence generation

Fig. 2 Methodology for the safety assessment

1.3 Outline of the paper

In the following section, we present the reconfig-
uration process and architecture. Then, we de-
scribe, in section 3, safety requirements and, in
section 4, hazard analysis attached to the recon-
figuration system. In section 5, we prove the
analysis to be correct by introducing a formal
model of the architecture and by using automated
sequence generation techniques.

2 Specification of the reconfiguration

The role of the reconfiguration consists in deter-
mining when a reconfiguration can occur and in
performing a correct by construction modifica-
tion of configurations in order to reach a better
and safe state. When a computing module fails,
a reconfiguration can be launched if this failure
has an operational reliability impact, meaning
that the aircraft becomes NOGO. The objective
of the reconfiguration is to load the applications

hosted on the failed module on a free spare mod-
ule. The execution of a reconfiguration consists
of a sequence of monitored steps. If any step
goes wrong, the reconfiguration is stopped and
the platform is left in a safe configuration.

2.1 Functional architecture

More precisely, the reconfiguration system is de-
composed in several functions as shown in Fig.
3. A nominal reconfiguration is the application of
the functions in the increasing order. The recon-
figuration sequencer is a central element since it
controls all other functions and verifies that each
step is correct. A reconfiguration can be seen as
4 phases:

• Failure detection phase: The first step
is the detection of a failure of a module
which is made by the function fault detec-
tion. The module test applies some trou-
ble shooting on the module to verify that
there is a permanent failure. If the failure is
confirmed, the deactivate CPM shuts down
the failed module. In that way, the module
does not emit any longer on the network;

• Selection of a valid configuration: the
configuration selector stores a graph of
validated platform configurations. Given
the current configuration and the failed
module, the function provides an available
spare which can host the software of the
failed module;

• Execution of a reconfiguration: this is
done in three steps. The activate SPR func-
tion turns on the selected spare. The load
network function updates the routing table
of the switch for adding the spare. The load
SPR function downloads the software on
the spare;

• Verification activities: the reconfiguration
monitor function monitors that the network
and the spare download the correct con-
figuration. This is done after each down-
loading step. The configuration checker
verifies at the end of the downloading that

3

P. BIEBER, J. BRUNEL, E. NOULARD, C. PAGETTI, T. PLANCHE AND F. VIALARD

Fig. 3 Functional architecture

the spare has loaded the expected software.
This is the last check and if every went fine,
the reconfiguration sequencer returns to a
waiting state until the next reconfiguration.

2.2 Allocation on the platform

The functions are supported by four comput-
ing modules (that are considered to be non-
reconfigurable). The CMS (Centralized Mainte-
nance System) hosts the fault detection functions.
The RS (Reconfiguration Supervisor) hosts the
reconf. sequencer and conf. selector functions.
The CM (Cabinet manager) hosts the module test,
deactivate CPM, activate SPR and reconf. mon-
itor. The DL (Data loading) hosts the load net-
work, load SPR and conf. checker functions.

This allocation, illustrated Fig.3, causes com-
mon failures as if a module is lost all hosted func-
tions are lost. For this reason, we will try to avoid
hosting on the same module both a function and
its mitigation function.

3 Safety requirements for reconfiguration
mechanisms

The nominal behaviour of SCARLETT reconfig-
uration is to migrate functions hosted on CPM C
towards spare S whenever C is lost and the spare
module is operative. We consider two main fail-
ure conditions related with reconfiguration:

• Loss of reconfiguration: reconfiguration
is not performed when it is needed. For in-
stance, CPM C is lost, a spare module is
operative and the reconfiguration function
is not able to migrate functions hosted on
C towards the spare S. Functions hosted by
C are lost until maintenance on C is per-
formed.

• Erroneous reconfiguration: reconfigura-
tion is performed incorrectly leading to
the erroneous behaviour of functions sup-
ported by the platform. A possible scenario
could be that the CPM C is lost, the re-
configuration function incorrectly migrates
functions hosted on C towards a faulty
spare S. Functions hosted by C could be-
have erroneously until the erroneous recon-
figuration is detected and corrected.

The assessment of the severity of the fail-
ure conditions defined in the previous section de-
pends of the severity of the loss or erroneous be-
haviour of the functions supported by the plat-
form. Obviously, if the platform only supports
functions whose loss or erroneous behaviour has
no safety effect then any reconfiguration failure
condition will have no safety effect. For IMA-
1G, the platform supported functions whose loss
or erroneous behaviour has a severity that goes
from NSE (No Safety Effect) up to HAZ (Haz-
ardous). In the forthcoming IMA-2G, it could

4

Preliminary Design of Future Reconfigurable IMA Platforms - Safety Assessment

be the case that the platform supports functions
whose loss or erroneous behaviour belongs to the
CAT (Catastrophic) class.

Consequently we consider that the loss of re-
configuration is NSE. Functions hosted on the
faulty CPM are lost and are not recovered after
reconfiguration, hence loss of reconfiguration has
no effect on these functions. And we consider
that Erroneous reconfiguration is HAZ to CAT.
Erroneous reconfiguration can lead to the unde-
tected erroneous behaviour of several functions
hosted by the platform whose most severe classi-
fication is considered to be HAZ to CAT.

The previous classification of the severity of
Failure Condition is focused on the safety impact
of reconfiguration failures. According to the clas-
sification, reconfiguration loss should have mod-
erate safety requirements whereas erroneous re-
configuration should have more stringent safety
requirements. As one goal of the reconfiguration
mechanism is to enhance the operational reliabil-
ity of the platform, it is worth noticing that fre-
quent loss of reconfiguration would be in contra-
diction with the improvement of the reliability of
the platform.

So we consider that the reconfiguration sys-
tem architecture shall enforce the following
qualtitative safety requirement: “A single fail-
ure shall not lead to the failure condition loss
or erroneous reconfiguration”. As the design of
the reconfiguration system is still in progress, we
think that it is premature to associate quantitative
safety requirements with the defined failure con-
ditions.

4 Hazard analysis

In this section, we analyse the effect on reconfig-
uration of the individual failure of the 10 func-
tions listed section 2. For each function, we anal-
yse the effect of two basic failure modes: loss
(the function does not provide its nominal output
when expected) and erroneous (the function pro-
vides an incorrect output).

We also study how other functions might mit-
igate the effect of reconfiguration function devi-
ations. Mitigation is needed in order to enforce

the qualitative safety requirement stating that "no
single failure shall lead to erroneous or lost re-
configuration". The effect of the deviation of a
single function that leads to "Loss of reconfigu-
ration" is acceptable because we have to take into
account the fault of the CPM module that triggers
the reconfiguration. So, when we add the sub-
function deviation and the CPM fault, we obtain
a double failure that leads to the failure condi-
tion. This is consistent with the safety require-
ment. Hence we do not study mitigation means
for the function deviations that lead to the loss
of reconfiguration. We do investigate mitigation
for the function deviations leading to erroneous
reconfiguration.

Because of the lack of space, we only detail
functions Fault detection and Load SPR. Then we
give the conclusion of the hazard analysis as a
table of failure modes and associated effects.

Function Fault Detection nominal behaviour
is to inform the reconfiguration sequencer that a
CPM module has failed. When this function is
lost, the CPM module fault is not detected, and
reconfiguration is not triggered. This leads to the
loss of the reconfiguration. When this function
behaves erroneously, a non-faulty module is in-
correclty detected faulty. Without mitigation this
could lead to an incorrect reconfiguration. In the
preliminary design, this is mitigated by Module
test function that should disagree on the CPM
health status leading to the loss of reconfigura-
tion.

Function Load SPR nominal behaviour is to
load the application software on the spare mod-
ule. When this function is lost the application
software is not loaded on the spare. This leads to
the loss of reconfiguration. When this function is
erroneous, an incorrect software could be loaded
on the spare. Without mitigation, this could lead
to an erroneous reconfiguration. Function Reconf
Monitor should detect the incorrect configuration
and Reconf sequencer should stop the reconfigu-
ration, this results in the loss of reconfiguration.

The following table summarizes the results of
the Failure Hazard Analysis we have described
in the previous section. The table is organized in
four columns:

5

P. BIEBER, J. BRUNEL, E. NOULARD, C. PAGETTI, T. PLANCHE AND F. VIALARD

• Function: name of the considered func-
tion.

• Mode: Failure mode considered, either
lost or err (for erroneous).

• Effect: Most severe effect of the deviation
of the considered function on the reconfig-
uration function (lost means Loss of recon-
figuration, err means Erroneous reconfigu-
ration),

• Mitigation: Name of the mitigation func-
tion when needed.

Function Mode Effect Mitigation
Fault Detection lost lost Not needed

err spurious Module Test
Module Test lost lost Not needed

err lost Not needed
Configuration Selector lost lost Not needed

err err Reconf Monitor
Deactivate CPM lost err Reconf Monitor

err lost Not needed
Load Network lost lost Not needed

err err Reconf Monitor
Activate Spare lost lost Not needed

err err Load Spare
Load Spare lost lost Not needed

err err Reconf Monitor
Reconf Monitor lost lost Not needed

err lost Not needed

5 Safety validation

From the specification and hazard analysis, we
make a formal model of the reconfiguration ar-
chitecture. The objective is to formally analyse
the behaviour of the system under the failures of
its sub functions. Whatever is the combination of
these failures, we must prove that the safety re-
quirement A single failure shall not lead to the
failure condition loss or erroneous reconfigura-
tion is satisfied.

5.1 Formal model of the reconfiguration sys-
tem

We have chosen to model the reconfiguration on
a cluster. The platform is composed of the equip-
ments participating to the reconfiguration (RS,
CMS, DL and CM) plus 5 reconfigurable mod-
ules and 2 spares connected by a switch. We have
not represented the switch in the model.

We make the hypothesis than no more than
one failure occurs at a time. For instance, if a
CPM fails, there is no failure during the reconfig-
uration. But, it may be the case that when a CPM
fails, several equipments are already failed.

5.1.1 The AltaRica language

The AltaRica language [APGR99] was defined
in the 90’s to help the analyse of the depend-
ability of systems. It is based on extended finite
automata which can exchange values of specific
variable (named flow variable) and which can
be synchronised (synchronised product or broad-
cast). The idea is to describe the failure modes of
a component as different states of an automaton.

As an example, let us explain the modeling of
the fault detection function. The automaton is the
product of the two automata drawn in Fig. 4.

ok

losterr

fail_lossfail_err

idle

detect pbm

i j = lost?

treated?

inconsistency?

Fig. 4 Model of the fault detection function

On the left, the automaton shows the nominal
mode ok and the two failure modes lost and err.
Initially, the function is ok. If a failure occurs, the
function enters in a failure mode. This is repre-
sented by a transition labelled by an event. On the
right, the behaviour during a detection is schema-
tized. This automaton applies for both modes ok
and err. Indeed, if the function is lost, it means
that it is blocked and nothing happens. Thus, it
remains in the state idle. In the nominal mode
ok, the detection is correct, while in the state err,
the failed detected module is a wrong one. More
formally, the fault detection function is modeled
with:

• two local variables: ds∈ {ok,lost,err} rep-
resents the mode and s∈ {idle,detect,pbm}
represents the functional behaviour;

• five inputs i j with j ∈ [1,5] and i j ∈
{ok,lost,silent}which represent the state of

6

Preliminary Design of Future Reconfigurable IMA Platforms - Safety Assessment

the five CPMs. If i j = ok, it means that the
CPM is healthy, if i j = lost, it means that
the CPM is failed and finally, if i j = silent,
it means that the CPM is shut down;

• the input treated is emitted by the recon-
figuration sequencer when the failure has
been treated by a module test or a recon-
figuration. If treated=true and the function
still detects a failed CPM, that is i j = lost,
it means that the reconfiguration system is
in an inconsistency state;

• the transitions depicted in Fig. 4. For in-
stance, the transition to reach the failure
mode loss is written
ds=ok |− f a i l _ l o s s −> ds := l o s t ;

The transitions of the right automaton are
triggered by internal events, corresponding
to the functional behavior of the function.
For instance,
ds != l o s t and i 1 = l o s t and s = i d l e

|− t o _ d e t e c t −> s := d e t e c t ;

the internal event to_detect is automati-
cally fired as soon as the guard of the tran-
sition is true. It represents that fact that a
failed module is detected and that the re-
configuration process starts;

• an output variable num_failed_CPM: it
corresponds to the failed detected mod-
ule. Its value is computed by the following
predicate.
num_failed_CPM = c a s e {

ds=ok and s !=pbm and i _ j = l o s t : i _ j ,
ds=ok and s !=pbm and n o t i _ j = l o s t : 0 ,
ds= l o s t : 0 ,
s=pbm : 6 ,
ds= e r r and n o t (i _ j = l o s t) : 0 ,
e l s e 6 − i _ j }

In the nominal mode, if no CPM is failed
the value is 0 and otherwise it is the number
of the failed CPM; if the function is lost, it
does not detect anything and the value is al-
ways 0; if the function has detected an in-
consistency it remains in a deadlock state
emitting the value 6; if the function is erro-
neous and a CPM is lost, the value is wrong
with 6− i j instead of i j.

5.1.2 Model of the reconfigurable platform

We model in AltaRica using the tool Cecilia
OCAS [Sys07] developed by Dassault. Each
component is described by an automaton as
shown previously and the automata are assem-
bled together. The assembly is drawn in Fig. 5.

We recognise the cluster composed of 5
CPMs and 2 spares; and the different functions
involved in the reconfiguration process. The
component CM_pwr_management regroups the
functions module test, deactivate CPM and ac-
tivate SPR. The components are connected with
links which represent the data-flow. A link
has always a white box extremity and a black
box extremity. The white boxes represent in-
puts while the black boxes the outputs. For in-
stance, there is a flow between RS_sequencer
and CMS_fault_detection for the variable treated
with a black box on RS_sequencer.

5.2 Formal analysis

Cecilia OCAS offers the possibility to generate
all the failure sequences that lead to a given situa-
tion, and in particular to a failure condition. This
is typically used to ensure that a failure condition
never occurs, or to know exactly in which cases
it may happen.

5.2.1 Observer component

We first have to specify the failure condition with
an AltaRica component, called an observer. The
failure condition we are interested in corresponds
to the loss of reconfiguration. This can be spec-
ified by the following statement: some applica-
tion is hosted neither by its module nor by a spare
module. This is indeed the case when the module
that hosts a software fails, and the platform is not
reconfigured.

An observer has no state variable, and no
event. It only has input variables (in order to
observe the system current configuration), output
variables (in order to describe the failure condi-
tion in terms of inputs) and possibly local vari-
ables to help the formulation of the failure condi-
tion.

7

P. BIEBER, J. BRUNEL, E. NOULARD, C. PAGETTI, T. PLANCHE AND F. VIALARD

Fig. 5 Representation in AltaRica

Our observer has

• five inputs ai, with i ∈ [1,5], taking their
value in [0,5], which represent the applica-
tion running on CPM i. ai = j (with j > 0)
means that the application j is running on
CPM i. ai = 0 means that CPM i hosts no
application.

• two inputs s1,s2 taking also their value in
[0,5], which represent the application run-
ning on the two spares

• five local variables oi, with i ∈ [1,5] that
ease the formulation of the failure condi-
tion. oi means that the application i is
hosted either by its CPM, or by one of
the two spares. In practice, we have for
i ∈ [1,5]:
o _ i = (a _ i = i o r s_1 = i o r s_2 = i)

• one output Out which is false whenever the
failure condition holds
Out = (o_1 and o_2 and o_3 and o_4 and o_5)

Notice that Out is true whenever all the five
applications are hosted by some computational
resource (CPM or spare), and false whenever at
least one of the applications is not hosted by
any computational resource, which corresponds
to our failure condition. So, we generate se-
quences that lead to Out = f alse.

5.2.2 Example of sequence generation

For this, we parametrize OCAS sequence gen-
erator with the maximal length of sequences we
want to generate, and with the kind of sequences
we are interested in (minimal cuts, combinations,
permutations). The tool then produces all the se-
quences in a specified file.

We give as an example the following se-
quence that is generated for the above-mentioned
observer (situation: Out = f alse, maximum
length: 2).
{ ’ C M S _ f a u l t _ d e t e c t i o n . f a i l _ e r r o r ’ , ’CPM1 . f a i l ’ }

This sequence corresponds to a failure of the
fault detection function, leading to an erroneous
behaviour, following by a permanent failure of
CPM1. Let us see how this sequence of events
leads to our failure condition. After the failure of
CPM1, the fault detection function does as if an-
other CPM had failed. The sequencer then asks
for confirmation, gets a negative answer and then
stops reconfiguration. So in the end the applica-
tion that was hosted by CPM1 is not hosted by
any operational computational resource.

5.2.3 Applications

The sequences can be analysed with respect to
four aspects.

First, it is possible to check the consistency
between the model and the Hazard analysis that

8

Preliminary Design of Future Reconfigurable IMA Platforms - Safety Assessment

was performed. We can check that each function
whose failure leads to the loss of reconfiguration,
according to the hazard analysis table, appears in
a length 2 sequence in combination with the fail-
ure of a CPM . We can also check that functions
that, once mitigated, lead to loss of reconfigura-
tion appear in length 3 sequences in combination
with a failure of the mitigation function and a
CPM failure.

Secondly, we can check that the qualitative
requirements are enforced so that no sequence
is made of a single failure event. The analy-
sis of our model found that the erroneous be-
haviour of function Deactivate CPM could po-
tentially lead to the loss of all CPM. This indi-
cates that the Cabinet Manager is highly critical
and that is should be duplicated in order to en-
force the safety requirements that were selected.

Thirdly, we can analyse the segregation re-
quirements of the architecture. We can extract
from the sequences the pairs of functions that
need to be segregated. We consider that a faulty
function and a mitigation function should be seg-
regated, they should not be hosted on the same
computer because the erroneous behaviour of this
computer could lead to the erroneous behaviour
of both the faulty function and the mitigation
function. In that case, the safety requirement stat-
ing that no single failure shall lead to lost or er-
roneous reconfiguration would no longer be en-
forced. The analysis found a problem related
with the Cabinet Manager (CM) computer be-
cause the function Deactivate CPM and its miti-
gation Reconf. Monitor both run on CM. Due to
the criticality of the CM/Power Management ap-
plication, it could be the case that this computer
has sufficient internal redundancy such that erro-
neous behaviour of the CM is not caused by a
single event. In that case, no mitigation would be
needed to limit the effect of power management
deviations.

Finally, we can analyse the allocation of DAL
levels to functions. According to SAE ARP
4754 [SAE10], a Development Assurance Level
(DAL) is associated with each item. This level
guides the methods to be applied in the imple-
mentation of the item. The allocation is based

on the classification of the most severe Failure
Condition (FC) that can be partially caused by
the item fault. The DAL level of functions lead-
ing to erroneous reconfiguration should be A as
these functions contribute to a FC that is poten-
tially classified CAT. As these functions do not
contribute alone to the Failure Condition, the re-
vised ARP4754a has established rules that au-
thorize to downgrade the DAL level of functions
contributing to a FC. The rule that can be applied
for double function failures leading to a CAT fail-
ure condition when these two functions are seg-
regated is that at least one function is allocated
DAL A and the level of the second can be de-
creased down to level C. We extracted the com-
binations of double failures from the generated
sequences and checked that the DAL allocated to
them was consistent with ARP4754a rules

6 Conclusion

The Hazard analysis and formal modelling of
SCARLETT reconfiguration mechanisms were
conducted in order to provide a first assessment
of the safety impact of the deviation of the main
functions. The deviations (function loss and
function error) that were considered are theoreti-
cal. They need to be validated with respect to the
actual behaviour of the reconfiguration mecha-
nisms. We intend to use the SCARLETT demon-
strators in order to test whether the theoretical de-
viations are possible, whether the effects are sim-
ilar to what was imagined and whether the miti-
gation means that were proposed are sufficient to
block the effects that were considered.

The formal safety models enabled to explore
exhaustively and automatically the effect of mul-
tiple failures of items inside and outside (electri-
cal power) the reconfiguration system. It should
also be possible to easily compare various alloca-
tions of the functions onto existing system func-
tions (Cabinet Manager, Reconfiguration Super-
visor, CMS, DLCS, CC, ...).

Another activity that should be investigated
in the future is the safety assessment of other
reconfiguration scenarios that were described in
[BNP+09] that deal with topics as migrating ap-

9

P. BIEBER, J. BRUNEL, E. NOULARD, C. PAGETTI, T. PLANCHE AND F. VIALARD

plications from a CPM to a Spare that does not
belong to the same cluster, or migrating applica-
tions on spare partitions of other CPMs.

References

[AFAL07] Luis Almeida, Sebastian Fischmeister,
Madhukar Anand, and Insup Lee. A
dynamic scheduling approach to design-
ing flexible safety-critical systems. In
EMSOFT ’07: Proceedings of the 7th
ACM & IEEE international conference
on Embedded software, pages 67–74,
New York, NY, USA, 2007. ACM.

[APGR99] André Arnold, Gérald Point, Alain Grif-
fault, and Antoine Rauzy. The altarica
formalism for describing concurrent sys-
tems. Fundamentae Informaticae, 40(2-
3):109–124, 1999.

[BNP+09] Pierre Bieber, Eric Noulard, Claire
Pagetti, Thierry Planche, and FranÃğois
Vialard. Preliminary design of future
reconfigurable ima platforms. In 2nd
Workshop on Adaptive and Reconfig-
urable Embedded Systems (APRES’09),
SIGBED Review, 6(3), October 2009.

[Ell97] Steve M. Ellis. Dynamic software re-
configuration for fault-tolerant real-time
avionic systems. In Microprocessors
and Microsystems, Proceedings of the
1996 Avionics Conference and Exhibi-
tion, volume Volume21, Issue 1, pages
29–39, July 1997.

[SAE10] SAE. Aerospace recommended prac-
tices 4754a - development of civil air-
craft and systems, 2010. SAE.

[See96] Kenneth A. Seeling. Reconfiguration in
an integrated avionics design. In Digi-
tal Avionics Systems Conference, 1996.,
15th AIAA/IEEE, pages 471–478, Oct
1996.

[SH95] Chak Sriprasad and Michele Harvey.
Dynamic software reconfiguration us-
ing system-level management. In Dig-
ital Avionics Systems Conference, 1995.,
14th DASC, pages 336–, Nov 1995.

[SSE+10] Tobias Schoofs, Peter Schmitt, Christian
Engel, Eric Jenn, and Rodrigo Coutinho.
"enhanced dispatchability of aircrafts

using multi-static configurations". In
European Real-Time Systems and Soft-
ware (ERTSS), 2010.

[Sys07] Dassault System. Module OCAS: Anal-
yse système par arbre de défaillance.
manuel utilisateur ocasv4.3, 2007.

6.1 Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original ma-
terial included in this paper. The authors also confirm
that they have obtained permission, from the copy-
right holder of any third party material included in this
paper, to publish it as part of their paper. The authors
confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for
the publication and distribution of this paper as part of
the ICAS2010 proceedings or as individual off-prints
from the proceedings.

10

