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Abstract

The potential influence of different combinations
of parameterization methods and optimization
strategies on the attainable optimum and the opti-
mization cost is evaluated by comparisons of the
optimized airfoils. The optimization strategies
consist of a single-objective metamodel assisted
Genetic Algorithm and multi-objective Differen-
tial Evolution both assisted and non-assisted. B-
spline and Bézier formulations are used together
with a direct and standard description of the air-
foil shape. The multi-point optimizations are ap-
plied to airfoils in 2D cascades corresponding to
propeller geometries.

Nomenclature

Bi,q(.) Basis function
c Airfoil chord
C(.) Curve coordinate vector
Cd Airfoil drag coefficient
Cl Airfoil lift coefficient
Cp Pressure coefficient
dD Elemental drag
dL Elemental lift
dT Elemental thrust
dU Elemental torque force
f1, f2 Weighting factor
J Advance ratio
M∞ Free-stream Mach number
n, N, q Variables
r Radius
Rtip Propeller tip radius

u Running coordinate
v∞ Free-stream velocity
w. Weight
X Coordinate vector

α Local angle of attack
β Local blade angle
ε, γ Angle
ηel Elemental efficiency
Σ Overall performance
τ Constraint penalty
Ω. Objective function
ω Angular velocity
ρ Air specific mass

Abreviations
ANN Artificial Neural Network
DOE Design Of Experiments
GA Genetic Algorithm
MODE Multi-Objective Differential Evolution
RANS Reynolds Averaged Navier-Stokes

1 Introduction

The airfoils selected to shape propeller blades
are of primary importance. The key role in trans-
forming the engineering problem of optimizing
an airfoil shape in a mathematical problem
lies within the parameterization technique used
to represent the airfoil. Most works in airfoil
optimization, ranging from pure aerodynamic
to multidisciplinary optimization for turboma-
chinery applications or wings, rely on spline
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parameterization [1, 2, 3, 4, 5, 6, 7, 8] or Bézier
parameterization [9, 10, 11, 12, 13, 14, 15] with
typically 10 to 50 parameters. Unfortunately,
few papers assess the influence of the parameter-
ization technique [16, 17, 18, 19], in particular
b-spline versus Bézier parameterization. More-
over, the influence of the combination of a
parameterization with an optimization technique
is seldom analyzed [20, 21]. For these reasons,
the present effort investigates the effect of both
the blade parameterization and optimization
technique on the attainable optimum and on the
computational cost of the process. Comparisons
are made in a realistic multidisciplinary opti-
mization environment for complex engineering
applications with a moderate total number of
design variables -O(30∼ 40)- so that only a lim-
ited amount of parameters (< 10) are dedicated
to the airfoil shape for the remaining parameters
are assigned to other design variables such as
radial distributions of sweep, twist, thickness and
chord in the case of propellers.

2 Airfoil shape parameterizations

The b-spline and Bézier representations have
been selected among the various formulations
available for the designer because they are a
flexible technique, providing smooth shapes
with few design parameters. Both are based
on a set of control points that define the shape
of the curve and the convex hull of the control
polygon, formed by joining neighboring control
points, contains the curve. This implies that
the design parameters (i.e. the position of the
control points) control important features of the
design problem and explains their popularity for
optimization purposes.

Bézier and b-spline representations rely on a
set of n+1 control points X0, X1,...,Xn and the ex-
pression of the curve C(u) is given in both cases
by:

C(u) =
n

∑
i=0

Bi,q(u)Xi (1)

over the interval u ∈ [0,1] with q computed
from the required degree of the curve in order to
achieve the desired continuity properties. They
differ by the basis functions used to compute the
Bi,q(u) coefficients. Bézier curves with n + 1
control points are of degree q = n whereas b-
spline curves require a more complex theory with
more information (i.e. the degree of the curve
q must be chosen and a knot vector comprising
n+q+1 elements must be defined over the same
interval with multiplicity of the q + 1 first and
last elements to define a clamped b-spline). This
disadvantage is compensated by the fact that
b-splines have the local modification property
together with all important properties of Bézier
curves such as the convex hull property and
at least C 2-continuity if the number of control
points n + 1 is chosen accordingly. The local
modification property implies that changing
a control point does not globally change the
shape of the curve and allows a more localized
shape control. This interesting property [19]
is illustrated on figure 1 where curves for both
representations are drawn for two sets of control
points differing only in the y-coordinate of one
single point. Irrespectively of the difference in
shape due to the particular formulation, the local
character of the modification is clearly illustrated
by the absence of any impact of the change of a
single parameter on the trailing part of the curve.

In combination with the previous two formu-
lations, two approaches to describe the airfoil
shape were investigated . The first one has the
control points directly controlling the shape of
the entire airfoil as in [22, 23] and [7]. As shown
on figure 2, this direct parameterization uses 7
control points for the suction side and 6 points
for the pressure side. This results in only 9
parameters because the leading edge and trailing
edge locations are fixed and C 2-continuity is
ensured at these locations through a careful
handling of endpoint curvature by clamping the
relative position of the first and last two control
points on the pressure-side with respect to the
control points on the suction-side as is suggested
on figure 2. This leaves only 2 parameters con-
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(a) Bézier parameterization.

(b) B-spline parameterization.

Fig. 1 Local modification property illustrated
with two sets of control points differing only in
a single coordinate (� and −− or ◦ and −−).

trolling the ordinate difference between the third
and fourth control points on the pressure-side.

The second approach consists of a thickness
distribution that is set upon a camberline in
the way proposed by Abbott et al [24]. This
standard NACA-type parameterization is il-
lustrated on figure 3. It uses 6 control points
with 6 parameters to control the shape of the
thickness distribution and 4 additional points
with 2 parameters to control the shape of the
camberline. Although the direct parameteriza-
tion has inherently more freedom to generate
radical new shapes than the standard one, it is
expected to be less suitable to produce efficient
designs precisely because of the larger search
space in terms of shape [19]. Indeed, for a
comparable search space in terms of parameters,
the direct parameterization delivers more non
airfoil-like shapes even if the parameters are
chosen such that a minimum thickness is guaran-
teed. Moreover, the standard description, on top
of its intrinsic capability of delivering airfoil-like
shapes, has demonstrated its efficiency [16, 25]
thanks to a close relationship between the aero-
dynamic behavior and the thickness and camber
distributions.

Fig. 2 Direct parameterization and degrees of
freedom for the control points .

(a) Thickness and camberline distributions with con-
trol points and their respective degrees of freedom.

(b) Airfoil shape and camberline.

Fig. 3 Standard parameterization and degrees of
freedom for the control points.
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3 Elemental efficiency

The airfoil obtained by one of the parameteri-
zations is used to define a propeller blade (fig-
ure 4(a)) with a prescribed radial distribution of
chord, thickness and twist. The chord and thick-
ness are constant up to 80% radius and the blade
has no sweep. From blade element theory, it is
easily shown that the efficiency of a blade ele-
ment (see figure 4(b)) that produces the elemen-
tal thrust dT and the elemental torque force dU ,
is given by:

ηel =
tanγ

tan(γ+ ε)
(2)

where

γ = arctan
v∞

ωr
= arctan

JRtip

πr

and

ε = arctan
|dD|
|dL|

(3)

Equations 2 and 3 reveal the importance of
increasing the lift-to-drag ratio |dL|/|dD| of all
blade elements in order to achieve better overall
efficiency. Note that as the twist distribution
is prescribed, so is also the angle of attack
α(r) = β(r)−γ(r) of the airfoil. The engineering
problem of finding the optimum airfoil shape
under transonic conditions at M∞ = 0.75 with a
constant advance ratio J = 3.3, is simplified by
optimizing one single airfoil for three radii (50%,
75% and 97.5%). Each radius defines a 2D high
pitch cascade at fixed angle of attack as shown
on figure 4. The objective of the optimization is
to reduce Cd and 1/Cl concurrently for the three
cascades.

4 Optimization techniques and objectives

Evolutionary methods have excellent robustness
and a high potential to find the global opti-
mum of complex problems involving a large
number of design parameters associated with a
discontinuous and non-convex objective domain

(a) View of the three radii (50%, 75% and 97.5%)
chosen for the multi-point optimization of the airfoil
in the corresponding blade passage.

(b) 2D geometry of a blade passage at given radius r.

Fig. 4 Airfoil cascade geometry.
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[26, 20, 27]. Two techniques have been investi-
gated for the present multi-point optimization: a
single-objective binary-coded Genetic Algorithm
(GA) and Multi-Objective Differential Evolution
(MODE).

The binary-coded GA [28, 29] closely mim-
ics natural evolution by coding the parameters of
an individual (i.e. a blade design) in a binary
string or genotype. The genotype translates into
a particular shape (the phenotype), and its per-
formance is evaluated. Members of a generation
are obtained through reproduction of two par-
ents selected by a tournament in which only the
best of any combination of two individuals is re-
tained. The reproduction mechanism consists of
an exchange of parts from their genotype through
crossover. Then a mutation operator changes a
random bit in the binary string of the offspring.
Ultimately elitism is applied as the best individ-
ual from the parent population is carried over if
it outperforms all offspring. The selection proce-
dure relies on performance estimates cast into an
aggregated objective ΩGA to be minimized. It is
computed by the weighted sum of performance
estimates for the three radii:

ΩGA =
3

∑
i=1

wi( f1Cd,i + f2
1

Cl,i
)+ τ (4)

where the weights wi are chosen such that the
75% radius section has twice more impact on the
optimization result and the factors f1 and f2 en-
sure that a drag reduction or a lift increase affect
the objective value in a comparable way. τ is an
external penalty triggered only if the airfoil has
insufficient thickness so that the feasability of
the design is ensured. The estimates are provided
by an Artificial Neural Network (ANN). The
purpose of this model is to reduce the computa-
tional cost so that the evolutionary process can
be spread over a large amount of generations.
The ANN is trained using a database of RANS
simulations initially obtained for geometries
defined by a Design Of Experiments (DOE).
The purpose of the DOE is to fill the search
space with carefully selected samples to allow
extraction of maximum information about the

Fig. 5 Layout of the single objective binary
coded GA-optimizer with its metamodel.

underlying input-output relationships. The accu-
racy of the surrogate model is improved during
the evolutionary process by recursive training of
the ANN each time the database is augmented
with the most promising individual of every
1000 generations. The process is repeated for
100 iterations using each time the new ANN for
1000 generations comprising each 50 individuals
(see figure 5).

Differential Evolution has been developed by
Price and Storn [30] and does not require param-
eters to be coded in a binary string. A new gener-
ation of N individuals is formed by mutation and
recombination among the N parents. Indeed, the
vector of parameters of an offspring is a recombi-
nation of parameters that are randomly chosen ei-
ther from one parent or from a linear combination
of parameters from three other individuals cho-
sen randomly in the Pareto front. This last step is
also responsible for mutation. Multi-objective se-
lection is performed in the way proposed by Ma-
davan [31] through Pareto ranking of parent and
child populations together with respect to the two
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objectives to be minimized:{
Ω1 = ∑

3
i=1 wiCd,i

Ω2 = ∑
3
i=1 wi

1
Cl,i

(5)

in which the weights wi have the same value as
for the GA. Note that with this approach, the
trouble of choosing adequately the f factors is
relieved and the external penalty on thickness
is dealt with by a separate constraint function.
The population size for the next evolutionary
step is restored to its original size because only
the N best ranked individuals are passed while
also looking after the diversity of the population
by rejecting individuals with a too high degree
of similarity. With respect to performance
assessment, two cases have been considered:
a two-level case in which the performance is
assessed through an ANN-metamodel that is
trained with RANS simulations every 1000 gen-
erations (figure 6(a)), and a single-level case for
which only accurate RANS simulations are used
(figure 6(b)). The first approach is highly similar
to the one used for the GA with the difference
that now the whole population of N individuals
is passed through the iteration loop and hence
analyzed by the RANS solver, as suggested on
figure 6. The second approach consists of a
single generation loop and as no metamodel is
used, it offers the advantage that it is not subject
to the inaccuracy of the performance estimates.
However, less generations (100) are considered
in this case because of the elevated numerical
cost associated with the RANS evaluation of the
complete generation. Nevertheless, it provides
a convenient comparison to assess the effect of
the metamodel. The population size for both
approaches is 20 and the individual RANS
simulations can be performed concurrently.

5 Results

The RANS simulations are performed by means
of the TRAF 2D solver for transonic flow [32]. It
uses a multi-stage Runge-Kutta time integration
in conjunction with acceleration techniques

(a) Two level approach.

(b) Single level approach.

Fig. 6 Layout of the single and two-level MODE-
optimizers.
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on a H-type mesh with 100 grid-points on
the suction and pressure-side and 96 points in
the wall-normal direction. The equations are
discretized using a cell-centered finite volume
scheme with artificial dissipation of the Jameson
type. Acceleration techniques comprise local
time stepping, variable coefficient implicit
residual smoothing and a full multigrid method.
The effect of turbulence is accounted for by the
eddy-viscosity hypothesis expressed through
the two-layer mixing length model of Baldwin
and Lomax. A NACA 16-009 airfoil is used
as benchmark because it is commonly used for
propellers.

Table 1 gives an overview of the different
cases together with the number of iterations nec-
essary to reach the optimum. Despite converging
early toward their respective optimum, all opti-
mizations were ran for 100 iterations (or gener-
ations in the MODE single level case) in order
to ensure that absolute convergence is reached.
For cases F , G and J, no solution better than the
benchmark was found after 100 iterations in spite
of modifications to the evolutionary and meta-
model settings. For these cases, the optimiza-
tion is considered as not having succeeded. These
non-optimum airfoils are shown as well for com-
pleteness. In each case where the metamodel is
used, the database has 64 samples thereby requir-
ing 192 calls to the RANS solver. Disregarding
the parameterization type, all optimizations have
an identical search domain as each parameter is
allowed to fluctuate over the same interval in all
cases. The overall performance of an airfoil is
measured by its Σ-value (given in table 1) which
is the mass-flow averaged area under the Cl/Cd
curve normalized by the corresponding area for
the benchmark:

Σ =

∫ Rtip

Rroot

2πρ∞v(r)
Cl(r)
Cd(r)

∣∣∣∣
airfoil

rdr∫ Rtip

Rroot

2πρ∞v(r)
Cl(r)
Cd(r)

∣∣∣∣
NACA 16-009

rdr
(6)

The purpose of mass-flow averaging in the
Σ-value is to yield a fair overall performance that
takes the radial distribution of the mass-flow,

hence the radial distribution of the load, into
account. Nevertheless, the Σ-values clearly show
that significant overall gains can be achieved by
better performance at lower radius. All success-
ful cases have a better overall performance with
gains ranging from 25% to 40%. Case H has
an excellent overall performance mainly due to
the high lift despite a comparatively high drag,
as will be shown later. Case A, B and C have
a gain close to 27% in spite of a locally worse
performance around 70% radius.

From table 1, the local modification property
of the b-spline formulation appears to offer
some advantage with a gain of over 15% with
respect to the number of calls to the RANS
solver before reaching the optimum. This is
especially true when a surrogate model is used
and a higher number of generations are assessed.
These results also underline the effectiveness of
a GA combined with a surrogate model as in the
best case, only 86 calls to the RANS solver are
needed. Considering MODE, the results suggest
also the effectiveness of using a metamodel
as a gain of 23% is obtained globally in that
configuration.

The off-design performance of the optimum
airfoil is assessed by looking at the airfoil
lift coefficient Cl and drag coefficient Cd in
successive 2D cascades along the entire blade
span. Each radius corresponds to a given angle
of attack and Mach number that are different
from the optimization ones. This way, transonic
to sonic Mach numbers and various angles of
attack are ascertained. First, lift-to-drag ratio
for all radii are shown in figures 7(a) and 7(b)
for the b-spline and Bézier parameterizations
respectively. These figures reveal that most
of the improvement is achieved at radii below
60% and above 80%. Around 75% radius,
there is either a small improvement (cases E
and I), no significant improvement (cases A, C,
D and H) or even a local deterioration of the
performance (case B). From these graphs, the
unsatisfactory performance of cases F , G and J
is also enlighted.

7



B.G. MARINUS

Calls to
Case Optimization method Levels Iterations RANS solver Σ-value

Benchmark 1
A GA - with ANN - standard b-spline 2 22 258 1.250
B GA - with ANN - standard Bézier 2 60 372 1.246
C GA - with ANN - direct b-spline 2 20 252 1.329
D GA - with ANN - direct Bézier 2 34 294 1.303
E MODE - with RANS - standard b-spline 1 49 3132 1.302
F MODE - with RANS - standard Bézier 1 − 6192 0.950
G MODE - with RANS - direct b-spline 1 − 6192 0.790
H MODE - with RANS - direct Bézier 1 57 3612 1.408
I MODE - with ANN - standard b-spline 2 37 2412 1.308
J MODE - with ANN - standard Bézier 2 − 6192 0.801

Table 1 Cases and number of iterations to optimum solution. (Cases marked with ’−’ did not converge
to an optimum better than the benchmark after 100 iterations.)

Analysis of figures 8(a) and 8(b) reveals
that globally all airfoils obtained with b-spline
representation perform better than the bench-
mark. Only case E in terms of Cl and cases A
and C in terms of Cd present a shortcoming at a
point where they have been optimized (namely
75% radius). But this shortcoming is largely
compensated within the trade-off with the other
two design points. Additionally, shortcomings
at off-design points, as between 58% and 72%
radius for Cl or between 68% and 79% for Cd ,
are overwhelmingly compensated by the global
performance out of those intervals. Case C
denotes himself by the very poor performance
in terms of Cd at low radius combined with a
terrific value at high radius, hence high Mach
number. Together with the exceptional Cl over all
radii, this explains why this distorted geometry
(see figure 11(b)) made its way through the
optimization process. Case G is a good exam-
ple of a failed tentative of local optimization
with the drag coefficient having characteristic
minima corresponding to the optimization
points while the lift coefficient requirement is
met at all design points. Concerning Bézier
parameterization, figure 9(a) indicates that all
airfoils have a favorable behavior in terms of
Cl , with the design objective met by all but case
B. Here again, the overall Cl performance of

(a) B-spline parameterization.

(b) Bézier parameterization.

Fig. 7 Off-design performance in terms of Cl/Cd .
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this airfoil largely offsets this minor flaw. As
clearly visible from figure 9(b), cases F and J
did not lead to an optimum solution. Despite
their overall performance, not a single airfoil is
able to achieve lower drag at 75% radius. This is
coherent with the observations about the shock
strength (see figure 12) that will be given in the
coming sections. In any way, the lift-to-drag
ratios moderate the local shortcomings discussed
here and underline the possibility for additional
gains in propeller performance despite possibly
lower local performance.

When Cl and Cd distributions are compared
in terms of airfoil parameterization, the striking
patterns are the better ability of the standard de-
scription in producing smooth lift distributions,
and the higher potential of b-spline formulation
for a drag reduction over the entire range,
including off-design points. The first suggests
that decomposing the airfoil into a thickness
and a camberline distribution introduces a
geometrical stiffness in the problem formulation
that is beneficial to the lift performance. This
complies with the observations made in [16, 24]
and [25]. The second underlines the influence
of the local modification property. The more
direct relationship between the parameters and
the shape entitles the optimization process to
better identify those design variables that have
an influence on lift and drag. The results are
better airfoils with a smooth off-design drag
distribution provided the intrinsic freedom of
the representation is counter-balanced by, for
example, the geometrical stiffness of the descrip-
tion. Finally, it is noted that good improvements
can be yielded with just a few design variables
disregarding the optimization method.

Figures 10(a), 10(b), 11(a) and 11(b) reveal
another aspect of the local control property as
the shapes obtained with b-spline representation
show more local features such as a narrow front
section or a bump as on figure 11(a). The first
feature is also reported in the work of Li et al [3]
although in cases A, E and I, it does not lead to
the shock location being moved toward the aft

(a) Lift coefficient Cl .

(b) Drag coefficient Cd .

Fig. 8 Off-design performance for b-spline pa-
rameterization.
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(a) Lift coefficient Cl .

(b) Drag coefficient Cd .

Fig. 9 Off-design performance for Bézier param-
eterization.

region of the airfoil, as can be seen from the right
side of figure 12. The second feature is known
to reduce locally the strength of the shock and
might lead to localized optimization as discussed
by Drela in [33]. Fortunately, the low number
of design parameters in the present cases does
not allow for bumps to be generated at locations
corresponding to each working point. Instead,
the geometries are a trade-off and offer shock
strength reduction to some extent while retain-
ing the necessary smoothness over the entire
chord. In contrast, a Bézier parameterization
(see figures 10(a) and 10(b)) does not always
lead to a thinner front part (except for case
D) and is intrinsically impaired of producing
local bumps. Accordingly, the shock strength is
seldom reduced as is illustrated on the right side
of figure 12(a). Except for cases C and G, all
pressure distributions at 75% radius are smooth
and present the same general behavior. At 97.5%
radius, the pressure distributions reveal that most
of the improvement comes from changes on the
pressure-side and that schock strength on the
suction-side is never reduced in a significant
way. A closer study of figure 11(b) reveals the
peculiarity of geometries C and G. Those shapes
are the expression of the local control property
at its climax because they are not constrained
by the intrinsic properties of the formulation
nor by the stiffness introduced with the standard
description. Case C is the best specimen from
its parameterization, it successfully meets the
design objectives but comes with a high drag at
low radius. Case G interestingly succeeded in
matching some design objectives but, as will be
shown later, has poor off-design performance.
This underlines the need for some sort of con-
straints on the regularity of the shape be it by the
choice of the formulation or by the choice of the
description or ultimately by strong restrictions
on the parameters range.

6 Conclusions

The influence of the parameterization and the
optimization method on the optimum airfoil is
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(a) Standard.

(b) Direct.

Fig. 10 Airfoil shapes obtained with the Bézier
parameterization.

(a) Standard.

(b) Direct.

Fig. 11 Airfoil shapes obtained with the b-spline
parameterization.
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(a) 75% radius.

(b) 97.5% radius.

Fig. 12 Cp distributions of the optimum airfoil
(’−−’ optimum airfoil and ’····’ benchmark NACA
16-009 airfoil). Non-optimum solutions F , G and
J are also shown.

addressed for 10 combinations in the framework
of a realistic engineering problem where a sparse
amount of variables can be effectively dedicated
to the airfoil itself. Standard parameterization
using a camberline and thickness distribution
outperforms direct parameterization where the
airfoil suction- and pressure-sides are directly
defined. The latter is true both in terms of aero-
dynamic performance at design and off-design
conditions, and in terms of convergence speed.
The results suggest also that b-spline representa-
tion globally delivers better aerodynamic results
than Bézier formulations. Additionally, b-spline
formulations are more efficient in terms of con-
vergence because of the more direct relationship
underlying input (the parameters) and output (the
shape). The combination of b-spline formulation
with the standard thickness-camberline descrip-
tion makes the parameter set more likely to
have less interactions and allows it to represent
those important features of the design problem
that are relevant to lift and drag. This way, the
design space is searched more efficiently at some
expense of the freedom to generate radically new
shapes. Finally, acceleration techniques based
on surrogate models offer interesting advantages
in terms of computational cost in a population
based approach, without significantly affecting
the attainable optimum. A requisite for this is to
safeguard the accuracy of the metamodel through
training in new regions of the search domain
with the best individual(s) of a certain number
of generations. These issues underline the
importance of the choice of the parameterization
method on the optimization outcome. Choices
regarding parameterization should not be made
light-handedly but on the contrary, should be
the result of a detailed comparative study that is
aimed at the problem to be handled.
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