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Abstract  

The objective of this work is to develop 
and study several facilitated airplane strategies 
to be used in light aircrafts in order to make the 
flight more intuitive, improving the learning 
time and the flight safety. A flight simulator will 
be implemented to test the studied strategies 
with various users having different piloting 
skills. For each strategy it will be given a score 
considering the user´s feeling as well as his 
capability tofollow a predetermined path. 

1  Introduction 

Recently, the growth of the market of 
small aircraftshas shown a popularization of the 
so called light aircrafts [1]. Most of the time, 
those airplanes are personal airplanes used for 
leisure and short travels. While in general 
aviation most pilots are professional pilots, 
personal airplanes pilots are usually the owners 
of them and most of the time are inexperienced 
pilots. This fact decreases the flight safety 
especially in situations that demand attention 
and a higher level of piloting effort such as 
piloting, navigating and communicating with 
ground stations simultaneously. 

To solve this issue researches are being 
conducted to develop facilitated airplanes 
systems for light aircrafts, based in fly-by-wire 
systems [2], in order to make the flight safer by 
reducing the piloting effort and so making it 
easier.     

This work will study several facilitated 
airplane strategies to permit longitudinal control 
of the airplane based directly in its trajectory 
instead of its attitude. For so, automatic 
controllers strategies have been chosen based in 
reference variables directly linked to the 
airplane longitudinal movement. 

The specific objectives of this work are: 
 

• Design and implementation of a 
longitudinal flight simulator in order to 
test the proposed strategies. 

• Evaluate the suitability of the proposed 
strategies through flight simulations 
involving people with different piloting 
skills and knowledge. 
 
First, a dynamic model of the aircraft 

chosen for the flight simulator, the CB-10 
“Triatlhon” [3], will be presented. The 
computational implementation of the flight 
simulator and the definition of the studied 
strategies as well as their adjustment within the 
simulator will be presented next. At last, the 
used evaluation methodology and the most 
important results obtained will be exposed. 

2  Airplane Dynamic Model 

Fig.1 presents the dynamic model of the 
simulator airplane. The CB-10 “Triatlhon” was 
chosen because it is a light aircraft that in the 
near future will become a base for flight tests 
and facilitated flight systems researches 
conducted by the Centre for Aeronautical 
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The objective evaluation was conducted 
by computing all the flight, the altitude and 
speed instant errors calculated as follows:  

flight referenceSpeed Error = V -V  (4) 

flight referenceHight Error = h -h  (5) 

 
The total errors, called accumulated 

errors, were then calculated by integrating the 
instant errors all along the simulated flight. 

 

 
0

Speed Acumulated Error =

Speed Error
x final

x

dx





 

 

(6) 

 
0

Hight Acumulated Error =

Hight Error
x final

x

dx





 

 

(7) 

 
According to that error formulation, the 

error represents how much the user flown out of 
the reference trajectory and speed. Two by-pass 
patches were added at the beginning of the 
flight and at the transition speed in order to give 
the user some time to trim the airplane and get 
familiarized with the controls. 

5  Results 

5.1 Subjective Evaluation  

The strategies were tested by thirty four 
users and Table 2 presents the mean score given 
to each strategy following the Cooper-Harper 
scale as well as the standard deviation (S. D.).  

As can be noted from Table 2, seven of 
the eight studied strategies, according to users’ 
opinion, showed an improvement in flight 
quality compared to the no strategy condition. 
Strategy 5 (Crossed, Reference: Speed and Pitch 
Angle) was the only that did not presented an 
improvement. 

It must be noted that the mean score for 
the no strategy condition was 7.4, which 
according to the Cooper-Harper scale 

corresponds to: “A control system that can not 
ensure a suitable performance with a tolerable 
amount of work. An improvement is mandatory. 
The systems features serious deficiencies” (most 
users did not have piloting experience). 
 

Table 2 – Strategies score (subjective) 
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According to the users, strategies 4 
(Direct, Reference: Speed and Rate of Climb) 
and 8 (Direct, Reference: Speed and Speeds 
Angle) achieved the best improvement to flight 
quality with a score inferior to 3. In the Cooper-
Harper scale that corresponds to: “Satisfactory. 
No improvements needed. Negligible 
deficiencies”. It was classified between 
reasonable and good. 

It is also interesting to note that among 
all strategies the direct ones presented a better 
score than the crossed ones. Only strategy 8 that 
scored 2.2 for the direct mode (good) had a 
crossed mode that was rated below 4 (still in the 
no improvement needed category). However, it 
is necessary to keep in mind that those results 
are only representative for a flight trajectory 
with characteristics similar to the studied one.  
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5.2 Objective Evaluation  

Fig. 8 features the mean cumulated error 
referring to the flown flight altitude difference 
relatively to the reference trajectory. The 
accumulated error was normalized using the no 
strategy condition as a reference. Strategy 1 
(Crossed, Reference: Speed and Altitude) 
presented a worsening of 60% relative to the no 
strategy condition and achieved the worst 
performance of all strategies. In the other hand 
strategy 8 (Direct, Reference: Speed and Speeds 
Angle) presented an improvement of almost 
80%, achieving the best performance of all 
strategies. 

 

 

Fig. 8. Mean Accumulated Error for Speed 
(normalized) 

 

 

Fig. 9. Mean Accumulated Error for Altitude 
(normalized) 

 
Fig. 9 features the mean cumulated error 

referring to the flown flight speed difference 
relative to the reference speed. It is interesting 
to note that all strategies, even crossed ones, 
achieved an improvement of more than 60% 
regarding the no strategy condition. Again the 
direct strategies obtained a better score than the 
crossed ones. All direct strategies achieved 

more than 80% of improvement. Once more, 
strategy 8 (Direct, Reference: Speed and Speeds 
Angle) was the best rated strategy. 

Following, a short analysis comparing 
the best strategies (4 and 8) to the no strategy 
condition will be performed. 

5.3 Flown Trajectory Analysis 

Fig. 10 presents users trying to fly following the 
reference trajectory with no facilitated flight 
strategies. Whereas they were flying through the 
indicated black lines the error was not 
computed. It was considered a transition region 
as mentioned earlier in this article. 
 

 

Fig. 10. No Strategy – Proposed and Flown 
Trajectories 

 
The results concerning strategies 4 and 8 

are shown in Fig. 11 and Fig. 12. The 
improvements are outstanding. The strategies 
clearly facilitated the trajectory control by 
making it possible for the users to stick close to 
the reference trajectory. 

 

 

Fig. 11. Strategy 4 – Proposed and Flown 
Trajectories 
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Fig. 12. . Strategy 4 – Proposed and Flown 
Trajectories 

 

5.4 Flown Flight Speed Analysis 

Fig. 13 features the flown flight speed 
with no piloting assistance strategies and the 
reference flight speed. It is important to note 
that some users had great difficulties controlling 
the flight speed and even let it decrease below 
the stall angle compromising the flight safety. 
 

 

Fig. 13. No Strategy – Proposed and Flown 
Speeds 

 
Fig. 14 and Fig. 15 show the flown flight 

speed for the assisted flights using strategies 4 
and 8. 

Once again the assisted flights 
performed much better than the non assisted 
flight. Especially, no user let the airplane stall, 
which characterizes a safety improvement. 

 

 

Fig. 14. Strategy 4 – Proposed and Flown 
Speeds 

 

 

Fig. 15. Strategy 8 – Proposed and Flown 
Speeds 

 

5.5 Experienced Users and no Experienced 
Users Comparison 

A comparison regarding the experienced 
and no experienced users’ flights can help 
validating the hypothesis that the assisted flight 
strategies improve the airplane flight qualities. 
As an example, two of the users will be 
compared: An experienced pilot and a user with 
no piloting skills and non aeronautical 
knowledge. 

Fig. 16 presents a comparison of the 
flown trajectory of the two compared users. As 
expected the experienced pilot stuck closer to 
the predetermined trajectory while the other 
user did not performed so well, particularly at 
the first climbing path.  
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Fig. 16. Trajectory Comparison – No Flight 
Assistance 

 
Fig. 17 features a comparison of the 

same users flying with the control strategy 8. It 
is clearly seen that both users had a much closer 
performance. It can also be noted that the 
experienced pilot did not lose any performance 
using the assisted flight strategy. 

 

 

Fig. 17. Trajectory Comparison – Strategy 8 

 
The same analysis was performed for the flown 
flight speed. Fig. 18 shows that both users had 
some issues controlling the flight speed but 
specially the inexperienced user. Fig. 19 shows 
the compared users flying with assisted flight 
strategy 8. Both users controlled the flight speed 
much easier and achieved a comparable 
performance. 

The comparisons analysis suggest that 
the implementation of facilitated flight 
strategies can bridge the gap between 
experienced and inexperienced pilots. 
 

 

Fig. 18. Flight Speed No Flight Assistance 

 

 

Fig. 19. Flight Speed Comparison Strategy 8 

5  Conclusion 

Along this work, assisted flight 
strategies were developed and studied based on 
the airplane trajectory control instead of the 
usual airplane attitude control. The studied 
strategies were evaluated by thirty four users 
having different flight skill and aeronautical 
knowledge. The evaluation was carried out 
using a flight simulator developed and 
implemented for that specific purpose. 

Eight assisted longitudinal flight 
strategies were evaluated having as reference 
variables: altitude, rate of climb, pitch angle and 
speeds angle. For each chosen combination of 
those reference variables there were proposed 
two modes: the direct mode (speed variation 
controlled by the engine power percentage) and 
the crossed mode (speed variation controlled by 
the elevators deflection). 

For all combinations the direct modes 
achieved better performance than the crossed 
modes. In some cases crossed strategies induced 
a worst performance comparing to the no 
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strategy condition. That can be seen for instance 
in Fig. 8 where strategies 1 (Crossed, Reference: 
Speed and Altitude) and 5 (Crossed, Reference: 
Speed and Pitch Angle) clearly were over 
performed by the no strategy condition.  

Strategy 8 (Direct, Reference: Speed and 
Speeds Angle) was the most performing 
strategy for this work. According to the users’ 
opinion that strategy achieved a score of 2.2 in 
the Cooper Harper’s scale and was classified as: 
“Satisfactory. No improvements needed. 
Negligible deficiencies. Desired Performance 
Achieved with no Pilot Efforts”. Strategy 4 was 
the second more performing strategy scoring 3 
in the Cooper Harper scale and classified as: 
“Satisfactory. No improvements needed. 
Unpleasant deficiencies. Desired Performance 
Achieved with minimum pilot efforts”. 
Strategies 8 and 4 are thus good candidates to be 
implemented in flight assistance systems. 

Last, a comparison between an 
experienced pilot and an inexperienced user 
with no flight skills showed that their 
performance could be brought to the same level 
using assisted flight strategies. 
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