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Abstract

Cruise optimization at constant altitude is for-
mulated as a singular optimal control problem.
The cases of maximum range, minimum direct
operating cost and minimum fuel with fixed ar-
rival time are analyzed, providing a comprehen-
sive analysis of optimum cruise at constant alti-
tude. The case of unsteady cruise with variable
aircraft mass has been considered. In all cases
the singular controls and the optimal speed laws
that lead to optimum cruise are obtained, and the
corresponding optimal trajectories are analyzed.

1 Introduction

Trajectory optimization is a subject of great im-
portance in air traffic management (ATM), from
the operational point of view, that aims at defin-
ing optimal flight procedures that lead to energy-
efficient flights. In practice, the airlines con-
sider a cost index (CI) and define the direct
operating cost (DOC) as the combined cost of
fuel consumed and flight time, weighted by the
cost index. Their goal is to minimize the DOC.
A particular case is the problem of minimizing
fuel consumption (case CI=0); and another re-
lated problem is that of maximizing range for
a given fuel load. Another important prob-
lem in ATM is the design of aircraft trajecto-
ries that meet certain arrival time constraints at
given waypoints, for instance at the top of de-
scent (TOD), at the initial approach fix (IAF),
or at the runway threshold (estimated time of ar-

rival, ETA). These are called four-dimensional
(4D) trajectories, which are a key element in the
trajectory-based-operations (TBO) concept pro-
posed by NextGen and SESAR for the future
ATM system.

In this work we review the problem of cruise
optimization at constant altitude, formulated as
an optimal control problem, in which the ob-
jective is to optimize a given performance in-
dex. The following cases are analyzed: maxi-
mum range, minimum direct operating cost and
minimum fuel with fixed arrival time. In cruise at
constant altitude (and constant heading) the only
control variable left is thrust, which appears lin-
early in the equations of motion, as well as on
the performance indices to be optimized; as a
consequence, the Hamiltonian of the problem is
also linear on the control variable, which leads to
a singular optimal control problem (see Bryson
and Ho [1]). Detailed analyses can be found in
Rivas and Valenzuela [2], Franco et al. [3] and
Franco and Rivas [4].

Trajectory optimization has been studied by
different authors. Pargett and Ardema [5] ana-
lyze the problem of range maximization in cruise
at constant altitude, considering incompressible
aerodynamics. The same problem is also ana-
lyzed using different approaches by Miele [6] and
Torenbeek [7], who consider the case of quasi-
steady flight.

Barman and Erzberger [8], Erzberger and Lee
[9] and Burrows [10] analyze the minimum-DOC
problem for global trajectories (climb, cruise and
descent); they consider steady cruise, and take
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the aircraft mass as constant. Burrows [11] also
analyzes the minimum-DOC problem for global
trajectories, without the assumption of constant
mass, but with the assumption that the cruise seg-
ment takes place in the stratosphere. Bilimo-
ria et al. [12] and Chakravarty [13] analyze the
minimum-DOC, steady cruise as the outer solu-
tion of a singular perturbation approach, where
the aircraft mass is taken as constant.

The particular case of minimum-fuel cruise
has been considered by others. For example,
Schultz and Zagalsky [14], Speyer [15], Schultz
[16], Speyer [17], and Menon [18] analyze the
optimality of the steady-state cruise, taking the
aircraft mass as constant. Fuel-optimal trajec-
tories with fixed arrival times are studied by
Sorensen and Waters [19], Burrows [10] and
Chakravarty [13], who analyze the 4D minimum-
fuel problem as a minimum-DOC problem with
free final time, that is, the problem is to find
the time cost for which the corresponding free-
final-time DOC-optimal trajectory arrives at the
assigned time.

Unlike in the works cited above, we con-
sider the unsteady problem, with variable air-
craft mass, with compressible aerodynamics, and
without any restriction on cruise altitude. The
objective is to obtain the optimal controls and
the optimal speed laws (speed as a function of
aircraft mass) that lead to optimum cruise, and
to analyze the corresponding optimal trajecto-
ries. Optimum values of the performance indices
(maximum range, minimum fuel, minimum cost)
are calculated. Results are presented for a model
of a Boeing 767-300ER, with realistic aerody-
namic and propulsive aircraft models.

2 Equations of motion for cruise at constant
altitude

The equations of motion for cruise at constant al-
titude and constant heading are the following [6]:

V̇ =
1
m

(T −D)

ṁ = −cT
ẋ = V

(1)

In these equations, the drag is a general known
function D(V,m), which takes into account the
remaining equation of motion L = mg. The thrust
T (V ) is given by T = πTM(V ), where π mod-
els the throttle setting, 0 < π ≤ 1, and TM(V ) is
a known function. The specific fuel consump-
tion, c(V ), is also a known function. Thus, in this
problem there are three states, speed (V ), aircraft
mass (m) and distance (x), and one control (π).

The initial values of speed, aircraft mass and
distance (Vi,mi,xi), and the final value of speed
(Vf ) are given. The final values of aircraft mass,
distance and time (m f ,x f , t f ) can be specified
or unspecified, depending on the problem under
consideration.

The aircraft model considered in this paper
for the numerical applications is that of a Boeing
767-300ER (a typical twin-engine, wide-body,
long-range transport aircraft) which is described
in Ref. [2]. The given cruise altitude is denoted
as hA.

3 Singular Optimal Control

Cruise optimization is formulated as an optimal
control problem. The objective is to optimize a
given performance index of the form

J =
Z t f

0
f (V,m,x,π)dt (2)

subject to the equations of motion (1) as con-
straints. In this work, the following problems are
analyzed: maximum range, minimum direct op-
erating cost, and minimum fuel with fixed arrival
time.

In cruise at constant altitude (and constant
heading) the control variable π appears linearly
in the equations of motion (1), and in all cases
considered in this paper the performance indices
to be optimized are linear on π as well. As a con-
sequence, the Hamiltonian of the problem is also
linear on the control variable, which leads to a
singular optimal control problem [1].

Let H be the Hamiltonian of the problem, and
λV , λm and λx be the adjoint variables, which are
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defined by the following equations:

λ̇V = −∂H
∂V

λ̇m = −∂H
∂m

λ̇x = −∂H
∂x

(3)

These equations are neccesary conditions for op-
timality.

One also has the following transversality con-
ditions (which are neccesary conditions for opti-
mality as well): first, if the final value of a state
variable is not specified, then the corresponding
adjoint variable satisfies λ(t f ) = 0; and, second,
if the final time is not specified, then the Hamil-
tonian satisfies H(t f ) = 0.

Moreover, in all cases considered in this pa-
per the Hamiltonian is not an explicit function of
time, hence one has the 1st integral H = constant
on the optimal path. In those cases in which
H(t f ) = 0, one has H = 0 along the optimal
path. Although called optimal paths, they are in
fact extremal paths, that is, paths that satisfy the
neccesary conditions for optimality.

Since H is linear in the control variable one
can write H = H + Sπ. The function S is called
the switching function. According to the Min-
imum Principle of optimal control theory (see
Ref. [1]), the optimal control is determined by the
condition that the Hamiltonian be a minimum.
Hence, since the control variable π is bounded,
minimization of H with respect to π establishes
that the optimal control is defined by

π = πmax if S < 0
π = πmin if S > 0
π = πsing if S = 0 over a finite time interval

(4)

where πsing (πmin < πsing < πmax) is the singular
control (yet to be determined). Trajectory seg-
ments defined by πsing are called singular arcs.
The analysis of these singular arcs is the subject
of this paper.

In all cases considered in this paper the func-
tion Ṡ does not depend on π, and the function S̈

is linear on π. Note that over the finite time inter-
val where one has S = 0 one also has Ṡ = 0 and
S̈ = 0. The singular control πsing is defined by the
condition S̈ = 0, and the singular arc is defined
by the three equations (see Ref. [1]):

H = constant
S = 0

Ṡ = 0
(5)

Another necessary condition (the generalized
Legendre-Clebsch condition, see Ref. [20]) is
that for the singular control to be optimal one

must have −∂S̈
∂π

≥ 0. This condition is always sat-
isfied in the cases considered in this paper, which
can be shown numerically.

In this work, it is assumed that the initial and
final cruise points belong to the singular arc. In
cases on which they are arbitrarily given, the op-
timal path is formed, in general, by three arcs:
one to go from the initial point to the singular
arc, then the singular arc, and a final arc to go
from the singular arc to the final point. The ini-
tial and final arcs are defined by the control being
at its maximum or minimum value (depending on
the given initial and final velocities). This type of
optimal control is called bang-singular-bang [1].
The analysis of this type of problem is beyond the
scope of this paper.

4 Maximum-Range Cruise

In this problem the objective is to maximize the
range for a given fuel load, or, equivalently, to
minimize the following performance index

J = −
Z t f

0
V dt (6)

subject to the equations of motion (1) as con-
straints, with the final value of the aircraft mass
(m f ) fixed. The final values of distance (x f ) and
flight time (t f ) are unspecified.

The Hamiltonian of this problem is given by

H = −V +λV
1
m

(πTM −D)−λmcπTM (7)

where it has been taken into account that λx = 0
(since λ̇x = 0 and λx(t f ) = 0), and it satisfies
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H = 0 along the optimal trajectory. One can
write H = H +Sπ, with

H = −V −λV
D
m

S = (λV
1
m
−λmc)TM

(8)

One also has the function Ṡ given by (after tak-
ing into account the state equations (1) and the
adjoint equations (3)):

Ṡ =− dTM

dV
(
λV

m
−λmc)

D
m

+
TM

m

[
1+λV

(
1
m

∂D
∂V

− c
∂D
∂m

+ c
D
m

)
+λm

dc
dV

D
] (9)

note that the terms in the control variable π have
cancelled out of this equation.

4.1 Singular arc

The three equations that define the singular arc
(H = 0,S = 0, Ṡ = 0) reduce to

V +λV
D
m

= 0

λV

m
−λmc = 0

1+λV

(
1
m

∂D
∂V

− c
∂D
∂m

+ c
D
m

)
+λm

dc
dV

D = 0

(10)

The singular arc is obtained after eliminating the
adjoints λV and λm from these equations. One
obtains the following expression, which general-
izes that obtained in Ref. [5],

D
(

1−V c− V
c

dc
dV

)
−V

∂D
∂V

+V cm
∂D
∂m

= 0

(11)
Equation (11) defines a singular line in the

(V,m)−space, which is in fact the locus of possi-
ble points in the state space where optimal paths
can lie.

4.2 Optimal singular control

The function S̈ depends linearly on the con-
trol variable. Let S̈ = A(V,m) + B(V,m)π.
The singular control is obtained from
A(V,m)+B(V,m)π = 0; one gets the following

πsing =
D
TM

(
1+V c

A1(V,m)
B1(V,m)

)
(12)

where A1(V,m) and B1(V,m) are given by

A1(V,m) =m
∂2D

∂m∂V
−m2c

∂2D
∂m2 −mc

∂D
∂m

− m
D

∂D
∂m

(
∂D
∂V

−mc
∂D
∂m

)
B1(V,m) =DV

(
c2 +3

dc
dV

+
1
c

d2c
dV 2

)
+2

∂D
∂V

(
V c+

V
c

dc
dV

)
−mV

(
c2 +3

dc
dV

)
∂D
∂m

+V
∂2D
∂V 2

+m2c2V
∂2D
∂m2 −2V cm

∂2D
∂m∂V

(13)

As indicated in Ref. [5], in general one has
V c ¿ 1, in which case Eq. (12) reduces to

πsing ≈
D
TM

, that is, the singular thrust is very

close to the steady-cruise value T = D.

4.3 Results

4.3.1 Singular arc

The singular arc defined by Eq. (11) is plotted
in Fig. 1 for different values of altitude in terms
of the dimensionless variables Mach number M
and ω = W/(1

2γpASW ), where W is the aircraft
weight, γ=1.4 is the ratio of specific heats, pA the
pressure at the given altitude (hA), and SW the
reference wing surface. The figure shows that
there is a maximum value of the Mach number
that can be obtained, namely M =0.7673 (for our
aircraft model). Notice that the singular arc in
the (ω,M)−plane is practically independent of
the flight altitude. Hence, the maximum value
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of M is practically the same for all altitudes. This
is analyzed in more detail in Ref. [2].

0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

M [-]

ω
[-
]

 

 

incompressible
compressible

Fig. 1 Singular arc in the (ω,M)−plane.

4.3.2 Optimal paths

As one can see in Fig. 1, for low values of ω, until
the turning point is reached, the singular arc de-
fines an increase of M with W , whereas for large
values of ω, after the turning point, it defines a
decrease. Notice that for given aircraft weight,
low values of ω correspond to low altitudes, and
viceversa. Therefore, for given initial and final
values of W , at low altitudes one has the well-
known behavior of M decreasing as fuel is con-
sumed, whereas at high altitudes one can have the
opposite. This behavior is shown in Fig. 2 for
different values of hA, where the optimal paths
are represented by thick lines superposed on the
singular arcs. In this simulation we have taken
Wi =1600 kN and W f =1100 kN, that is a fuel
load for cruise of 500 kN (approximately 27% of
MTOW). Thus, we can conclude that the cruise
altitude has a qualitative influence on the results.

Implicit in the results presented in Fig. 2 is
that the entire cruise can follow the singular arc.
The inequality constraint 0 < π≤ 1 is satisfied for
those optimal paths. The optimal singular control
for the optimal paths represented in Fig. 2 is de-
picted in Fig. 3. Notice that the required thrust
decreases as fuel is consumed.

0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.6
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0.7

0.75

0.8

M
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]

W [N]
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hA

Fig. 2 Optimal paths (hA = 9000, 10000, 11000 m)
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0.4
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0.8

1

π
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]

W [N]

hA

Fig. 3 Optimal singular control (hA = 9000, 10000,
11000 m)

4.3.3 Maximum range

Once the optimal singular control is determined,
integration of the state equations yields the max-
imum range, Rmax, which is plotted in Fig. 4 as a
function of cruise altitude, hA. The results show
that there is a “best” altitude where the maximum
range is largest, namely (hA)best = 10034 m, with
(Rmax)best = 10705 km.
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Fig. 4 Maximum range.

4.3.4 Compressibility effects

To analyze compressibility effects we consider an
incompressible drag polar (see Ref. [2]). The in-
compressible singular arcs have been plotted in
Figs. 1 and 2, and the corresponding maximum
range in Fig. 4.

One obtains, first, the result that the Mach
number increases strongly with aircraft weight
(this is also the result obtained in Ref. [5] for
an incompressible model of a Boeing 747-400).
Comparing with the compressible results we can
see that the incompressible drag polar overesti-
mates the optimal Mach number, which can be-
come quite large (even supersonic), whereas, as
shown before, a compressible drag polar defines
a maximum value of M, in the subsonic region.
Thus, compressibility effects prevent the Mach
number from increasing unrealistically. Also,
one has that the range results are in complete
disagreement with the compressible case; the in-
compressible drag polar overestimates the value
of Rmax, especially at large altitudes.

We conclude that between the compressible
and incompressible results there is no agreement,
neither quantitative nor qualitative.

5 Minimum-Cost Cruise

The direct operating cost (DOC) is defined as
J = mF +CI t f , where mF = mi −m f is the mass
of fuel consumed (mi and m f are the initial and

final values of aircraft mass), and t f is the flight
time. The cost index is defined as CI=cost of
time/cost of fuel. For simplicity, without loss in
generality, we have not included the actual fuel
cost, so that J is scaled to the units of fuel mass;
thus, using SI units of measure, J is measured in
kg, and CI in kg/s. Now the goal is to minimize
the DOC for a given range, that is, to minimize
the following performance index

J = −
Z m f

mi

dm+CI
Z t f

0
dt

=
Z t f

0
(cT +CI)dt

(14)

subject to the equations of motion (1) as con-
straints, with the final value of distance (x f ) fixed.
The final value of aircraft mass (m f ) and the final
time (t f ) are unspecified.

The Hamiltonian is now given by

H =(cπTM +CI)+
λV

m
(πTM −D)

−λmcπTM +λxV
(15)

and satisfies H = 0 along the optimal trajec-
tory. One has λx = constant (since λ̇x = 0) and
λm(t f ) = 0. One can write H = H +Sπ, with

H = CI −λV
D
m

+λxV

S =
[

λV

m
− (λm −1)c

]
TM

(16)

One also has the function Ṡ, given by (after taking
into account Eqs. (1) and (3)):

Ṡ =−
[

λV

m
− (λm −1)c

]
D
m

dTM

dV

+
TM

m

[
λV

m

(
∂D
∂V

+ cD−mc
∂D
∂m

)
−λx + (λm −1)D

dc
dV

] (17)

note again that the terms in the control variable π
have cancelled out of this equation.
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5.1 Singular arc

The three equations that define the singular arc
(H = 0,S = 0, Ṡ = 0) reduce to

CI −λV
D
m

+λxV = 0

λV

m
− (λm −1)c = 0

λV

m

(
∂D
∂V

+ cD−mc
∂D
∂m

)
−λx

+(λm −1)D
dc
dV

= 0

(18)

The singular arc is obtained after eliminating the
adjoints λV and λm from these equations. One
obtains the following expression,

D
[(

1− Ω
Ω+V

)
−V c− V

c
dc
dV

]
−V

∂D
∂V

+V cm
∂D
∂m

= 0
(19)

where Ω =
CI
λx

; this equation defines a family of

singular arcs of parameter Ω. The constant λx
is defined by the condition λm(t f ) = 0, and the
corresponding singular arc is the solution to the
problem. In such case Eq. (19) defines a singu-
lar line in the (V,m)−space, which again is the
locus of possible points in the state space where
optimal paths can lie.

Therefore, in this case of minimum-DOC
cruise, to impose the condition λm(t f ) = 0, one
must integrate the adjoint equations to solve the
problem, which makes it more involved mathe-
matically.

The case CI=0 corresponds to the problem
of minimum-fuel cruise. In this case one has
the same singular arc as the one obtained in
the maximum-range cruise, given by Eq. (11).
Hence, one has the same optimal speed laws to
maximize range for a given fuel load and to min-
imize fuel for a given range.

5.2 Optimal singular control

As in Section 4, the singular control is obtained
from S̈ = A(V,m)+ B(V,m)π = 0. One gets the

same optimal control given by Eqs. (12) and (13).
This expression for the optimal singular control
depends implicitly on the parameter of the fam-
ily of singular arcs, since V and m are related by
the singular arc equation (19) which includes the
dependence on Ω.

5.3 Results

Only one value of cruise range is considered:
x f = 10000 km, and the initial weight at the
start of the cruise is the same in all cases:
Wi = 1600 kN.

In the definition of the direct operation cost,
it is implicitly assumed that the cost index is pos-
itive (representative values of CI are in the range
0.5 to 1.5 kg/s). However, negative cost indices
can be used to model the problem of minimum
fuel with fixed arrival time, as shown in Section
6, hence, in the following, we include results for
negative values of CI.

The resolution algorithm used to solve the
state and adjoint equations is given in Ref. [4].

5.3.1 Singular arc

The singular arcs in the (ω,M)-plane defined by
Eq. (19) are plotted in Fig. 5, for different val-
ues of the parameter Ω, and for a representative
altitude hA =10000 m.

0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

M [-]

ω
[-
]

Ω

Fig. 5 Singular arcs in the (ω,M)-
plane, for hA =10000 m (Ω =
−100,−75,−50,−25,0,25,50,75,100 m/s).
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Note that these curves present a maximum
value of the Mach number, as discussed in Sec-
tion 4. Regarding the effect of the cruise altitude
in these dimensionless arcs, it can be shown that
it is very small, as already seen in Fig. 1.

5.3.2 Optimal paths

The optimal paths are represented in Fig. 6,
for two values of cruise altitude (hA = 9000 and
11000 m); they are represented by thick lines su-
perposed on the singular arcs.

0.8 1 1.2 1.4 1.6 1.8 2

x 10
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0.6

0.65
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0.8
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]

CI

(a)

0.8 1 1.2 1.4 1.6 1.8 2
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0.7
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0.8

0.85

W [N]

M
[-
]

CI

(b)

Fig. 6 Optimal paths for various values of hA: (a)
9000, (b) 11000 m (CI = −0.5,0,0.5,1,1.5,2 kg/s;
dashed lines corresponds to CI=0).

In each graph, optimal paths for different values
of the cost index CI are plotted. Note that de-
pending on the value of CI the optimal procedure
changes: for small values, the speed decreases
as fuel is consumed, whereas for large values the
speed increases (although slightly); also, for cer-
tain values of CI, the optimal Mach number is
roughly constant.

Implicit in the results presented in Fig. 6 is
that the entire cruise can follow the singular arc.
The inequality constraint 0 < π < 1 is satisfied for
those optimal paths. The optimal singular con-
trol for the optimal paths that correspond to hA =
9000, 10000, 11000 and 12000 m is depicted in
Fig. 7. Note that the optimal control decreases as
fuel is consumed, and increases as cruise altitude
increases.

1 1.2 1.4 1.6 1.8

x 10
6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W [N]

π
[-
]

h
A

Fig. 7 Optimal singular control for hA = 9000,
10000, 11000, 12000 m (CI = −0.5,0,0.5,1,1.5,2
kg/s; dashed lines corresponds to CI=0).

5.3.3 Minimum cost

For each value of CI, the corresponding optimal
path leads to minimum cost, associated to an op-
timal flight time and an optimal fuel consump-
tion. A trade off between these flight time and
fuel consumption is represented in Fig. 8 (in this
figure, on each curve the cost index ranges from
−0.7 to 2 kg/s, in the counterclockwise direc-
tion). The point of vertical tangent corresponds
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to CI=0 (minimum fuel). The optimal flight time
decreases as CI increases (that is, as the time
cost increases); the optimal fuel consumption as
a function of CI presents a minimum at CI=0,
as it corresponds to the minimum-fuel problem.
For positive cost indices (the lower part of the
curves), decreasing the flight time requires in-
creasing the fuel consumption.

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4

x 10
4

10

11

12

13

14

15

16

mF [kg]

t
f

[h
]

a
b

c

d

Fig. 8 Optimal flight time vs. optimal fuel consump-
tion, for various values of hA: (a) 9000, (b) 10000,
(c) 11000, (d) 12000 m (on each curve, the cost index
ranges from −0.7 to 2 kg/s).

The minimum direct operating cost is represented
in Fig. 9 as a function of CI. It can be seen that
the minimum DOC increases with CI (in fact, the
corresponding fuel and time costs both increase
with CI).

6 Minimum-Fuel Cruise with Fixed Arrival
Time

In this problem the objective is to minimize fuel
consumption for a given range and a given final
time, that is, to minimize the following perfor-
mance index

J =
Z t f

0
cT dt (20)

0 0.5 1 1.5 2
4

6

8

10

12

14
x 10

4

CI [kg/s]

J
m

i
n

[k
g
]

Fig. 9 Minimum DOC as a function of CI (hA= 9000,
10000, 11000, 12000 m).

subject to Eqs. (1) as constraints, with the final
flight distance (x f ) and the flight time (t f ) fixed.
The final aircraft mass (m f ) is unspecified.

The Hamiltonian is given by

H =cπTM +
λV

m
(πTM −D)

−λmcπTM +λxV
(21)

and satisfies H = constant along the optimal tra-
jectory. One has λx = constant (since λ̇x = 0) and
λm(t f ) = 0. One can write H = H +Sπ, with

H = λxV −λV
D
m

S =
[

λV

m
− (λm −1)c

]
TM

(22)

The function Ṡ is now identical to Eq. (17).

6.1 Singular arc

The three equations that define the singular arc
(H =constant, S = 0, Ṡ = 0) reduce to

λxV −λV
D
m

= H

λV

m
− (λm −1)c = 0

λV

m

(
∂D
∂V

+ cD−mc
∂D
∂m

)
−λx

+(λm −1)D
dc
dV

= 0

(23)

9
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where H is the constant value of the Hamiltonian.
Eliminating the adjoint variables λV and λm

from these equations and making ωt =
H
λx

, one

obtains the following expression

D
[(

1− ωt

ωt −V

)
−V c− V

c
dc
dV

]
−V

∂D
∂V

+V mc
∂D
∂m

= 0
(24)

which is a family of singular arcs of parame-
ter ωt . The value of this constant is determined
by the constraint t(x f ) = t f . The correspond-
ing singular arc is the solution to the problem, in
which case Eq. (24) defines a singular line in the
(V,m) space, which is, again, the locus of possi-
ble points where optimal paths can lie.

The constant λx (or H) is defined by the con-
dition λm(t f ) = 0. As long as the values of λx or
H are not needed, there is no need to integrate the
adjoint equations.

The problem of free final time corresponds to
the case ωt = 0; in this case one has the same
singular arc obtained in Section 4 for the problem
of maximum-range cruise for a given fuel load.

Note that the family of singular arcs (24)
is the same as that obtained in Section 5 for
the problem of minimum-cost cruise, except that
the family parameter is now −ωt instead of Ω.
Therefore, as indicated in Refs. [10,13], for given
t f (or, equivalently, for given ωt), the problem is
equivalent to solving a minimum-DOC problem
with Ω = −ωt , or, equivalently, with a cost in-
dex such that the corresponding free-final-time,
DOC-optimal trajectory arrives at the assigned
time.

6.2 Optimal singular control

As in the previous cases, the singular control
is obtained from S̈ = A(V,m) + B(V,m)π = 0,
and one gets the same optimal control given by
Eqs. (12) and (13). This expression again de-
pends implicitly on the parameter of the family
of singular arcs, since V and m are related by the
singular arc equation (24) which includes the de-
pendence on ωt .

6.3 Results

Only one value of cruise range is considered:
x f = 10000 km, and the initial weight at the
start of the cruise is the same in all cases:
Wi = 1600 kN.

The iterative procedure used to solve the state
equations is described in Ref. [3]. The relation-
ship between ωt and t f is represented in Fig. 10,
where t f ,0 is the flight time in the problem of
free final time, that corresponds to ωt =0 (note
that t f ,0 depends on cruise altitude). One has that
positive values of ωt correspond to flight times
smaller than t f ,0, and vice versa.

−50 0 50
−100

−50

0

50

100

tf − tf,0 [min]

ω
t

[m
/
s]

h
A

Fig. 10 Parameter ωt vs. flight time (hA = 9000,
10000, 11000, 12000 m).

6.3.1 Singular arc

The singular arcs in the (ω,M)-plane defined by
Eq. (24) are the same as those corresponding to
the minimum-DOC problem plotted in Fig. 5,
with ωt = −Ω.

6.3.2 Optimal paths

The optimal paths are represented in Fig. 11,
for two values of cruise altitude (hA = 9000 and
11000 m); they are represented by thick lines su-
perposed on the singular arcs. In each graph,
optimal paths for different values of the param-
eter ωt are plotted. They are completely similar

10
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to those of the minimum-DOC problem, repre-
sented in Fig. 6.

Again, implicit in the results presented in
Fig. 11 is that the entire cruise can follow the
singular arc. The optimal singular control is rep-
resented in Fig. 12, where one can see that the
inequality constraint 0 < π ≤ 1 is satisfied for
the optimal paths that correspond to hA = 9000,
10000, 11000 and 12000 m. As in the previ-
ous section, the optimal control decreases as fuel
is consumed, and increases as cruise altitude in-
creases.

0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.6

0.65

0.7

0.75

0.8

0.85

W [N]

M
[-
]

ω
t

(a)

0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.6

0.65

0.7

0.75

0.8

0.85

W [N]

M
[-
]

ω
t

(b)

Fig. 11 Optimal paths for various val-
ues of hA: (a) 9000, (b) 11000 m (ωt =
−100,−75,−50,−25,0,25,50,75,100 m/s; dashed
lines corresponds to ωt=0).

1 1.2 1.4 1.6 1.8

x 10
6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W [N]

π
[-
]

h
A

Fig. 12 Optimal singular control for
hA = 9000, 10000, 11000, 12000 m
(ωt = −100,−75,−50,−25,0,25,50,75,100
m/s).

6.3.3 Minimum fuel consumption

For each value of the flight time t f , the corre-
sponding optimal path leads to minimum fuel
consumption mF . Let mF,0 be the minimum fuel
consumption in the problem of free final time
(note that mF,0 varies with cruise altitude). The
increment in fuel consumption mF −mF,0 is rep-
resented in Fig. 13 as a function of the increment
in flight time t f − t f ,0, for different cruise alti-
tudes. One can see that fuel consumption always
increases, both when the flight time is larger and
when it is smaller than the reference flight time
t f ,0. The increment in fuel consumption increases
with altitude, quite strongly in the case t f < t f ,0
and moderately in the case t f > t f ,0.

In actual operational practice an aircraft may
be required to absorb a given flight delay along
the cruise (reaching the TOD point at a given
time), or to make an early arrival (which may
be required, for instance, to resolve a conflict).
Delays correspond to positive values of t f − t f ,0,
and early arrivals correspond to negative values.
Figure 13 clearly indicates that fuel consumption
always increases, both for early arrivals and for
delays.
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Fig. 13 Minimum fuel consumption vs. flight time
(hA = 9000, 10000, 11000, 12000 m).

7 Conclusions

Cruise optimization at constant altitude has been
formulated as a singular optimal control problem.
The cases of maximum range, minimum direct
operating cost and minimum fuel with fixed ar-
rival time have been analyzed, providing a com-
prehensive analysis of optimum cruise at constant
altitude. The case of unsteady cruise with vari-
able aircraft mass has been considered. In all
cases the singular arcs, the optimal control and
the optimal paths have been studied. It has been
shown that the singular arcs in the three problems
belong to a same family, and that the singular op-
timal control is always given by the same func-
tion (in terms of the state variables).

The influence of cruise altitude has been
shown to be qualitatively important: cruise at low
altitudes requires that the Mach number decrease
as fuel is consumed, whereas at high altitudes
one has that the optimal Mach number is roughly
constant. It has been also shown that compress-
ibility effects must be taken into account in or-
der to properly describe the behavior of modern,
high-speed, subsonic transport aircraft (compari-
son with an incompressible drag polar has shown
large differences, both quantitative and qualita-
tive). In the analysis of the minimum-DOC prob-
lem a trade off between flight time and fuel con-
sumption has been made: the increase in fuel
consumption required by a decrease in flight time

has been quantified. In the analysis of minimum-
fuel cruise with fixed final time, the cost of hav-
ing a flight time longer or shorter than that of
the reference free-time problem has been quan-
tified as well: the fuel consumption is always
larger, increasing with cruise altitude. It has been
shown that the problem of minimum-fuel cruise
with fixed arrival time can be formulated as one
of minimum DOC: the problem is to find the cost
index for which the corresponding DOC-optimal
trajectory arrives at the assigned final time.

It must be emphasized that in this work a
constrained regime has been considered, namely,
flight at constant altitude (of interest from the Air
Traffic Control point of view). The optimization
problem, then, has defined a constrained max-
imum (it is well known that improved perfor-
mance is obtained flying, for instance, a cruise
climb, where altitude slightly increases).

From the operational point of view, the opti-
mal variable-Mach solutions obtained in the pa-
per present the drawback of its flyability. How-
ever, they can be used to define flyable proce-
dures close to optimal: for example, a cruise
formed by constant-Mach segments, defined so
as to approximate the theoretical variable-Mach
curves, that is, a stepped Mach cruise (similarly
to the way the stepped climb cruise approximates
the optimal cruise climb solution).
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