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Abstract

Innovative aircrafts, such as very long
endurance UAVs employ high aspect ratio
flexible wings to reduce weight and power in
order to achieve sustained flight for months or
even years. The increased wing flexibility can
lead to large static structural deflections for
trimmed flight states. These large deformations
can induce aeroelastic instabilities which are
quite different from their rigid counterparts.
Therefore, it is imperative to perform a flutter
analysis which considers the trimmed deflected
state as a reference point.

The aeroelastic flutter analysis process should
always include an experimental test phase for
verification purposes. A wind tunnel test model
can provide the opportunity to modify and
calibrate theoretical models by showing the
effects and the limits of the considered
approximations. Two general areas are
pertinent to the field of aeroelastic testing. The
first includes experiments in which no airstream
is present. This class belongs to static and
vibrating tests, which are conducted to
determine the accuracy of the stiffness
distribution, natural frequencies and mode-
shapes. The second class includes tests that
require the presence of an airstream to study
critical and post critical behavior (flutter, LCO
amplitude etc.).

An experimental aeroelastic slender wing model
can be designed using a scaling procedure. By
expressing the aeroelastic equations of motion
in dimensionless form, it is possible to relate the
behavior of the small scale models to that of a
full-scale wing and identify and verify the
correctness of those parameters which represent
the characteristics of the full-size system and

even perform a model updating when required.
In this work, a simple numerical method that
enables one to expedite the analysis process
during the preliminary design phase is
introduced. A Typical HALE wing is considered
to investigate its aeroelastic behavior and to
define a model identification procedure
required to develop a wind-tunnel component
suitable for experimental test campaigns.

1 Introduction

The objective of this paper is to identify a
consistent scaling procedure to investigate the
flutter stability problem of a full-size high
aspect ratio composite wing structure by means
of a laboratory model [1-5].

During the last 50 years dynamically scaled
wind tunnel models and scaling considerations —
relating wind tunnel test results to the behaviour
of a full scale system — have played an
important role in aeroelasticity. Such scaling
relations relied on dimensional analysis to
establish scaling parameters used for scaled
models, which are suitable for wind tunnel
testing. It is interesting to note that despite its
importance, the literature on this topic is not
extensive, and most of it was done in the late
1950s and early 1960s (Bisplinghoff et al.,
1955; Regier, 1963) [6-8]. Similarity methods in
engineering dynamics have been discussed by
Baker et al. (1991), and the mathematical
aspects of scaling and self-similarity has been
presented more recently by [9]. However, these
considerations have only partially been
exploited for aeroelastic applications. Often the
behaviour of a specific airplane is so complex
that the accuracy of theoretical analysis should



be verified by experimental tests. Thus model
testing becomes necessary to validate theoretical
analysis and to perform model updating. By
expressing the aeroelastic equations of motion
in non-dimensional form or by dimensional
analyses, it is possible to indicate a necessary
and sufficient set of dimensionless parameters
for scaling. Consequenlty, this approach allows
a rigorous sensitivity analysis on the
characteristic parameters of the model .

Clearly, the use of extremely lightweight
structures and the possibility of carrying a
considerable amount of non-structural weight,
results in a highly flexible aircraft. A proper
wing model, which is capable of describing the
structural flight deflections should be adopted.
In the past few years an approximate nonlinear
beam theory which includes terms up to the
second order and valid in the range of moderate-
to-large deflections (not higher then 10% of the
wing span) has been widely accepted
[10,11,12]. The beam-wise structural model
includes the evaluation of the equivalent
stiffness for,isotropic configuration and simple
thin-walled laminated sections.

Only closed thin-walled sections are considered
in this paper with specific laminate lay-up. The
introduction of composite material originates a
coupling effect in the constitutive equations and
the associated displacement field is more
complicated than the isotropic counterpart. The
beam model considered in the present paper
follows a procedure similar to [13,14] and is
appropriate for a preliminary parametric
analysis to evaluate the flutter behaviour of
slender wings. For this class of flight vehicles
the span-wise dimension can be considered
quite higher than transversal section dimensions
and the same transversal dimension is higher
than the thickness. This is the main reason for
the use of a beam model approximation in order
to describe the real wing-box and tubular main
spar. In this study, the composite box is made of
planar and thin plate elements with different
lay-ups. Only membrane stresses are accounted
for the present developments.

The aeroelastic governing equations are derived
in the case of a nonlinear, initially straight and
inextensional composite Euler-Bernoulli beam
model using the extended Hamilton's principle
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[15,16,17]. The governing partial differential
equations of the flexible beam are reduced to a
system of ordinary differential equations by
using a series discretization technique, along
with Galerkin’s method, to obtain the
aeroelastic governing equations of a simple
three degree of freedom system. The unsteady
incompressible  aerodynamics  based on
Wagner’s function is used to determine the
aerodynamic loads based on the strip theory
assumption. The aerodynamic model considered
in this paper omits the stall model, hence only
flutter predictions can be carried out.

A great deal of information about the influence
of various system parameters can be obtained by
studying the stability of simple models, one of
which is introduced in the present article. A
Typical HALE wing is considered to investigate
the aeroelastic behaviour in undeformed and
deformed equilibrium condition.  Specific
thickness  distribution  and  thin-walled
construction are considered for such aircraft
structures. The effect of typical parameters,
including stiffness ratios, different lay-ups,
deflection amplitude, as well as wing aspect
ratio, are investigated. Finally a test model
further identification procedure is reported. This
is based on similarity theory, for the
development of an advanced wind-tunnel wing
model suitable for an extensive experimental
test campaign.

Comparison between analytical and
experimental studies are cited from previous
experiments [2,3,4], both for the linear and the
non-linear studies.

1 Aeroelastic Model

The beam behaviour is described through
the longitudinal displacement u(x,t), the
transverse displacement v(x,t) and w(x,t), along
the y and z axis, respectively, and the torsional
angle ¢(x,t) as shown in figure 1. Here X-Y-Z is
a global orthogonal coordinate system, while X-
s-n is a local coordinate system centred on the
mid-line contour of the thin-walled beam
section (Fig. 1).
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Fig.1. Displacement field for the beam model

A relationship between the two coordinate
systems can be established as follows:

F(s,X)=xi, +y(s)i, +2(s), = xi +r& +r§
(1)
In order to transform stresses and strains from
the material coordinate system to the X-s-n
coordinate  system, a simple rotational
transformation is used: {g}:[Tg]" [Q][T. ]{e} »

where[Q]=[T,]"[Q][T.] and [T].. [T] are
transformation matrices from local coordinate
system to material reference system and Q is the
stiffness matrix in the material system for an
orthotropic lamina [18].

In the case of slender composite beams it is
appropriate to assume that o, =0, =7,=0
as indicated in [15]. Consequently the reduced
stiffness matrix for a single lamina becomes:

{O’xx }k _ |:Q:11 Q:13 :|k {gxx }k (2)
Tys Q13 Q33 7xs

— 6123622 _26126136237"' 6223(:)1 L+ (:)122633 _(:)11622633

where:

Qn Q223 - 622Q33
(513 — 6]66;3 _613623626 _(jls(jzzg_n + gIZQ:%Q%} + 613622636 _612623636
sz_z - Q22Q33
Y — 6226633 — 262362663674— 632676227_*— 62‘23666 — 622633666
» szs - Q22Q33

3)
As an explanatory example, a single-cell, closed
cross-section, fiber-reinforced composite thin-
walled beam is considered for the advanced

aircraft wing modelling. Furthermore, the
following assumptions are adopted: the cross-
sections do not deform in their own planes;
transverse shear effects are discarded (t/2h< 0,1
t/2w < 0,1 2w/L < 0,1 2h/L<0,1); free warping
assumption (bi-moment effect discarded), valid
for high aspect ratio wing is considered, while
hoop stresses are discarded; shear flow is
considered constant (Nxs=cost) in the spirit of
Batho-Bredt theory; the strains are small and the
linear elasticity theory is applied.

Based on these assumptions, the following
representation of the 3-D displacement
quantities is used where g is a correction
function and can be derived as in [13]:

u=u,-y(s)%+z(s)9,-9(s)

V=V, - 28, 4)
wW=Ww, + Y9
where 9 =-w, ; 9, =v; are introduced

according to the Euler-Bernoulli beam
approximation.

Assuming that the shear flow is constant, from
the condition that the warping function ¢ (S, X)

should be a single valued continuous function, it
is possible to derive simple analytical solution
for the correction function and expression for g
[13,14]. The expression for the stiffness can be
derived fromthe constitutive equations in terms
of stress resultants by relating the traction Fy,
torsional Moment M,, and bending moments M,
and M, to the shear flow and axial stress as
follows:

F =F = [o,dnds=N,ds

M, =M, :cﬂrxsrn(s)dnds:gliNxsrn(s)ds
M, =M, :c_Haxxzdnds =<ﬁNXXz(s)ds

M, =M, =~ [o,ydnds =N, y(s)ds

()

The following special cases will be investigated
in the present analysis: the isotropic case, that is
perfectly uncoupled; the Circumferentially
Asymmetric ~ Stiffness (CAS) model that
produces bending-twist coupling; and the



[£0] case that is formally is the same as the
isotropic one. The stiffness matrices are
respectively:

CASE I ([£0] configuration):

F Cow O 0 0 e
2 2 P
M, 0 0 0 GCyjip
CASE II (CAS configuration)
F Co O 0 0 e
M, _ 0 C, C, 0|]|p %
M, 0 C, C, 0]|p
M, 0 0 0 Cylp

In absence of warping, the motion of a
differential beam element is perfectly described
by three translational displacements and three
rotations.

Fig. 2. Deformed and undeformed reference
systems

Curvatures respect the 123 axes are defined as
p =i, , p,=is-i, , p,=1i/-i, where prime
indicate first derivative respect to &. In the case

of a second order approximation the expression
of curvatures become:

pl — ¢( + V"WI
Py =W+ ®)
p3 — VH + W”

E.CESTINO, G.FRULLA, P.MARZOCCA

In the case of a general in-extensional CAS
configuration, that is
C,=GJ,;C,=El, ;C,=El ;C,=K

the governing equations can be derived
according to [15,16,17]:

mvV + v+ ELV"" +(EIl, —EL, ) (W'g)" +
+G\]t (¢!W”)’ 1K (¢u¢)’ +K (¢r¢,)’ _K (W”WI[)! _ qv
MU+ C\r -+ meg + ELw" — K" +(ELL —EL ) (v'¢) +

_G\]t (¢!V!/)' _ K (V/!/WI)/ — qW

jif+c,g+mew—GJg"+ Kw"+(El, —EL )v'w' +

-GJ, (v”w’)' +K(v"¢)=aq,
()]

with the following boundary conditions:

v=w=0,¢=0,w,,v =0at £=0
M,=M,=M,=0,V,=V,=0at&=L (10)

where V; and V3 are the stress resultants along
directions 2 and 3 and include nonlinear terms
up to second order [15].

The geometrically non-linear structural beam
model has been coupled with an unsteady
aerodynamic model based on the Wagner
indicial function [7]. To emphasize the effect of
the non-linear structural coupling, when
determining the critical aeroelastic condition,
only a linear aerodynamic model has been used.
Authors are developing a new version of the
presented procedure in order to include an
unsteady aerodynamic model accounting for
stall, useful in analyzing those cases in which
the initial angle-of-attack is high. The
aerodynamic model considered in this paper
omits the stall model, hence only flutter
predictions can be carried out. It is assumed that
the flight speed is low enough to be well within
the incompressible aerodynamics flight speed
regime, and the large aspect ratio justifies the
use of a 2D strip theory [7]. Aerodynamic
model is included according to Wagner function
approach. Theodorsen function is also applied in
conjunction to the FEM developed model.
Theodorsen function C(k) and Wagner function

®(t) provide the same aerodynamic load

4
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representation (but in two different space)at the
flutter speed where the oscillations are purely
harmonic [7].

Expressions for qy,qw.qe are presented in [2]
and the reader is referred to this for further
details. In order to solve the system of
governing equations and to study the subcritical
and supercritical aeroelastic response as well as
the flutter boundaries, the introduction of a
small dynamic perturbation about a non-linear
static equilibrium is applied. In-plane, out-of-
plane, and torsional displacements (v,w,$) are
considered as a summation of the static and
dynamic components in the undeformed
reference system where vy, wo, and ¢o are the
static in-plane lagging, out-of-plane bending,
and torsion displacements due to the aeroelastic
trim, (corresponding to a specific flight
condition). The problem can be approximated
using modal analysis techniques such as:

Np

p(xt)= po(x)+z f.(x) p (1) (11)

i=1

where p assumes the meaning of generic
displacement (v,w,$) [2,3,4], and f. are mode

shapes derived from a vibrating, non-rotating
uniform cantilever beam according to :

f,. =cosh( LR) —cos( LX) -3 [Sinh(oqu() _Sin(“lu)]

f,=2sin(yL%)

(12)
where ¢, S,y depend on the number of mode
considered, the tip store moment of inertia about
wing elastic axis, Iy, and the mass of tip store,
M. In the case of a single mode approximation
without tip mass o;,L.= 1,875 B;= 0,734 v;L=1,57.
Finally, it is possible to identify two aeroelastic
governing systems: (1) a static aeroelastic non-
linear equilibrium system, and (2) a dynamic
perturbed system, reduced to its linear
approximation in the dynamic components
[2,3,45]. The use of a simplified model is
justified, especially in the preliminary design
phase where analytical methods are preferred
with respect to complex commercial FEM
models. It is worth remarking that FEM models

are capable of dealing with selected aspects
needed for the non-linear aeroelastic design, but
not without complex model updating which
might become cumbersome in preliminary
design activities.

The simple case derived in this paper (SM
model) is obtained reducing the problem to a 3
DOFs by using a “single mode” approximation.
Applying Galerkin’s condition to the residuals,
a set of ordinary equations is obtained from the
original PDEs system. The resultant derived
equivalent stiffness will permit a very good
correlation in terms of frequencies of first
lagging, flapping, and torsional modes. A
discrete level of correlation exists in static terms
and the correlation can be improved increasing
number of modes. The state-space form of the
unsteady aerodynamic formulation makes it
particularly suitable for upcoming control
studies. Consequently, introducing a state vector
X, the final state-space system can be cast as:

(X =[ AT 0,K, X, T Ko 1y Vg Ao 3,V Wy ) | {X)
(13)

The equation 15 is function of 12 dimensionless
parameters because V,,W,,d, are all dependant

toa,,, and their definition is reported in the

root
following section.

The matrix [A] contains linear terms of the
perturbed system function of the equilibrium
solution. The stability about the equilibrium
operating condition is determined by the
eigenvalue behavior of [A] matrix. The
eigenvalues extraction is performed by means of
a MATLAB code. Linear flutter speed (LFS)
can be computed assuming the equilibrium
static configuration as zero. By including such
equilibrium terms, a non-linear flutter speed
(NLFS) analysis can be performed.

2 Aeroelastic parameters

By expressing the aeroelastic governing
equations in dimensional or dimensionless form,
it is possible to relate the behaviour of the small
scale models, to that of full-scale aircraft. The
Buckingham n theorem is the central result of
dimensional analysis and provides a method for
computing sets of dimensionless parameters

5



from the given variables even if the form of the
equation is still unknown. However, the choice
of dimensionless parameters is not unique:
Buckingham's theorem only provides a way of
generating sets of dimensionless parameters, not
the most 'physically meaningful'. Buckingham’s
theorem allows to conclude that the equation
can be expressed in the form of a relationship
among p=n-m dimensionless products (IT), in
which p=n-m is the number of products in a
complete set of products of the variables n and
m is the number of fundamental dimensions.
The main gain is the reduction of the number of
variables from n to n-m. Similarity is

guaranteed by the equalities of II. =TI, ,
(i=L2,...(n—m)) , where II,

values of II, when real and experimental

and TI; are

variables are introduced, respectively. It is
possible to observe that if the system is
composed by r equations as:

I1, = §01I (Hr+l""nn—m)’
' (14)

1_[r = wr (Hr+19"'Hn—m)9

It is sufficient to maintain the equality from true
and scaled models of Nn—r—m parameters
IT,,,....I,_, in order to have the similarity
because the equality of II,,....,IT, 1is
automatically obtained by equations (14).

The number of dimensionless products
related to the case of an advanced high aspect
ratio wing is increased with respect to the linear
counterpart. It is possible to highlight the
following 25 parameters and 3 fundamental
dimensions (M,L,T): v ,w,¢ (lag, flap, and
torsional displacements), &, (root static angle
of attack),b (semichord), L(semispan), El,, El,,
GJ ,K,(bending,torsion and coupling stiffness)
V_ (airspeed),m (wing mass per unit length), M

(tip mass), Iy (tip store moment of inertia), e
(section mass center from elastic axis),
r (radius of inertia), p(air density),a

(dimensionless elastic axis location), v,, W,,

¢, (lag, flap, and torsional static Displacements),
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Wi234 (Wagner states). The mathematical
model is composed by 3 dynamic perturbed
equations, 3 static equilibrium equations and 4
lag equation, in the case of Wagner
aerodynamic approach, so we obtain p=25-3-6-
4=12 The following dimensionless parameters
has been considered:

a. -k a)r'b A—L _.m _ﬂ.
root U ’ b sH e bz 5 Hi mL:
| _
l, = ¢2 ;rzi;KZL’gzi; (15)
mr-L l, GJ, GJ,
X, =T —Lq
b b
By using these dimensionless similarity

parameters the aeroelastic governing equations
can be re-written as

FG)TZ nn FG)TQZ n\" Taz A
+ /12“ V" /12 (C-1)(w"p) +?(¢W) +
K— n 1\ K. K. "
Koz (o) + K2 oy Kz oy -1,
Nk @raz n_ K— m r®r "
W+Xa¢+7w N rg"+—% JE (C-1)(v"g) +
" ? ~
vy Ky -
_ I —2
T2+ XoW—T ¢" +§Fjw’” +— F@ < (C-1)v'w" +
Farz o\ E— m a1
—?(vw) +7ra2 (V'¢)=M,
(16)

where the aerodynamic load components
I:V,I:W,I\7|(/j are functions of ,u,k*,a. When in-

plane, out-of-plane, and torsional displacements
(v,w,0) are considered as a summation of the
static and dynamic components in the
undeformed reference system (v0, w0, and ¢0
are the static in-plane lagging, out-of-plane
bending, and torsion displacements and are all

dependant to «,, ), the dimensionless

parameter «, . should be also included while

root

the tip-mass parameters y,,,l,, are already
considered as in eq. (12).
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3 Scaling of a typical HALE wing

In order to illustrate the application of the
scaling procedure and flutter model theory
developed in the previous section, the flutter
computation of a typical high aspect ratio
HALE wing flying at an altitude of 20 km is
considered. The HALE geometry is presented
in figure 3 and correspondent dimensionless
parameters are reported in Table 1. The wing
structure is based on a structural configuration
with an in-plane, out-of-plane and torsional
stiffness of
El, =1.9E+06 Nm?» El, =5.00E+04 Nm® GJ =5,11E+04 Nm’
respectively. The wing total mass is about 43.2
kg. Span-wise elastic axis and CG location are
both positioned at 50% of the local chord c that
is 1.41 m. The mass moment of inertia is about
0.224 kgm.

77777777777777777777777777777777777777777777777777777777777777777777777777777777777

yc=141m

Flight Altitude 20Km

1

Fig. 3. Typical HALE Model

Table 1

K* | n O [T | Xellte |A A |a

- 10,8 1098 |38 |0 [06 |0 |227]3°]0

The case of a wind-tunnel model where
compressibility, and thus Mach number as well
Reynolds number, is presumed to have no effect
is considered. It is important to note that the
Reynolds number of the model test in the wind
tunnel will usually be less than that of the wing
at flight altitude. For the considered case the
model Re # is about 100.000, while the aircraft
Re # is about 400.000. However the effect of
changes of Reynolds number on the
aerodynamic loads is relatively small, at least in
a first approximation case, and values of flutter
speed as well flutter frequency are less sensitive
to Reynolds number variations [7]. Clarkson
University subsonic wind-tunnel (Figure 8) has
a test section of 1.22 m wide by 0.91 m tall
with a length of 1.67 m. Considering the wind

tunnel test section a geometrical scale ratio for a
model wing of about L,/L, ~ 1/30 has been
adopted.

Wing models will be mounted, through a
variable angle-of-attack support, vertically into
the wind-tunnel, to overcome the effect of the
load due to gravity. The theoretical flutter speed
(both LFS “flutter velocity in linear equilibrium
condition” and NLFS “flutter velocity in non-
linear equilibrium condition”) will be lower
than maximum speed obtainable in the tunnel
that is approximately 70 m/s. Because the length
ratio has been defined and the same aspect ratio
should be obtained, the model semi-chord is
derived and in particular b = 23 mm was
selected. Because the mass ratio p should be the
same it is possible to obtain the model mass
ratio as:

%:(”pbz)m _ Pnm o :>%~L (17)

mW (ﬂpbz) prW2 mV 61

w

Remembering that the wing properties in this
example do not vary along the span, the bending
stiffness of the model will be:

The LFS computation can be performed
assuming the equilibrium static configuration as
zero, that is wtip/b=0.

The NLFS calculation with the SM
approximation for both the tunnel model scale
and the real full scale wing was performed and a
ratio of NFS/LFS=0.45 was obtained.

For both cases the static values are about
wo/b=2,39 and ¢¢=0,0114 at the flutter speed .
The first natural frequencies in vacuum and the
critical reduced frequency for the two cases are
reported in table 2. These cases demonstrate a
similar behaviour both in non-dimensional
frequency and in damping, assessing the
consistency of the developed similarity
procedure.



Table 2
Linear ; [Hz] o, [Hz] w3 [Hz] k*
(flap) (lag) (tors)
Typical HALE 0,42 2,59 7,46 0,359
Scaled Model 8,04 49,59 142,44 | 0,359
Non Linear o, [Hz] o, [Hz] o3 [HZ]
(coupled) (coupled) | (coupled)
Typical HALE 0,42 2,35 7,54 0,78
Scaled Model 8,03 44,83 143,99 0,78
4 Advanced composite wind tunnel model
An advanced experimental model 1is

proposed and will allow to study different
aeroelastic phenomena with the same low cost
model, developing a modular concept that
provide the opportunity to modify and calibrate
the test practices to account for non-linear
structural responses and other non conventional
phenomena. A first generation of this model is a
rectangular wing, untwisted, and flexible in flap,
lag, and torsion.

A wing with symmetric NACA airfoil
sections and composed by pieces of resin
supported by a composite fiber box was
selected. Resin parts are only bonded to the
main spar leaving micro-gaps between the resin
parts in order to reduce torsional stiffness. The
span is about 520 mm, chord 46 mm and the
uniform mass per unit length of the overall wing
(aerodynamic and structural elements) is about
0.0219 kg/m. A slender body at the wing tip is
designed to provide enough torsional inertia in
order to induce flutter in the velocity range of
the wind tunnel [1,2,5]. Different aspect ratio
wings and different layup solutions (uncoupled
configurations or CAS) can be tested by simply
replacing the composite spar and suitably
redistributing the aerodynamic sections. An
example of the technology applied is shown in
Figure 4, along with a detail of the wind tunnel
link and the area of wing tip with the possibility
to use different tip solutions to meet the wind
tunnel speed limits. In order to create a virtual
test, the analytical solution is compared with a
QUAD4 FEM model simulating the thin-box
structure. The simplified beam-like model, as
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presented in previous section, and the FEM
wing-box structure model has been used to asses
the static and dynamic behaviour of a composite
rectangular closed cross-section with different
ply angles orientation.

\ |
CAD

Fig. 4. Advanced Wind Tunnel Model

The geometry of the rectangular wing-box
structure is maintained constant for all the
analyzed cases as well as the stacking sequence
of the left (side 3) and right (side 1) sides and
mass properties. Only the initial lay-up of each
top (side 2) and bottom (side 4) sides are
changed in order to obtain different
combinations of structural dimensionless
parameters as in figure 5.

Lay-up| T K @
0 |26,84 0,00 8,37
10 21,59 1,20 4,44
20 (22,67 091 1,73
30 (34,32 0,56 0,81
40 (54,30 0,29 0,52

Fig. 5: Wing box section and dimensionless
parameters

Static assessment of stiffness dimensionless
parameters is performed starting from the
inverse of eq. (6) (CAS):

Applying firstly a unitary force in z direction

which produces a moment M, :l-(x— L) and
then a unit torque M, =1 it is possible to

numerically derive the following dimensionless
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parameters having calculated the respective
curvatures:

(19)
Applying a unitary force in y direction, the
parameter ' can be derived by the following
relation:

T, = {1 _E}% (20)

© |(P)r,

Figure 6 shows the comparison between
theoretical stiffness parameters used in the
simplified model and coefficients derived from
the virtual test (wing box FEM model). This
assessment shows a good correlation between
the beam-like model and the FEM model.

1.4
1.2 A

(FEM)
s KF —K*

0.8
0,6
0.4
0.2 -

0 T T T T

K*

0 10 20 30 40 50
Ply angle (side 2)

0 | . T - |

0 10 20 30 40 50
Ply angle (side 2)

70

60 - (FEM) e
50 1 —r el /B/
a
40 ~
= Py
04 -
20,  TEB———F
10 1
0 T T T T
0 10 20 30 40 50

Ply angle (side 2)
Fig. 6. Analytical and FEM stiffness assessment

A dynamic assessment has been carried out
considering the first three modes in the
analytical model and the first five structural
modes in the FEM model. The dynamic
assessment presents a very good correlation in
terms of frequency and mode shapes of the first
coupled flap/torsion and first torsion/flap
modes, and uncoupled first lag mode. In the
case of FEM modes 1, 5 and 3 are first coupled
flap/torsion and first torsion/flap modes and
uncoupled first lag mode respectively. Modes 2
and 4 are then second and third flap/torsion
modes. Comparison of correspondent frequency
is reported in figure 7.

180 | * wilSMm 4 w2 SM A w3 SM — w1 (FEM)
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Fig. 7. Analytical and FEM frequency
comparison

In the case of 10° ply angle, the first FEM
flap/torsion, torsion/flap, and lag modes change
the order and become mode 1, 4, and 2 as
indicated in figure 7. It is possible to conclude
that even with the SM approximation, the first
flap/torsion, first torsion/flap, and uncoupled




first lag mode are well approximated by the SM
analytical model.
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Fig. 8. SM damping results in the linear case
and with an imposed vertical force Fz=0.335N

In order to introduce specific behavior typical of
long slender composite wings, the basic

configuration ([i30] layup) has been modified

introducing the vertical deflection and rotation
due to a force in z direction that produce in the
beam-like model an equal static deflection ratio
w/L=0.1. When the wing deforms under
loading, its dynamics reveals a non-linear
coupling between torsion and lagging bending
also when the composite coupling stiffness (K)
is equal to zero as in the case shown in figure 8.
Thus, the flutter characteristic of a deflected
wing is different from those where the
undeformed configuration remains virtually
unchanged. The inclusion of structural
geometric non-linearity is the basis for the
determination of such a non-conventional aspect
[12,5]. Damping characteristic is shown in
Figure 8 as function of airspeed. The nonlinear
result is obtained with an imposed vertical force
Fz=0.335N. A comparison to FEM approach
based on a nonlinear static FEM solution and
Theodorsen’s function approximation is also
performed considering the same vertical force.
Results are included in table 3.

Table 3
NLFS/LFS
SM Analytical | 0,47

FEM Approach | 0,53

E.CESTINO, G.FRULLA, P.MARZOCCA

It is possible to observe a ratio of NLFS/LFS
(SM)=0.47 in the case of a single mode
approximation and NLFS/LFS (FEM)=0.53 in
the case of a FEM approach. FEM approach
demonstrates a slightly higher deflection with
respect to SM solution. This is expected from
the simplifications have been made.

4 Preliminary balsa wind tunnel tests

The experimental activity has been
initiated in order to validate the theoretical
model previously described. At present, only a
few test cases of typical slender wing
configurations, = whose  geometrical  and
structural characteristics are consistent with the
model assumptions, were studied and cited from
previous experimental tests [2,3,5]. These
experiments are certainly not sufficient for a
complete verification of the wing behaviour;
however, the correlation with the model was
quite satisfactory. Preliminary experimental
study has been conducted on a balsa wing
model and main characteristics in terms of
dimensionless parameters are reported in Table
4.

Table 4

n ® | T | X la al| A | Whplb
10,8 10,98 196 | 0 | 0,578 | 0| 22,7 | 2,82

In all the experiments a magnetic sensor,
Vernier MB-BTA (200 samples per second),
was used to record the variation in magnetic
field produced by a ‘rare-heart magnet’ (low
mass and high magnetic field) attached to the
wing tip figure 9.

The magnetic field is correlated with the
displacement, and it was possible to record the
tip displacement during the experimental
campaign. Multiple tests were conducted at
different speeds and angles-of-attack.

The flutter characteristics obtained from the
experiments are compared with the numerical
simulations based on the theoretical model. A
good correlation between these results are
clearly present.
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Fig. 8. preliminary wind tunnel tests

In addition, consistent with reference [1], a
hysteresis behaviour was found during the test
of loading and unloading of the wing in the
proximity of the flutter speed, confirming that
these highly flexible wings exhibit a subcritical
Hopf bifurcation, implying that a stable limit
cycle oscillation (LCO) occurs above the NLFS.
This LCO remains stable and its amplitude
increases as the speed increases [1,3]. This
hysteresis was not observed in the numerical
investigations, and this could be due to the fact
that stall and flow separation, as well as
structural damping [1], have not been included
in the present model.

Table 5
NLFS/LFS
SM Analytical 0,430
Experimental UP 0,592
Experimental DOWN | 0,566

Experimental tests show a flutter speed ratio of
NLFS/LFS = 0.592 in the increasing velocity
phase (Exp Flutter UP) and a flutter speed of
about NLFS/LFS = 0.566 (Exp Flutter DOWN)
in the decreasing velocity phase. A static
deflection of approximately 63-65mm was
recorded at the flutter speed. With the
aforementioned analytical analysis (using the
simplified model SM), and setting «,, to

root

reproduce the experimental value of the static

tip deflection, a theoretical NLFS ratio of
approximately NFS/LFS = 0.43 was obtained.
This confirms the different flutter behaviour
characteristic of an highly flexible flying wing
and the validity of a simplified model for the
subsequent preliminary flutter evaluation. This
is valid for both the linear and nonlinear cases
(Table 5). More experiments will be conducted
on an advanced composite model in order to
show potential advantages coming from changes
in the lamination angle of a box-beam plates
model, in the linecar and nonlinear cases. The
effect of addition of a tip mass on the critical
flutter condition will also be investigated.

5 Conclusions

A composite thin-walled nonlinear beam
model has been used for the study of the
aeroelastic stability of high aspect ratio wings in
an incompressible flow. To this end a simplified
analytical method capable of expediting the
calculation process during the preliminary
design phase has been developed by means of a
single  mode Galerkin approximation.
Preliminary results have been compared with
FEM analysis in order to assess the accuracy of
the prediction. The SM model demonstrated a
satisfactory static and dynamic behavior
confirming its validity for the subsequent
preliminary flutter evaluation both in the linear
and nonlinear cases. The introduction of a CAS
composite box produces a coupling effect both
in frequency and in mode shape, also in the
linear flutter case where the nonlinear
equilibrium parameters are not present. When
the effect of the deflected equilibrium
configuration is considered, the system reveals a
non-linear coupling between torsion and lagging
bending even when the composite coupling
stiffness is equal to zero. A test model
identification procedure, based on similarity
theory, is also reported in order to study the
flutter aeroelastic stability problem of a full-size
high aspect ratio wing structure. For such
purpose a wind tunnel laboratory model is
introduced as a useful mean for the investigation
and verification of analytical theoretical
prediction.  Analytical and  experimental
comparisons are cited from previous
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experiments showing the good prediction of the
presented simplified analytical model.
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