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An experimental aeroelastic slender wing model 
can be designed using a scaling procedure. By 
expressing the aeroelastic equations of motion 
in dimensionless form, it is possible to relate the 
behavior of the small scale models to that of a 
full-scale wing and identify and verify the 
correctness of those parameters which represent 
the characteristics of the full-size system and 

when required. 
ical method that 

nalysis process 
sign phase is 
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 done in the late 
plinghoff et al., 

1955; Regier, 1963) [6-8]. Similarity methods in 
engineering dynamics have been discussed by 
Baker et al. (1991), and the mathematical 
aspects of scaling and self-similarity has been 
presented more recently by [9]. However, these 
considerations have only partially been 
exploited for aeroelastic applications. Often the 
behaviour of a specific airplane is so complex 
that the accuracy of theoretical analysis should 
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 in order 
to describe the real wing-box and tubular main 
spar. In this study, the composite box is made of 
planar and thin plate elements with different 
lay-ups. Only membrane stresses are accounted 
for the present developments.   
The aeroelastic governing equations are derived 
in the case of a nonlinear, initially straight and 
inextensional composite Euler-Bernoulli beam 
model using the extended Hamilton's principle 
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the longitudinal displacement u(x,t), the 
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the y and z axis, respectively, and the torsional 
angle φ(x,t) as shown in figure 1. Here X-Y-Z is 
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mid-line contour of the thin-walled beam 
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Fig.1. Displacement field for the beam model 

 
A relationship between the two coordinate 
systems can be established as follows: 
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As an explanatory example, a single-cell, closed 
cross-section, fiber-reinforced composite thin-
walled beam is considered for the advanced 

urthermore, the 
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representation of the 3-D displacement 
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The following special cases will be investigated 
in the present analysis: the isotropic case, that is 
perfectly uncoupled; the Circumferentially 
Asymmetric Stiffness (CAS) model that 
produces bending-twist coupling; and the 
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[±θ]  case that  is formally is the same a
stiffness matrices
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with the following boundary conditions:  

x x
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′ ′′ ′′ ′′′ ′− −

ΓΘ

��

����

=

′′ ′′′+ − + +�� �� ( )

( ) ( )
2

2
2

ˆr Kv w r v Mα
α φ

λ λ

⎪
⎪
⎪

2 1 v w

φ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪

′′ ′′Γ − +

(16)  
 components 

vL

⎪
⎪
⎪ ′′′ ′ ′′′− + =⎪⎩

where the aerodynamic load
ˆ ˆ, ,wL Mˆ

φ  are functions of μ
plane, out-of e, and torsion
(v,w,φ) are 

*, ,k a . When in-
-plan al displacements 
considered as a summation of the 

static and dynamic components in the 
undeformed reference system (v0, w0, and φ0 
are the static in-plane lagging, out-of-plane 
bending, and torsion displacements and are all 
dependant to rootα ), the dimensionless 
parameter rootα  should be also included while 
the tip-m eters ass param ,M MIμ  are already 
considered as in eq. (12).   
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3  Scaling of a typical HALE wing  
In order to illustrate the application 
scaling procedure and flutter model 
developed in the previous section,  th
computation of a typical high aspe
HALE wing flying at an altitude of 20
considered. The HALE geometry  is p
in figure 3 and correspondent dimen
parameters are reported in Table 1. The 

o

o
th

e f
ct 
 k

res
sio

structure is based on a structural c nfigur
ors

ely. The wing total mass is about 43.2 
kg. Span-wise elastic axis and CG location are 
both positioned at 50% of the local chord c that 
is 1.41 m. The mass moment of inertia is about 
0.224 kg.m. 
 

f the 
eory 

lutter 
ratio 
m is 

ented 
nless 
wing 
ation 
ional 

of 
2  

with an in-plane, out-of-plane and t
stiffness 

2
3 1.9E+06 NmEI = , 2

2 5.00E+04 NmEI = 5,11E+0GJ =

respectiv
4 Nm

 
Fig. 3. Typical HALE Model 

 
Table 1 

k* μ Θ  Γ Xα rα A λ α K 
- 10,8 0,98 38 0 0,6 0 22,7 3° 0 

 
 
The case of a wind-tunnel mode

compressibility, and thus Mach number a
Reynolds number, is presumed to have n
is considered. It is important to note 
Reynolds number of the model test in t
tunnel will usually be less than that of t
at flight altitude. For the considered 
model Re # is about 100.000, while the

tunnel test section a geometrica

l w
s

o e
tha
he 
he 
cas the 
 air raft 

Re # is about 400.000. However the effect of 
changes of Reynolds number on the 
aerodynamic loads is relatively small, at least in 
a first approximation case, and values of flutter 
speed as well flutter frequency are less sensitive 
to Reynolds number variations [7]. Clarkson 
University subsonic wind-tunnel (Figure 8) has 
a test section   of 1.22 m wide by 0.91 m tall 
with a length of 1.67 m. Considering the wind 

l scale ratio for a 
 1/30 has been 

nted, through a 
rt, vertically into 
the effect of the 
ical flutter speed 
inear equilibrium 
 velocity in non-
) will be lower 
le in the tunnel 
cause the length 

same aspect ratio 
should be obtained, the model semi-chord is 
derived and in particular b = 23 mm was 
selected. Because the mass ratio μ should be the 
same it is possible to obtain the model mass 
ratio as: 

here 
 well 
ffect 
t the 
wind 
wing 
e 
c

model wing of about Lm/Lv ~
adopted.  
Wing models will be mou
variable angle-of-attack suppo
the wind-tunnel, to overcome 
load due to gravity. The theoret
(both LFS “flutter velocity in l
condition”  and NLFS “flutter
linear equilibrium condition”
than maximum speed obtainab
that is approximately 70 m/s. Be
ratio has been defined and the 

 
( )
( )

2 2
m m m m

bm b
m b

πρ ρ
πρ

= = ⇒22

1
61

m

w w w vw

m
b mρ

∼
    

(17)  

 

Remembering that the wing properties in this 
an, the bending example do not vary along the sp

stiffness of the model will be: 
 

( )
( )

( )
( )

( )
( )

2 3

2 3

m m m

v v

EI EI GJ
EI EI GJ

= =
1

150000
v

∼ (18)  

be performed 
 configuration as 

ith the SM 
nel model scale 
erformed and a 

For both cases the static values are about 
w0/b=2,39 and φ0=0,0114 at the flutter speed . 
The first natural frequencies in vacuum and the 
critical reduced frequency for the two cases are 
reported in table 2. These cases demonstrate a 
similar behaviour both in non-dimensional 
frequency and in damping, assessing the 
consistency of the developed similarity 
procedure. 
 
 

 
The LFS computation can 
assuming the equilibrium static
zero, that is wtip/b=0. 
The NLFS calculation w
approximation for both the tun
and the real full scale wing was p
ratio of NFS/LFS=0.45 was obtained.  
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Table 2 

 ω1 [Hz

(flap

ω2 

(

z] 

) 

 
Linear ] 

) 

[Hz] 

lag) 

ω3 [H

(tors

k* 

Typical HALE 0,4 ,46 0,359 2 2,59 7

Scaled Model 8,0 142,44 0,359 4 49,59 

Non Linear ω1 [Hz

(coupled) 

ω

(coupled) 

] 

(coupled) 

 ] 2 [Hz] ω3 [Hz

Typical HALE 0,42 2,35 7,54 0,78 

Scaled Model 8,03 44,88 143,99 0,78 

 

4  Advanced composite wind tunnel mo
An advanced experimental m

proposed and will allow to study d
aeroelastic phenomena with the same l
model, developing a modular conc
provide the o

del  
odel is 
ifferen

ow
ept 

pportunity to modify and cali
th n-l

nt
de

e in

 a
of resin 
ox was 
 to the 
he resin 
ss. The 
and t
ll w
s a out 

ng 
ner
ran
ct 
cou
 si
sui

redistributing the aerodynamic sections. An 
example of the technology applied is shown in 
Figure 4, along with a detail of  the wind tunnel 
link and the area of wing tip with the possibility 
to use different tip solutions to meet the wind 
tunnel speed limits. In order to create a virtual 
test, the analytical solution is compared with a 
QUAD4 FEM model simulating the thin-box 
structure. The simplified beam-like model, as 

, and the FEM 
een used to asses 

posite 
rectangular closed cross-section with different 
ply angles orientation. 

 

t 
 cost 

that 
brate 
inear 
ional 
l is a 
 flap, 

foil 

e test practices to account for no
structural responses and other non conve
phenomena. A first generation of this mo
rectangular wing, untwisted, and flexibl
lag, and torsion.  

A wing with symmetric NACA
sections and composed by pieces 
supported by a composite fiber b
selected. Resin parts are only bonded
main spar leaving micro-gaps between t
parts in order to reduce torsional stiffne
span is about 520 mm, chord 46 mm 
uniform mass per unit length of the overa
(aerodynamic and structural elements) i
0.0219 kg/m. A slender body at the wi
designed to provide enough torsional i
order to induce flutter in the velocity 
the wind tunnel [1,2,5]. Different aspe
wings and different layup solutions (un
configurations or CAS) can be tested by
replacing the composite spar and 

presented in previous section
wing-box structure model has b
the static and dynamic behaviour of a com

ir

he 
ing 

b
tip is 
tia in 
ge of 
ratio 
pled 

mply 
tably 

 
 
Fig. 4. Advanced Wind Tu
 

The geometry of the rectang
structure is maintained consta
analyzed ca

nnel Model 

ular wing-box 
nt for all the 

ses as well as the stacking sequence 
of the left (side 3) and right (side 1) sides and 
mass properties. Only the initial lay-up of each 
top (side 2) and bottom (side 4) sides are 
changed in order to obtain different 
combinations of structural dimensionless 
parameters as in figure 5. 
 

 
 

Fig. 5: g box section and
parameters 

 Win  dimensionless 

 
Static assessment of stiffness dimensionless 
parameters is performed starting from the 
inverse of eq. (6) (CAS): 
Applying firstly a unitary force in z direction 
which produces a moment ( )1yM x L= ⋅ −

1
  and 

then a unit torque  it is possible to 
numerically derive the following dimensionless 

xM =  

8 



 AEROELASTIC SCALING LAWS WITH CONSIDERATIONS TO THE DESIGN OF AN EXPERIMENTAL 
SLENDER WING MODELPAPER TITLE  

parameters having calculated the respective 
curvatures: 

 
( )
( )

( )
( )

1 1

1 1

;
z z

FEM FEM
y yF F

ρ ρ
= =

Applying a unitary force 

x x
y xM MK

ρ ρ
= == Θ =

(19)  
in y direction, the 

parameter can be deriv llo
relation: 
 

 

Γ  ed by the fo wing 

( )
( )

2
1

1

1 z

y

y F
FEM

z F

K ρ

ρ
=

=

⎡ ⎤
Γ = −⎢ ⎥

Θ⎢ ⎥⎣ ⎦

           

 
Figure 6 shows the comparison 
theoretical stiffness parameters 

   

bet
used in

simplified model an  coefficients derived 
the virtual test (wing box FEM model). 
assessment shows a good correlation bet
the beam-like model and the FEM model. 

 
 
 

  (20)  

ween 
 the 
from 
This 

ween 

d

 
 
 
 

 

 
 
Fig. 6. Analytical and FEM stiff
 
A dynamic assessment has b
considering the first three 
analytical model and the first
modes in the FEM model
assessment presents a very goo
terms of frequency and mode s
coupled flap/torsion and fi
modes, and uncoupled first l
case of F

ness assessment 

een carried out 
modes in the 
 five structural 

. The dynamic 
d correlation in 

hapes of the first 
rst torsion/flap 

ag mode. In the 
EM modes 1, 5 and 3 are first coupled 

flap/torsion and first torsion/flap modes and 
uncoupled first lag mode respectively. Modes 2 
and 4 are then second and third flap/torsion 
modes. Comparison of correspondent frequency 
is reported in figure 7. 
 

 
 
Fig. 7. Analytical and FEM frequency 

comparison 
 
In the case of 10° ply angle, the first FEM 
flap/torsion, torsion/flap, and lag modes change 
the order and become mode 1, 4, and 2 as 
indicated in figure 7. It is possible to conclude 
that even with the SM approximation, the first 
flap/torsion, first torsion/flap, and uncoupled 

9  
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first lag mode are well approximated by th
analytical model. 
 

e SM 

 

ase 
35N  

al of 
basic 

 
Fig. 8. SM damping results in the linear

and with a posed vertical force Fz=
 
In order to introduce specific behavior ty
long slender composite wings, the 
configuration ([

 c
n im 0.3

pic

]30±  layup) has been m
introducing the vertical deflection and 
due to a force in z direction that produ
beam-like model an equal static deflecti
w/L=0.1. When the wing deforms 
loading, its dynamics reveals a non
coupling between torsion and lagging be
also when the composite coupling stiffn
is equal to zero as in the case shown in f
Thus, the flutter characteristic of a d
wing is different from those wh
undeformed configuration remains v
unchanged. The inclusion of st
geometric non-linearity is the basis 
determination of such a n

odified 
rotatio

ce in t
on ra

unde
-l
n

es
igu
efl
ere
irt
ruc
for

on-conventional a
[12,5]. Damping characteristic is show
Figur 8 as fun d. The nonl
result i ed vertical 
Fz=0.335N. A com on to FEM approac
based on a nonlinear static FEM solution and 
Theodorsen’s function approximation is also 
performed considering the same vertical force. 
Results are included in table 3. 
  

Table 3 
 NLFS/LFS 

n 
he 
tio 

r 
inear 
ding 

s (K) 
re 8. 

ected 
 the 
ually 
tural 
 the 
spect 
n in 
inear 
force 

e ction of airspee
 impos is obtained w th an

paris h 

SM Analytical 0,47 
FEM Approach 0,53 

 
 

o of NLFS/LFS 
a single mode 
 (FEM)=0.53 in 
 FEM approach 

htly higher deflection with 
respect to SM solution. This is expected from 

been made. 

nel tests  
y has been 
he theoretical 

t present, only a 
slender wing 

ometrical and 
nsistent with the 
d and cited from 
[2,3,5]. These 
sufficient for a 

wing behaviour; 
however, th lation with the model was 
quite tory. Preliminary experimental 
study has been conducted on a balsa wing 

e a in characteristics in terms of 
dimensionless parameters are reported in Table 

It is possible to observe a rati
(SM)=0.47 in the case of 
approximation and NLFS/LFS
the case of a FEM approach. 
demonstrates a slig

the simplifications have 

4  Preliminary balsa wind tun
The experimental activit

initiated in order to validate t
model previously described. A
few test cases of typical 
configurations, whose ge
structural characteristics are co
model assumptions, were studie
previous experimental tests 
experiments are certainly not 
complete verification of the 

e corre
satisfac

mod l nd ma

4.  
Table 4 

 
μ Θ  Γ Xα rα a λ wtip/b 

10,8 0,98 96 0 0,578 0 22,7 2,82 
 

In all the experiments a m
Vernier MB-BTA (200 samples per second), 
was used to record t

agnetic sensor, 

he variation in magnetic 
rt magnet’ (low 
 attached to the 

lated with the 
displacement, and it was possible to record the 
tip displacement during the experimental 
campaign. Multiple tests were conducted at 
different speeds and angles-of-attack.  
The flutter characteristics obtained from the 
experiments are compared with the numerical 
simulations based on the theoretical model. A 
good correlation between these results are 
clearly present. 

 

field produced by a ‘rare-hea
mass and high magnetic field)
wing tip figure 9.  
The magnetic field is corre

10 
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Fig. 8. preliminary wind tunnel tes
 

In addition, consistent with reference
hysteresis behaviour was found during
of loading and unloading of the wing
proximity of the flutter speed, confirmi
these highly flexible wings exhibit a su
Hopf bifurcation, implying that a stab
cycle oscillation (LCO) occurs above th
This LCO rema

ts 

 [
 the
 in
ng

bcr
le 

e N
ins stable and its ampl

increases as t d increases [1,3]. 
hy eresis was s he nume
inv nd this ue to the
tha ow tion, as we
str ], not been incl
in the present model.  

S 

1], a 
 test 
 the 
 that 
itical 
limit 
LFS. 
itude 
This 
rical 
 fact 

ll as 
uded 

he spee
 not obst erved in t

 be destigations, a  could
t stall and fl separa
uctural damping [1  have 

 
Table 5 

 NLFS/LF
SM Analytical 0,430 
Experimental UP 0,592 
Experimental DOWN 0,566 

 
 
Experimental tests show a flutter speed rat
NLFS/LFS = 0.592 in the increasing velocity 
phase (Exp Flutter UP) and a flutter speed of 
about NLFS/LFS = 0.566 (Exp Flutter DOWN) 
in the decreasing velocity phase. A static 
deflection of approximately 63-65mm was 
recorded at the flutter speed. With the 
aforementioned analytical analysis (using the 
simplified model SM), and setting 

io of 

rootα  to 
reproduce the experimental value of the static 

NLFS ratio of 
3 was obtained. 
lutter behaviour 
ible flying wing 
d model for the 
evaluation. This 
 nonlinear cases 
ill be conducted 

odel in order to 
ing from changes 

of a box-beam plates 
model, in the linear and nonlinear cases. The 

ct of addition of a tip mass on the critical 
estigated.  

nonlinear beam 
e study of the 

 ratio wings in 
 end a simplified 
 expediting the 

e preliminary 
d by means of a 
approximation. 

 compared with 
s the accuracy of 

demonstrated a 
amic behavior 
he subsequent 

both in the linear 
uction of a CAS 
ling effect both 

ape, also in the 
the nonlinear 

t present. When 
ed equilibrium 
 system reveals a 

ion and lagging 
osite coupling 
 test model 

identification procedure, based on similarity 
theory, is also reported in order to study the 
flutter aeroelastic stability problem of a full-size 
high aspect ratio wing structure. For such 
purpose a wind tunnel laboratory model is 
introduced as a useful mean for the investigation 
and verification of analytical theoretical 
prediction. Analytical and experimental 
comparisons are cited from previous 

tip deflection, a theoretical 
approximately NFS/LFS = 0.4
This confirms the different f
characteristic of an highly flex
and the validity of a simplifie
subsequent preliminary flutter 
is valid for both the linear and
(Table 5). More experiments w
on an advanced composite m
show potential advantages com
in the lamination angle 

effe
flutter condition will also be inv

5  Conclusions  
A composite thin-walled 

model has been used for th
aeroelastic stability of high aspect
an incompressible flow. To this
analytical method capable of
calculation process during th
design phase has been develope
single mode Galerkin 
Preliminary results have been
FEM analysis in order to asses
the prediction. The SM model 
satisfactory static and dyn
confirming its validity for t
preliminary flutter evaluation 
and nonlinear cases. The introd
composite box produces a coup
in frequency and in mode sh
linear flutter case where 
equilibrium parameters are no
the effect of the deflect
configuration is considered, the
non-linear coupling between tors
bending even when the comp
stiffness is equal to zero. A
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experiments showing the good predic
presented simplified analytical model. 
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