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Abstract  

The Discontinuous Galerkin method (DGM) is 
based on a generalization of the finite-element 
approach showing many advantages in 
comparison with the finite-volume method 
(FVM) that at present is widely used in CFD.  

The current objectives of aerodynamic 
design require more accurate calculations of 
aerodynamic characteristics of different aircraft 
elements, as well as for the full aircraft. The 
standard computational schemes based on 
second order finite-volume approach require 
extremely fine meshes and consequently involve 
considerable computational resources.  

Two ways to reduce required computer 
resources can be considered. The first one 
requires the application of highly anisotropic 
adaptive meshes and the second one is related 
to high order accurate approximation schemes. 
As it is shown in previous investigations [1], 
DGM offers higher accuracy in comparison 
with FVM on highly anisotropic meshes, even 
with the same polynomial order for solution 
reconstruction. Calculation with high order 
accuracy in DGM is performed on local stencils 
that provide easier realization of the high 
accurate calculations and does not need to 
choose appropriate stencil. Moreover, DGM 
makes it possible to perform adaptation of 
polynomial order to peculiarities of a flow that 
provides wide perspective of their future usage. 

1 Introduction 
Improvement of quality and reduction of design 
time of new aircraft connected with perfection 
of numerical methods of aerodynamic 
characteristics prediction. A new level of 
aircraft design is related to application of the 

full Navier-Stokes or Reynolds equations. In the 
last one and a half decade a plenty of 
approaches to the solution of these equations 
has been developed. The most successful 
numerical schemes realized in well-known 
commercial packages (FLUENT, CFX, STAR-
CD, NUMECA), have received a wide 
circulation and are rather successfully used for 
solution of many applied problems. 
Aerodynamic design of aircraft configurations 
with these schemes demand significant 
computer and human resources that leads to 
appreciable rise in cost of calculation results and 
prevents wide application of these methods for 
practical design problems. 

As a rule modern numerical schemes are 
based on a finite-volume (FVM) or less often 
finite-difference (FDM) methods of the second 
order of accuracy. It is known that increase of 
the order of accuracy of numerical schemes 
allows one to reduce the involved computing 
resources. Other potential opportunity of 
economy can be connected with use anisotropic 
adaptive meshes. At present meshes with 
isotropic adaptation of the cells are used in 
some industrial codes but they do not give 
essential profit. Anisotropic meshes (with cells 
stretched in the some direction) essentially more 
economical but approximation by modern 
approaches of the conservations laws on such 
meshes are very problematic. FVM provides 
good results only on isotropic uniform (or 
almost uniform) meshes. Increase of the 
accuracy order of FVM leads to necessity of 
expansion of approximation stencil and to the 
requirement of improvement of mesh quality. 
Thus one of ways to provide high efficiency of 
numerical schemes is connected with use of 
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high order schemes that permits one to perform 
calculations on anisotropic adaptive meshes. 

The alternative to FVM and FDM is finite 
element method (FEM). Generally speaking 
FEM demands greater number of arithmetic 
operations in comparison with FVM. However, 
it turned out that this method gives more ample 
opportunities for reduction of the computer 
resources necessary for solution of industrial 
problems. These opportunities can be realized 
by means of use of not only anisotropic mesh 
adaptation but also adaptation of the local 
accuracy order of the scheme to features of the 
flow. Numerical schemes based on FEM show 
the best results on the stretched deformed 
meshes i.e. meshes with adaptation of cells to 
anisotropic features of the flow. 

One of the most perspective approaches to 
accurate approximation on the basis of FEM is 
Discontinuous Galerkin Method (DGM). Last 
years this method attracts many researchers due 
to its generality, flexibility and reliable 
theoretical basis. At first the method has been 
proposed in [2] and first theoretical analysis has 
been given in [3]. The numerical solution of 2-D 
Euler and Navier-Stokes equations on 
unstructured triangular meshes for the first time 
was presented in [4, 5]. The most general 
theoretical description of DGM with numerous 
solution examples of 1-D and 2-D problems is 
given in [6, 7]. 

Discontinuous Galerkin approach has 
many attractive features:  
o Opportunity of approximation on meshes 

with cells of arbitrary shapes, including cells 
with hanging nodes; 

o Smaller sensitivity to mesh quality in 
comparison with FDM and FVM that 
provides an opportunity to use the method on 
adaptive meshes; 

o The high order of accuracy is reached with 
use of a compact stencil that simplifies the 
organization of parallel calculations; 

o In different cells of a mesh different basic 
functions can be used that provides an 
opportunity of basis functions adaptation to 
local features of the flow. 

o Opportunity of achievement of 
«superconvergence» with order O(h2K+1) for 

value of objective function (K is the 
maximal polynomial order). 
In the present paper some basic advantages 

of the DGM are shown on solution examples of 
external aerodynamics problems. In particular 
the following three test cases were considered: 
1. An example of polynomial adaptation to 

flow properties for a transonic flow around 
a single airfoil;  

2. Demonstration of DGM calculations on 
adapted meshes around a multi-element 
airfoil; 

3. An example of DGM calculations for 3-D 
flow about a wing-body configuration DLR 
F-4. The calculated results and required 
computer resources are compared with a 
standard FV method. 

2 Governing Equations  
Consider the system of Navier-Stokes 

equations in the conservative form: 
( ) ( ),∂

+∇⋅ − =
∂

U x
F F Sv

t
t

.  (1) 

Source term S is added to right hand side 
of this system for implementation of turbulence 
model. In our test cases Spallart-Almaras 
turbulence model was used. 

Below we shall obtain numerical 
approximation of the given system of the 
equations by Discontinuous Galerkin method. 
The solution in each cell is stored in primitive 
variables ( ), , , ,= ρQ u v w p  thus the system (1) 
can be rewritten as follows: 

( )( ) ( )( )( ), 0∂
+ ⋅ − −

∂
QΓ F U Q F U Q U Svt

∇ ∇ = , (2) 

where a matrix ∂⎛= ⎜ ∂⎝ ⎠

U
Q

Γ ⎞
⎟  is a transformation 

Jacobian from conservative variables to 
primitive ones. In each cell of a mesh local 
polynomial basis functions  are defined, 
and linear combination of them defines the 
solution in a cell: 

( )ϕ xj

1
( , ) ( ) ( )

=

= ϕ∑Q x u x
fK

j j
j

t t .  (3) 

Here  is a vector of decomposition 
coefficients which should be defined during 

( )u j t
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solution; Kf – the number of different basis 
functions in a cell. Size Kf it is connected with 
the maximal degree of a basis polynomial K in 
2-D case: 

( ) ( 1)( 2
2

+ +
=f

K KK K ) , 

or in 3-D case: 

( ) ( 1)( 2)( 3
6

+ + +
=f

K K KK K ) . (4) 

System of discritization equations for 
coefficients  from (3) is obtained in 
accordance with standard procedure of finite 
element Galerkin approach in which 
orthogonality of residual (the left part of system 
(2)) to each basis function is required. The 
requirement of orthogonality is formulated 
through a condition of equality to zero of 
integral from product of the solved equations by 
each of basis function  (i=1,…, Kf). After 
integration by parts we have: 

( )u j t

( )ϕ xj

( )

( )

d

d d

Ω Σ

Ω Ω

∂
ϕ Ω = − ϕ − ⋅ Σ

∂

+ ∇ϕ − Ω+ ϕ Ω

∫ ∫
∫ ∫

ΓQ F F

F F S

i i v

i v i

t
d +n

)

. (5) 

Here  – element of the area, dΣ ( , ,=n x y zn n n  

– normal to an element of the area, and dΩ – an 
element of a cell volume.  

The equation (5) consists of volume 
integrals and surface integrals over boundaries 
of a cell. Values of dependable variables are 
discontinuous at interfaces of elements and rules 
of calculation of variables and fluxes at cell 
boundaries play the key role here. 

As well as in a method of finite volume in 
DGM the inviscid flow at interfaces between 
different cells is defined as a result of the 
solution of Riemann problem. In the present 
realization we used Roe approach.  

Viscous terms are defined through gradient 
of primitive variables , where (= ,∇F F Q Qv v )

= , ,
∂ ∂ ∂

∇
∂ ∂ ∂

⎛ ⎞
⎜
⎝ ⎠

Q Q Q
Q ⎟x y z

. Gradients of primitive 

variables can be found by direct differentiation 
of the expression (3). However such way of 
calculation of gradients cannot be used since it 
leads to absence of approximation [8]. 

Therefore in DGM the gradients of primitive 
variables also are represented in the form of a 
linear combination of basic functions for 
calculation of viscous terms: 

=1

( , ) ( ) ( )
x
∂

= ϕ
∂ ∑Q x g x

fK

i, j j
i j

t t .  (6) 

Here i=1, 2 and 3 corresponds to x, y and z 
coordinates respectively. After multiplication of 
the equation (6) by test function and integration 
by parts we get the following system of the 
linear equations for decomposition coefficients 
gi ,j: 

=1Ω Ω

dΩ + dΣ dΩ = 0
Σ

∂ϕ
ϕ ϕ ϕ −

∂∑∫ ∫ ∫g Q Q
fK

k
i, j j k k i

ij

n
x

,  

= 1,..., fk K .   (7) 
Solution of the system (7) provides 

gradients of primitive variables (6) and enables 
one to calculate viscous terms in a cell. 

In DGM both gradients of primitive 
variables and fluxes are discontinuous at cell 
boundaries. These values are required for 
calculation of surface integrals and they cannot 
be obtained by averaging. According to [6] for 
definition of the solution at the interface 
between cells are used different (left or right) 
cells for different ((5) or (7)) equations. Namely 
if calculation of viscous terms in (5) is based on 
values from the left cell ( )L L

b ,= ∇F F Q Qv v , 

than in the equation (7) for calculation of 
surface integrals the values of primitive 
variables should be taken from the right cell: 

R
b =Q Q . More advanced realization of 

viscous term approximation is presented in [9]. 
Finally a system of nonlinear equations for 

coefficients  is expressed from system (2) 
under the assumption of a small variation of 
Jacobian Γ inside of a cell: 

( )u j t

( )

( )
Σ

-1 -1

Ω

Ω

- - dΣ +

d = - Ω +
d

dΩ

d

⎡ ⎤ϕ⎢ ⎥
⎢ ⎥
⎢ ⎥ϕ
⎢ ⎥
⎢ ⎥

ϕ⎢ ⎥
⎣ ⎦

∫
∫
∫

F F n

u Γ M F F

S

i v

i
i v

i

t
∇ . (8) 
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Here M is a matrix that contains integrals of 
products of various combinations of basic 
functions. 

For solution of the obtained system (8) for 
2-D problems we used implicit approach, 
described in details in [10] and for 3-D cases the 
p-multigrid approach with local implicit solver 
is used [11]. 

3. Reduction of arithmetic operations  
The system of the discretizied equations (8) 
consists of a set of surface integrals over a 
boundary of a control volume and control 
volume integrals. Correct definition of these 
integrals leads to reliable iterative convergence 
of the numerical scheme to the solution and 
finally defines accuracy of the obtained 
solution.  

Generally speaking, application of DGM is 
possible on meshes with cells of arbitrary 
shapes. Thus one of the basic requirements is 
the opportunity of splitting of sides of a cell and 
its internal volume on elementary shapes, for 
example, a triangle and a quadrilateral or a 
tetrahedron and hexahedron. The following step 
consists in transformation of these shapes in 
canonical coordinates in which position of their 
nodes is strictly determined. The triangle and 
tetrahedron are transformed in canonical 
coordinates on the basis of simple linear 
transformation while transformation of a 
quadrilateral and hexahedron to a square and a 
cube demands application of nonlinear 
transformation that complicates subintegral 
function by presence of a nonlinear 
transformation Jacobian. 

Integration over elementary shapes in 
canonical coordinates is carried out with use of 
Gauss quadrature rules which define integration 
as the sum of values of subintegral function in 
Gauss points with the certain weights. It is 
desirable that the choise of quadrature rules 
should provide accurate integration in (5) for the 
maximum polynomial order including 
transformation Jacobian under the integrals. 
However, in the present work quadrature rules 
with lower accuracy, than it is described above 
were used. Namely qudrature rules were exact 
for polynomials of degree 3·K when integrated 

in canonical space. There are many of such kind 
of rules. Final selection of quadrature rule was 
based on the best satisfaction of the following 
requirements when integrated in the physical 
space: 

1d d 0−

Ω Σ

Ω − Σ =∫∫∫ ∫∫k k
rk r r n ,   { }, ,=r x y z , 

= 1,2,...,3⋅k K , 
where ,x y zn n ,n  – components of a normal to a 
boundary of an element. The given expression is 
the consequence of the divergence theorem. 
Note that control volumes in physical space 
have curved faces. 

The number of Gauss points in quadrature 
rules basically defines total number of 
arithmetic operations of the method in general. 
The searching of rules with a minimum number 
of points for a given accuracy is a relevant 
mathematical problem and its solution allows 
one to reduce required CPU time. Optimization 
problem that was solved within the present work 
consisted in searching of optimum distribution 
of Gauss nodes on a surface of control volume 
and inside it. The points used for calculation of 
surface integrals can be involved for calculation 
of volume integral thus reducing a number of 
internal Gauss nodes. Code for searching of 
optimal distribution of the Gauss nodes was 
based on minimization of objective functional 
by quasi-Newton method. Positions of points 
inside a cube, their weights, and also weights 
for points at a cube sides are defined with the 
constraints that positions of these last points 
were fixed according to qudrature rules for 
surface integration. The sum of squares of 
differences between analytical and numerical 
values of all basis functions integral was taken 
as an objective function. The optimization 
procedure reduced this function to less than 10-

22. The performed optimization allowed to 
reduce the number of used internal points and to 
reduce the general estimated time by 15 – 20 %. 

Other possible approach to reduction of a 
number of arithmetic operations is based on 
analytical calculation of necessary integrals. For 
these purposes flux function is decomposed in a 

set of basic functions: . Here M( )
1=

=∑F U f
fM

j j
j

ϕ f 

– is the total number of decomposition 
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elements. Mf can be distinct from a given 
quantity of basic functions in an element Kf. In 
present work, the number of decomposition 
terms Mf was taken to be greater than the 
number of basic functions Kf in an element in 
accordance with the following rule 

( )1= +f fM K K  (see definition (4)). Such 
representation of fluxes allows one to express 
their integrals as the sum of integrals of simple 
polynomial expressions: 

( )d d
Ω Ω Ω

ϕ Ω = ∇ϕ ϕ Ω = ∇ϕ ϕ∫∫∫ ∫∫∫ ∫∫∫F U f fi i j j j∇ dΩi j , 

( ) d d
Σ Σ Σ

ϕ Σ = ϕ ϕ Σ = ϕ ϕ∫∫ ∫∫ ∫∫F U n f n f ni i j j j i dΣj . 

Integrals from basis functions can be found 
analytically in advance. Such method named as 
quadrature free approach and was proposed in 
[12]. In the implemented DGM on unstructured 
hexahedral meshes application of quadrature 
free approach has appeared effective only at 
coarse multigrid levels where the basic goal for 
solver consists in reduction of a low-frequency 
error of the solution for a fine mesh. At the top 
multigrid level where the largest number of 
degrees of freedom is used, integration was 
carried out on the basis of quadrature approach. 

4. Application of DGM to external problems  

4.1 Solution with p-refinement for Airfoil 
Flow  
As it was mentioned above, one of potential 
advantages of DGM is the opportunity of a 
variation of the order of accuracy of the scheme 
in different areas of the flow (variation of the 
polynomials order approximating the solution), 
and also adaptations of the scheme to the 
solution by means of variation of the order (p-
refinement). Increase of the order of accuracy of 
the scheme will be the most effective in areas 
where the solution is smooth, but rapidly 
varying, for example, in boundary layers. As a 
first step in this direction the numerical solution 
of a problem for viscous turbulent flow about 
single airfoil RAE2822 is considered under 
conditions M=0.725, α=2.92°, Re=6.5⋅106 
(Case-6) [13]. 

The boundary layer velocity profiles are 
presented in Figs. 1 a, 1 b and 1 c for three 
different sections A, B and C. 
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Fig. 1 a. Velocity Profile in section A 
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Fig. 1 b. Velocity Profile in section B 
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Fig. 1 c. Velocity Profile in section C 
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In each section three solutions are 
presented. Solution #1 is obtained on coarse 
mesh#1 (3660 cells) with second order 
DGM(K=1) scheme (10980 degrees of 
freedom). The accuracy of this solution is not 
good enough. The solution #2 is obtained on 
finer mesh#2 with 6448 cells using DGM(K=1) 
(19334 degrees of freedom). Numerous 
calculations on different meshes with larger 
number of cells showed that solution #2 is 
accurate enough. In other words the solution 
received on finer meshes, coincides with the 
solution on a mesh #2. The solution #3 is 
obtained on a coarse mesh#1 but in boundary 
layer region the third order DGM(K=2) scheme 
was used. The number of degrees of freedom in 
this case was 13869 that is less in comparison 
with solution #2. Nevertheless the calculated 
results and velocity profiles in particular are 
close to the solution #2. That is a good 
demonstration of the p-refinement efficiency 
application in the regions with smooth solution. 

4.2 Calculation of the Flow Around 
Multielement Airfoil Using a Sequence of 
Adapted Unstructured Grids 
Adapted grids make it possible to achieve an 
optimal distribution of the grid points. The first 
calculation is performed on a very coarse initial 
grid, which can be generated automatically. 
Then, in accordance with the solution, an 
adaptation procedure is performed that changes 
the position of some existing grid points and 
links between them and adds (or removes) some 
other points. The process solution–adaptation–
solution is repeated until the change in the 
characteristics of the flow between iterations 
becomes less than a predefined small value. In 
the present work, we use the method of grid 
adaptation and the software implementing this 
method developed in [14]. The adaptation 
process is based on a heuristic error indicator 
that depends on a linear combination of the 
first- and second-order derivatives of the local 
Mach number along the edge. The grid is 
subdivided into macrocells that are split or 
refined in an isotropic manner. The points on 
the macrocell edges are distributed with account 
for the anisotropic properties of the flow. 

The calculation of the flow around a three-
element high-lift system of McDonnell Douglas 
Corporation (MDC) was performed using a 
sequence of adapted unstructured grids for 
M=0.2, Re=9×106, which corresponds to the 
experimental conditions [15]. The slat and flap 
settings of this configuration are presented in 
Table 1. Fragments of the adapted grid obtained 
after eight iterations of adaptation are shown in 
Figs. 2a, 2b, 2c for angle of attack 24 degrees.  

 
Table-1. Slat and Flap Settings 

 Slat Flap 
Deflection -30° 30° 
Gap 2.95% 1.27% 
Overhang -2.5% 0.25% 

 

 
Fig. 2 a. Fragment anisotropic adaptive mesh around three 

element airfoil 
 

 
Fig. 2 b. Fragment anisotropic adaptive mesh around slat 

of three element airfoil 
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Fig. 2 c. Fragment anisotropic adaptive mesh around flap 

of three element airfoil 
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Fig.3. Profiles of the total pressure over the flap 
 

Figs. 3a, 3b, 3c show the profiles of the total 

pressure coefficient ( )0
2

2 p p
Cpt

u
∞

∞ ∞

−
=

ρ
 in the 

wake over the flap (x/c = 0.975) at the angles of 

attack α = 8°, 16°, and 21° as compared to the 
experimental results. The comparison shows 
that the generated adapted grids provide a fairly 
accurate resolution of the wake formed by the 
forward elements of the high-lift system. 

The lift force as a function of the angle of 
attack, which is of great practical importance, is 
illustrated in Fig. 4. It is seen that the 
calculation accurately predicts the critical angle 
of attack and the value of the maximum lift 
force. 

 
Fig. 4. Lift force vs. angle of attack 

 
Although the Mach number of the 

incoming flow is small, the flow around the 
configuration under examination is 
characterized by the existence of a short local 
supersonic zone that ends in a pressure shock on 
the upper surface of the slat. The use of adapted 
grids made it possible to resolve this important 
feature of the flow (see Fig. 5, which shows the 
distribution of the local Mach numbers near the 
leading edge of the slat of the three-element 
profile MDC, M = 0.2, α = 24° (the critical 
angle of attack), and Re =9⋅106. 

 

 
Fig.5 Distribution of the local Mach numbers near the slat 
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In current investigations the number of 
element in meshes that generated during 
adaptation procedures not exceed 30 000 
elements. Our experience showed that results of 
similar quality can be obtained with using of the 
standard FVM on meshes with number of cells 
more than 100 000. 
 

4.3 Turbulent 3D flow around a DLR-F4 
wing-body configuration 
Aircraft configuration «wing+body» DLR-F4 
chosen as test model for AIAA CFD Drag 
Prediction Workshop (DPW) has been 
calculated by DGM(K=1) on a mesh containing 
230 000 cells. The size of the mesh used has 
been limited by resources of a personal 
computer with 2 Gb RAM and 32 bit 
operational system. However the new method 
allowed one to obtain results that are in 
satisfactory agreement with experimental data 
and with the calculations performed by 
industrial FVM (Fine/Hexa by NUMECA Int.) 
on more dense mesh. Note, that by classification 
of DPW a mesh with number of cells 1.5 ÷ 2 
million is considered as coarse one, but even for 
calculation on such meshes the computer system 
with greater RAM and 64 bit operational system 
is required, allowing to work with memory 
exceeding ~ 3 Gb. 
 

 
Fig. 6. The fragments of the surface mesh 

 
Mesh #1 for the DLR-F4 configuration, 

generated by code HEXPRESS™ (NUMECA 
Int.), contains 229 739 cells. Fragments of a 
surface mesh on body and wing are represented 
in Fig. 6. The mean aerodynamic chord of a 
wing of the configuration is 0.1412 m., length of 
a fuselage is 1.92 m., and half wingspan is 

0.5856 m. The external boundary is represented 
by a half cylinder with radius of 5 m. and the 
length 20 m. The cells adjoining to the solid 
surface has the additional splitting consisting of 
4 layers. The distance from the surface to the 
first layer of nodes is 2·10-5 m., and thickness of 
the subsequent layers increases with factor of a 
geometrical series of 1.4. 

Calculations are performed at М=0.75 and 
Re=3·106. The initial factor of turbulent 
viscosity at infinity in the Spallart-Almaras 
turbulence model was equal to 5. Comparisons 
of calculated and experimental pressure 
distributions in different sections of a wing at 
zero angle of attack are presented in Fig. 7. 

FVM calculations have been performed by 
on a mesh #2 containing more than 1 million 
cells. The number of layers in boundary cells of 
the used mesh was equal to 12, and a factor of a 
geometrical series was 1.22. Comparisons of 
calculations results obtained by DGM on a 
mesh #1 and FVM on a mesh #2 are presented 
in Fig. 7 and in the table 2. It can be seen that 
DGM results are in the best agreement with 
experimental ones [16]. 

 

 
Fig. 7. Comparisons of pressure distributions in different 

sections of the wing 
 

Table2. Comparison of lift and drag characteristics at α=0 
 CL CD 

FVM, mesh #2,  
1 mln. cells 

0.5728 0.0325 

DGM, mesh #1, 
230 000 cells 

0.4773 0.0303 

Experiment [14] 0.4812 0.0278 
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Comparison of calculated (DGM) and 
experimental drag polar is presented in Fig. 8.  

 
Fig. 8. Comparisons of drag polar of the  

DLR-F4 wing-body configuration 
The solid red line correspond to the results 

of calculation, and markers represent 
experimental values [16], obtained in various 
wind tunnels (DLR, ONERA, DRA). Dashed 
lines limit area of results obtained by various 
modern FVM presented in materials of DPW 
conference [17]. The deviation of calculated 
polar from experimental one is 2·10-3. This 
deviation is minimal among other results 
obtained by FVM on meshes with a larger 
number of cells and with use of greater 
computer resources. 

The analysis of calculations for the given 
configuration at zero angle of attack, performed 
by different researchers, shows presence of a 
separation bubble in the region of aft wing – 
fuselage junction (Fig. 9). The calculations 
performed in the present work with DGM even 
on extremely coarse mesh, confirms this effect. 

 
Fig. 9 Separation bubble in the region of aft wing – 

fuselage junction 

Conclusions 
The DGM provides accurate results even on 
coarse grids, when coupled with p-adaptation 
and anisotropic adaptive meshes. These 
approaches can significantly reduce computer 
resources in comparison with the standard 
finite-volume approach. Meanwhile, the most 
advantages from DGM application could be 
reached with high order of accuracy calculations 
(K ≥ 3). That will be one of the targets of future 
work. 
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