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Abstract

The performance of the Krylov subspace recy-
cling methods to accelerate the convergence of
large scale unsteady aerodynamic simulations are
investigated in this paper. The generalized con-
jugate residual technique with deflated restarting
(GCRO-DR) is adopted for recycling Krylov vec-
tors; its performance is then compared with that
of the generalized minimal residual (GMRES)
solver for several unsteady aerodynamic simula-
tions. The main conclusion of this study is that
no significant gain in the CPU time is obtained as
a result of the Krylov vector recycling. In partic-
ular, for large scale problems, the recycling leads
to more computational time spent in the linear
solver.

1 Introduction

Convergence accelerating techniques are re-
quired to make the large-scale unsteady aero-
dynamic simulations computationally efficient.
The implicit discretization of the Navier-Stokes
equations on a real engineering mesh geometry
and the subsequent linearization of the non-linear
fluxes lead to a large and sparse linear system
of equations. This system is usually solved us-
ing a Krylov subspace iterative techniques such
as GMRES [13]. For unsteady problems, a new
linear system is formed and should be solved
with the required accuracy at each time step.
This makes unsteady problems computationally
expensive. Krylov subspace recycling methods
are among the techniques that aim to decrease

the number of iterations in the linear solver and
hence to reduce the computational cost.

The main idea of the recycling techniques is
to keep some of the search vectors calculated
from the previous cycle or time step for the cal-
culation of the solution at the next cycle or time
step. The GMRES method, which is popular
for solving large nonsymmetric linear systems of
equations, is usually used with restarting in order
to reduce the storage and computational costs.
This tends to slow down the convergence. With a
Krylov recycling technique, we try to save some
important vectors from the previous cycle at the
time of the restart. Furthermore, in an unsteady
problem, some important Krylov vectors can be
retained from the previous time step and used for
the calculation in the next time step. Different re-
cycling techniques are distinguished by the spe-
cific approaches they adopt to choose the recy-
cled subspace and by the scheme they use to in-
corporate the recycled subspace in the next cycle
or time step.

The available work in the literature on this
topic mainly focuses on the solution of model
partial differential equations for simple geome-
tries [12, 2, 9]. This work aims to implement
recycling techniques to accelerate the numeri-
cal solution of the unsteady compressible Navier-
Stokes equations for several aerodynamic prob-
lems. We consider the problems where the con-
vergence of the original restarted solver (GM-
RES) is already impaired due to some numerical
and/or physical features such as the mesh skew-
ness, separated flow regions and the existence of
various time-scales in the flow field. We com-
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pare the convergence behavior of the GCRO-DR
solver with that of the original GMRES method.

In the next section, the numerical discretiza-
tion schemes for the flow equations as well as the
algorithms for the linear iterative solvers with and
without recycling are described. In section 3, the
convergence acceleration efficiency of the recy-
cling technique is investigated in four test prob-
lems. Conclusions are given in section 3.6.

2 Methodology

2.1 Flow Solver

The viscous compressible fluid flow is mod-
eled with the Navier-Stokes (NS) equations.
The spatial discretization of the flow equations
is achieved via a mixed finite-volume-finite-
element method [5] on unstructured tetrahedral
elements. Convective fluxes are calculated over
median dual control volumes with a second order
MUSCL Roe scheme whereas viscous fluxes are
discretized using linear finite-element basis func-
tions. A second-order implicit time integration
scheme is adopted. Newton’s method is imple-
mented to linearize implicit convective and vis-
cous fluxes. As the calculation of the second
order convective flux Jacobians is difficult, only
their first order approximations are computed.
To achieve the required spatial accuracy for un-
steady problems, several Newton iterations are
performed per time step [7]. The Generalized
Minimal residual (GMRES) method [13] is origi-
nally used to solve the resulting linearized system
of equation.

The effect of turbulence is modeled via an
eddy viscosity approach where the one-equation
Spalart-Allmaras (SA) turbulence model [14] is
used to calculate the turbulence viscosity. Molec-
ular viscosity, µ, and thermal conductivity, k,
are replaced by µ + µt and k + kt , respectively,
in NS equations. Turbulent thermal conductiv-
ity is calculated from turbulent viscosity using
the assumption of a constant turbulent Prandtl
number of Prt =

cpµt
kt

= 0.9. Besides Reynolds
Averaged Navier-Stokes (RANS) methodology,
SA based Detached-eddy simulation (DES) tech-

nique [16, 15] is also implemented to be used for
the problems involving the simulation of mas-
sively separated flows. The SA equation is dis-
cretized with the same scheme as the one used
for NS equations. The flow and turbulence model
equations are loosely coupled during the flow cal-
culation, i.e. first NS equations are solved then
the turbulence viscosity is updated by solving
the SA equation with recently updated flow vari-
ables. The linear system of discretized SA equa-
tions are solved via GMRES.

The treatment of moving and deformable
meshes are accomplished by the arbitrary La-
grangian Eulerian (ALE) kinematical description
of the fluid domain [3]. The time integration of
fluxes and Jacobians are performed over an inter-
mediate mesh position satisfying geometric con-
servation laws developed by Lesoinne et al. [8],
Farhat et al. [4] and Nkonga et al. [11].

NS and SA discretized systems of equations
are preconditioned using a local Jacobi method to
accelerate the convergence of the iterative solver.
All numerical algorithms are parallelized with
the message passing standard (MPI).

2.2 Krylov Subspace Methods and Recycling

2.2.1 GMRES Method

GMRES is one of the more popular iterative al-
gorithms for solving linear systems of equations,
which is based on projection methods [13]. A
projection technique looks for an approximate
solution to the linear system of equations given
by

Ax = b, (1)

in a search subspace denoted by K . Here, A is an
n×n matrix and x,b∈Rn. If the dimension of the
search subspace is m ≤ n, then m conditions are
required in order to uniquely determine x ∈ K .
These conditions are usually given as m orthog-
onality constraints, such that the residual vector
r = b−Ax is normal to another m-dimensional
subspace called subspace of constraints and de-
noted by Lm. In GMRES, the search subspace is
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the Krylov subspace,

Km(A,r0) = span
{

r0,Ar0,A2r0, · · · ,Am−1r0
}
,

(2)
where r0 is the initial residual vector calculated
based on the initial guess to the solution, x0, i.e.
r0 = b−Ax0; the subspace of constraint is given
by Lm = AKm.

The heart of GMRES iterations is the Arnoldi
orthogonalization method in which an orthogonal
basis is built for the Krylov subspace Km. The
basis vectors have the following property,

AVm = Vm+1H̄m. (3)

The Arnoldi vectors v1,v2, · · · ,vm are the nor-
malized orthogonal basis of Km while the last
Arnoldi vector vm+1 is orthogonal to Km. They
constitute the columns of the n× (m + 1) matrix
Vm+1. The (m + 1)×m matrix H̄m has an up-
per Hessenberg structure. The matrix obtained
by deleting the last row of H̄m is denoted by Hm.
No orthogonal basis vector for the subspace of
constraints, Lm, is explicitly built or stored in the
GMRES algorithm.

In practical engineering problems, the GM-
RES method is usually used with a restarting
technique. The number of degrees of freedom
in the problem of interest represents the size of
the Arnoldi vectors, n. Many engineering CFD
problems involve millions of degrees of freedom.
This limits the maximum number of Arnoldi
vectors that can be saved and used in the or-
thogonalization process. Hence the dimension
of the Krylov subspace can not usually exceed
100 due to the storage limitations, i.e. mmax ≤
100. If the residual remains greater than the re-
quired tolerance after mmax iterations, GMRES
will be restarted, whereby all previously calcu-
lated Arnoldi vectors will be erased and a new
Krylov subspace will be built based on the cur-
rent residual. The period between two subse-
quent restarts is called a cycle. The consequent
loss of orthogonality between Arnoldi vectors in
the new and previous cycles degrades GMRES
convergence.

2.2.2 GCRO-DR Recycling Method

The convergence of the restarted GMRES can be
improved by recycling selected Krylov vectors
between two cycles at the time of the restart. Re-
cycling can also be performed while solving a se-
quence of linear systems of equations, where the
Krylov vectors will be recycled between two sub-
sequent systems. For these purposes, we adopted
the generalized conjugate residual solver with de-
flated restarting (GCRO-DR) developed by Parks
et al. [12]. This solver is based on Morgan’s GM-
RES with deflated restarting (GMRES-DR) [9]
and de Sturler’s generalized conjugate residual
with optimal truncation (GCROT) [2] recycling
iterative schemes. It is designed to solve a series
of linear systems of equations such as system (1),
where the coefficient matrix A and the right hand
side (RHS) vector b can be changed arbitrarily
from one system to another. The only restriction
is that the change of the matrix A between two
consecutive systems should be gradual.

GCRO-DR recycles matrices Uk and Ck be-
tween two systems or cycles. Each matrix con-
tains k n-dimensional recycled vectors as its
columns. The following relations hold between
Uk and Ck,

AUk = Ck, (4)
CH

k Ck = Ik, (5)

where Ik is the k× k identity matrix, and super-
script H represents the transpose conjugate of the
matrix. The calculation starts by finding the so-
lution of the system (1) via a projection step onto
the subspace Uk and orthogonal to Ck, which
leads to,

x = x0 + UkCH
k r0, (6)

r = r0−CkCH
k r0. (7)

In the next step, m− k Arnoldi iterations are per-
formed in order to construct m− k orthogonal
bases of the Krylov subspace starting with the
new residual r in (7). Arnoldi vectors are built
such that they maintain orthogonality to the sub-
space spanned by columns of Ck. The following
relation is satisfied,

(In−CkCH
k )AVm−k = Vm−k+1H̄m−k. (8)
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Equation (8) can be recast into the original
form (3) using the definition, Bk = CH

k AVm−k,

A
[

Uk Vm−k
]

=

[
Ck Vm−k+1

][ Ik Bk
0 H̄m−k

]
. (9)

New matrices are defined to further simplify
equation (9),

Ũk = UkDk

V̂m =
[

Ũk Vm−k
]
,

Ŵm+1 =
[

Ck Vm−k+1
]
,

Ḡm =

[
Dk Bk
0 H̄m−k

]
,

where the diagonal matrix Dk is introduced to
normalize the column vectors of Uk. The final
form of the Arnoldi relation that incorporates the
recycled vectors is given by,

AV̂m = Ŵm+1Gm. (10)

The solution to the linear system of equations (1)
is then obtained with a projection step onto the
range of V̂m and orthogonal to the range of AV̂m.

In GCRO-DR, the recycled vectors Uk are se-
lected from the span of the approximate eigen-
vectors associated with the smallest eigenvalues
of A [12]. In many problems, eigenvalues of
smallest magnitude are responsible for the slow
convergence. If an eigenvector exists in the sub-
space spanned by the Krylov vectors, then its
corresponding eigenvalue will be deflated or re-
moved during the projection iterations. The idea
is to recycle the smallest existing eigenvectors to
the next cycle for deflation purposes.

Harmonic Ritz vectors associated with the
smallest harmonic Ritz values of A are accurate
approximations to the small eigenvectors of A.
Morgan et al. [10] developed the algorithm for
the computation of the corresponding Ritz vec-
tors. At the end of the first cycle, k smallest
eigenvectors of the following problem are calcu-
lated and stored in columns of matrix Tk,

(Hm + h2
m+1,mH−H

m emeH
m)r = αr, (11)

where α and r are an eigenvalue and its corre-
sponding eigenvector, respectively. The subspace
of k smallest eigenvectors of A is then approxi-
mated by the range of VmTk. If Arnoldi iterations
are performed with previously recycled vectors,
as represented by equation (10), then the prob-
lem (11) will be replaced by,

ḠH
mḠmr = αḠm

HŴH
m+1V̂mr. (12)

Similarly, the subspace of k smallest eigenvec-
tors of A is approximated by the range of V̂mTk.
The calculation details and the pseudo-code for
the GCRO-DR solver can be found in refer-
ence [12].

3 Results

3.1 Overview

The convergence-acceleration efficiency of the
GCRO-DR was studied for five different prob-
lems. All test cases except the first one were built
based on the flow solver described in section 2.1.
The case 1 was one of the test problems originally
investigated by Parks et al. [12]. The validation
of our implementation was the main purpose to
repeat the same problem herein. Furthermore, it
served as a comparison basis where the GCRO-
DR solver exhibited the best performance.

In the following subsections, the GMRES
solver is specified with the maximum size of
its Krylov subspace, e.g. GMRES(m) indicates
that the maximum number of Arnoldi vectors
created and stored in the orthogonalization pro-
cess is equal to m. In other words, if the norm
of the residual is greater than the given toler-
ance at the end of the mth iteration, GMRES
will restart, whereby all previously computed
Arnoldi vectors will be erased and a new or-
thogonalization step will begin. The GCRO-DR
solver requires two specification parameters: the
maximum size of the Krylov subspace, m, and
the size of the recycled subspace, k. At the
end of each cycle, before the restart, the Krylov
subspace of GCRO-DR(m,k) contains k recycled
vectors coming from the previous cycle and m−k
Arnoldi vectors built in the current cycle.
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3.2 Convection-Diffusion

The linear two-dimensional convection-diffusion
partial differential equation,

∂2u
∂x2 +

∂2u
∂y2 + c

∂u
∂x

= 0, (13)

was solved over (0,1)×(0,1) unit square domain
with the following boundary conditions,

u = 0 on x = 0 & y = 0,
u = 1 on x = 1 & y = 1.

A central finite difference scheme was used to
discretize equation (13) on a uniform mesh with
an edge length of 1/41. The resulting system
of equations had 1600 degrees of freedom, i.e.
n = 1600. The convective velocity was fixed at
c = 40.

The solution to this problem was computed
by reducing the second norm of the relative resid-
ual up to eight orders of magnitude using GM-
RES(25) and GCRO-DR(25,10) solvers. The
convergence plots are depicted in figure 1. The
GCRO-DR solver was run twice for the same
problem. The projection step in the second run
began with 10 recycled vectors calculated at the
end of the first run. GMRES converged after 267
iterations with 10 restarts while the first and the
second runs of GCRO-DR required 112 and 82
iterations, respectively, to reach to the specified
residual reduction. This was equal to 7 and 6
restarts for the first and the second runs. The re-
sulting speed-ups in terms of the iteration count
as well as the CPU time are compared in table 1,
where nit and CPU stand for the number of it-
erations and the CPU time respectively; the first
and the second runs are denoted by GCRO-DR
and GCRO-DR+. Only the CPU time spent to
solve the linear system of equations was reported.
The gain in the CPU time was less than the corre-
sponding iteration reduction due to the additional
calculations that was performed in the GCRO-
DR solver for eigenvalue problems.

The distribution of 25 smallest harmonic Ritz
values calculated at each restart (cycle) of the first
run of GCRO-DR(25,10) are shown in figure 2.
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GCRO-DR(25,10) - 2nd run

Fig. 1 Residual norm versus iteration number for
linear convection-diffusion problem with c = 40
and h = 1/41.

Since the coefficient matrix was real, the complex
Ritz values appeared as pairs of complex conju-
gates. The Ritz value distribution changed signif-
icantly from one cycle to another, specially in the
area close to the origin (0,0). This indicated the
deflation of the recycled vectors in the course of
the projection steps.

3.3 Flat Plate Boundary Layer

The unsteady turbulent boundary layer over a
flat plate of length l was simulated using the
RANS methodology. The mean freestream Mach
and Reynolds numbers were 0.4 and 4.82× 106,
respectively. The flow unsteadiness was gen-

Table 1 Comparison between the performance of
GMRES(25) and GCRO-DR(25,10) solvers for
convection-diffusion problem with c = 40 and
h = 1/41.

solver nit CPU speed-up%
nit CPU

GMRES 267 0.48 sec. 0 0
GCRO-DR 112 0.34 sec. 58.0 29.2

GCRO-DR+ 82 0.28 sec. 69.3 41.7
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Fig. 2 Distribution of the real and imaginary parts of the 25 smallest Ritz values for the linear convection-
diffusion problem at various restarts in the first run of GCRO-DR(25,10).

erated by superimposing an unsteady compo-
nent to the mean freestream velocity, U∞. The
unsteady component consisted of harmonic os-
cillations with an amplitude of 0.05U∞ and a
period of l

2U∞
. The implicit simulation time-

step was equal to 0.015l
U∞

, which corresponded
to a CFL (Courant-Friedrichs-Lewy) number of
7000. The 3D unstructured tetrahedral mesh con-
tained 47,831 nodes and 256,458 elements re-
sulting in a linear system of equations with over
239,000 degrees of freedom. The boundary layer
was resolved through highly skew tetrahedral ele-
ments with aspect ratios up to 100,000 satisfying
y+ ≈ 1 condition in the law-of-wall units. The
presence of highly skew elements, in general, de-
grades the convergence of iterative solvers, and
makes this problem a worthy candidate to exam-
ine the performance of the recycling scheme.

The resulting linear system of equations was
solved with three different schemes where the
norm of the residual vector was decreased up
to four orders of magnitude at each time-step.
The first method involved the GMRES(25) solver
while in the second and third schemes the GCRO-

DR(25,10) solver was used. In the second
method, the Krylov vectors were only recycled
between consecutive cycles within each time-
step, whereas the recycling was performed, in the
third scheme, not only within each time-step but
also between successive time-steps. The third
scheme will be denoted by GCRO-DR(m,k)+
hereafter.

The residual reductions within a time-step at
t = l

2U∞
are depicted in figure 3 and the corre-

sponding speed-ups are listed in table 2. The
specified residual reduction was achieved after
16, 21, and 22 restarts for GMRES, GCRO-DR
and GCRO-DR+ solvers, respectively. Recycling
the smallest Ritz vectors between time-steps in
GCRO-DR+ led to 6% more iterations and a 36%
increase in the CPU time spent to solve the linear
system. Although GCRO-DR reduced the num-
ber of iterations by 22.7%, the gain in the CPU
time was very modest; only a 1.6% decrease was
observed. This was due to the extra computations
that should be performed at each restart in order
to solve eigenvalue problems. Hence, the GCRO-
DR recycling technique will be efficient if it can
lead to a significant iteration reduction in a prob-

6



Krylov Recycling Techniques for Unsteady Simulation of Turbulent Aerodynamic Flows

Table 2 Comparison between the performance
of GMRES(25), GCRO-DR(25,10), and GCRO-
DR(25,10)+ schemes for unsteady flat plate prob-
lem at t = l

2U∞
.

solver nit CPU speed-up%
nit CPU

GMRES 410 427 sec. 0 0
GCRO-DR 317 421 sec. 22.7 1.4

GCRO-DR+ 435 581 sec. -6.1 -36.1

lem.
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Fig. 3 Residual norm versus iteration number for
unsteady flat plate problem at t = l

2U∞
.

3.4 Flow Around Circular Cylinder

The recycling methods were applied to the prob-
lem of von Kármán vortex shedding off a circu-
lar cylinder. The flow was laminar with Mach
and Reynolds numbers of 0.2 and 100, respec-
tively. The unstructured tetrahedral mesh con-
tained 572,599 nodes and 3,258,631 elements of
high quality; no skew tetrahedron was present.
The mesh was decomposed into 10 subdomains
using METIS [6] for parallel computation on a
distributed memory machine. The simulation
time-step was equal to 0.15 D

U∞
representing a

CFL number of 70. Our objective was to investi-
gate the performance of the recycling techniques
for unsteady problems involving separated flow
regions.

The linear system of equations followed from
the discretization scheme had 2,862,995 de-
grees of freedom. The solution was found
via GMRES(25), GCRO-DR(25,10), and GCRO-
DR(25,10)+ solvers by reducing the residual up
to seven orders of magnitude at each time step.
The convergence plot at t = 200 D

U∞
is shown in

figure 4 and the resulting speed-ups are compared
in table 3. All three schemes exhibited more or
less the same convergence behavior, with GCRO-
DR(25,10) requiring one percent more iterations
to produce the desired residual reduction. How-
ever, recycling techniques took almost twice as
much CPU time as the amount spent in GMRES
iterations. Thus, for this problem recycling failed
to provide any convergence acceleration.
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Fig. 4 Residual norm versus iteration number for
laminar unsteady flow around a circular cylinder
t = 200 D

U∞
.

The distribution of the 25 smallest Ritz val-
ues in 12 cycles of GCRO-DR(25,10) iterations
at t = 200 l

U∞
is shown in figure 5. The clos-

est 10 Ritz values to the origin (0,0) correspond
to the recycled vectors. As depicted in this fig-
ure, from the 6th to the 10th cycle, the same
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Fig. 5 Distribution of the real and imaginary parts of the 25 smallest Ritz values for the problem of
laminar unsteady flow around a cylinder at various restarts of GCRO-DR(25,10) iterations.

Table 3 Comparison between the performance
of GMRES(25), GCRO-DR(25,10), and GCRO-
DR(25,10)+ schemes for laminar unsteady flow
around a circular cylinder at t = 200 l

U∞
.

solver nit CPU speed-up%
nit CPU

GMRES 185 70 sec. 0 0
GCRO-DR 185 144 sec. 0 -105.7

GCRO-DR+ 187 145 sec. -1.0 -107.1

Ritz values were recycled between the restarts.
In other words, the recycled vectors were not de-
flated throughout these cycles. This was con-
trary to the behavior observed for the convection-
diffusion problem in figure 5.

3.5 Static Stall of NACA0015 Wing

A detached-eddy simulation (DES) was per-
formed over a square NACA0015 wing at an
angle of attack (AOA) of 18◦. The freestream
Reynolds and Mach numbers were 1.86× 105

and 0.04. The simulation AOA well exceeded
the reported static stall angle for this configura-
tion, αss ≈ 14.5◦ [1]. An unstructured mesh with
2,247,174 nodes and 13,300,570 tetrahedral el-
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ements was used for the simulation. Although
the wing geometry and the freestream condition
were fixed, due to the transient and chaotic na-
ture of captured turbulent eddies, a time-accurate
unsteady simulation was performed. The im-
plicit time-step was 0.0078 c

U∞
where c represents

the chord of the wing’s cross section. This was
equivalent to a CFL number of 5000. Figure 6
shows the computational mesh, the structure of
turbulent eddies, and the strong wing-tip vortex
extended downstream of the tip section.

The convergence rate of the DES is generally
much slower than a similar RANS simulation ow-
ing to the resolution of the small and unsteady
structures in the flow field. A comparison be-
tween convergence rates for a DES and a RANS
simulation is given in figure 7-a. Both simula-
tions were performed for the configuration de-
scribed above, on the same computational mesh,
using GMRES(50). The DES was approximately
four times slower. This motivated us to study the
convergence acceleration efficiency of Krylov re-
cycling techniques for the same problem.

The resulting system of equations had
11,235,870 degrees of freedom. The norm of
the residual was decreased up to eight orders
of magnitude at each time-step via GMRES(25),
GCRO-DR(25,10), and GCRO-DR(25,10)+ iter-
ations. The convergence plot is depicted in fig-
ure 7-b and the resulting speed-ups are reported
in table 4. Recycling solvers showed an adverse
efficiency for both the convergence rate and the
CPU time. The increase in the iteration count
was approximately 20%, which almost doubled
the CPU time spent for the solution of the linear
system as compared to the GMRES(25)’s perfor-
mance.

3.6 Conclusions

The performance of a Krylov subspace recycling
algorithm, GCRO-DR, was investigated for var-
ious CFD problems. Two recycling strategies
were studied: in the first one, Krylov vectors
were only recycled between restarts of the solver
in a single system of equations, whereas in the
second scheme, the recycling was extended over

Fig. 6 Swirl contours around NACA0015 wing
at static stall condition.
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Fig. 7 Residual norm versus iteration number for
the flow around NACA0015 wing at static stall
condition. (a) comparison between RANS and
DES using GMRES(50) solver. (b) comparison
between different solvers in DES.

subsequent systems of equations. Each CFD
problem was characterized by a special feature
such as the mesh skewness, the flow separation,
and the presence of turbulent eddies of various
scales, which were responsible for the slow con-
vergence of the linear solver. The following ob-
servations have been made after implementing
the recycling technique:

• Recycling have had the best performance
for the problem of the unsteady turbulent
boundary layer over a flat plate which in-
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Table 4 Comparison between the performance
of GMRES(25), GCRO-DR(25,10), and GCRO-
DR(25,10)+ schemes for DES of the flow around
a NACA0015 wing at static stall condition.

solver nit CPU speed-up%
nit CPU

GMRES 421 97 sec. 0 0
GCRO-DR 506 199 sec. -20.2 -105.1

GCRO-DR+ 510 201 sec. -21.1 -107.2

volved very skew elements, however the
gain in the CPU time is very modest;

• As the size of the problem increases the
performance of the recycling method dete-
riorates;

• The convergence of the DES is impaired by
recycling;

• A better performance is obtained when the
recycling was limited within a single sys-
tem of equations;

• For the recycling method to be efficient in
terms of CPU time reduction, the gain in
the iteration count should be significant,
e.g., more than 25%.
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