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Abstract

The analysis of unsteady fluid flows on moving
domains is a very complex task, that may be often
tackled using domain remeshing techniques. In
the present paper a novel mesh movement strat-
egy is presented. It is based on the blending of
simple local edge-swapping with mesh deforma-
tion by means of the elastic analogy. To deal with
mesh topology changes an extension of the clas-
sical Arbitary Lagrangian–Eulerian formulation
of the fluid flow equations is developed. In this
way the use of interpolations of fluid fields be-
tween old and new grid is avoided. Furthermore,
this extension allows the easy implementation of
high order time integration schemes. Prelimi-
nary two dimensional numerical simulations are
presented to demonstrate the correctness of the
present approach. They shows how this approach
guarantees a high quality of the grid without re-
sorting to remeshing, resulting in a very efficient
solver useful for the analysis of Fluid–Structure
Interaction problems, even for the cases which
requires large mesh deformations or changes in
the domain topology.

1 Introduction

The interaction between a deformable structure
and the fluid flowing around it may lead to in-
stability phenomena (e.g. flutter), which are po-
tentially dangerous for the integrity of the struc-
ture itself [5]. In order to predict the behavior

of complex aeronautical structures in these con-
ditions, high fidelity CFD models must coupled
with the structural models of the aircraft. This
branch of continuum mechanics—usually termed
Computational Aeroelasticity (CA)—is by defi-
nition highly interdisciplinary and since the past
two decades it has been a very active and fruitful
research area [4,19,27]. Two peculiar difficulties
arise in the numerical simulation of compressible
flows on moving domains. Since the computa-
tional domain is continuously changing its shape,
a new grid complying with the new domain ge-
ometry is to be constructed at each time level.
For small displacements it is usually sufficient to
slightly reshape or deform the initial grid into the
new geometry, without changing the grid connec-
tivity and number of nodes. Very efficient algo-
rithms have been obtained in this case [3, 6, 7].
As a result the computational mesh is moving
during the simulation, so the standard finite vol-
ume Eulerian formulation of the flow equations
must be dropped in favor of the so-calledArbi-
trary Lagrangian–Eulerian(ALE) approach, in
which the control volumes are allowed to change
their position and shape in time [10].

Indeed, CA is useful for all the cases where
the CFD equations are defined in a domain whose
shape varies continuously with time due to the
movement of the boundaries, like deformable
surfaces of the structures. So, equivalent pro-
cedures can be employed when dealing with
the simulation of rotorcraft, including helicopters
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and tilt-rotors, or with problems like store sepa-
rations. However, in such cases arbitrary large
displacements may occur between the different
structural parts, and so deformation-based algo-
rithm cannot be used anymore. In fact the mesh
obtained by deformation is likely to become too
coarse in the direction of movement and the re-
sulting stretched and skewed elements will ad-
versely affect the solution accuracy, or cause the
comparison of invalid negative-volume elements.

The current strategy to address these prob-
lems is the overset grid technique [23], often
known asChimera, which has been successfully
applied to rotorcraft simulations [1], of to store
separation problems [16,17]. The main drawback
of the Chimera approach is that the interpolation
between the different grids representing the do-
main is quite complex and user intervention is
often required. As an alternative, the numerical
simulation of these kind of flows can be carried
out by using remeshing techniques which require
the interpolation of the solution over the new grid
at each time level [14]. Moreover, multi-step
high-order time integration schemes such as the
Backward Differencing Formulæ cannot be used
due to the different grids used at each time level,
unless re-interpolation is used to compute the
backward solutions over the current grid. Need-
less to say, the computational burden of such an
approach could be very large.

In the present research, a novel strategy to
the simulation of unsteady aerodynamics with
moving domain is proposed to circumvent the
difficulties of both Chimera and standard re-
interpolation techniques. The method is centered
around a mesh update technique which guaran-
tees a high quality of the grid even when very
large movements are required, without resorting
to remeshing, thus resulting in a very efficient
computational code. This technique is based on
a blend of mesh deformation with local edge-
swapping and can be easily applied to two- and
three-dimensional problems. The main innova-
tion is obtained noticing that the new grid can be
obtained via a suitable deformation of a fictitious
grid defined by the current element-node connec-
tivity and the previous node positions. This is

possible since the number of grid nodes remains
constant as the simulation progresses, so corre-
sponding cells are defined at each time level. By
keeping into account correctly the deformation
caused by the element that disappears and the
new ones created during the edge-swapping, it
is possible to compute the solution at the cur-
rent time level by employing standard ALE tech-
niques, thus avoiding the need to interpolate the
flow fields onto a new grid. Moreover, high or-
der time integration schemes, like standard BDF
techniques and others, can be implemented very
easily.

The present paper reports on preliminary
two-dimensional numerical simulations which
demonstrate the suitability of the proposed ap-
proach. In section 2, the flow solver in the
Arbitrary-Langrangian framework is briefly de-
scribed. The mesh movement technique, includ-
ing the swapping algorithm, is described in sec-
tion 3; in section 4, the ALE solver is modified
to account for a possibly changing mesh connec-
tivity, which results from the occurrence of edge-
swapping. In section 5, numerical results are re-
ported for two-dimensional flows. In section 6, a
summary of the present study is given.

2 Edge-based ALE solver for compressible
flows

The governing equations for a compressible in-
viscid fluid in two spatial dimensions are pro-
vided by the well-known Euler equations in an
Arbitrary Lagrangian Eulerian (ALE) framework
[8,9], namely,

d
dt

Z

C (t)
u+

I

∂C (t)

[

f(u)−uv
]

·n= 0, ∀C (t)⊆Ω(t),

(1)
whereu, u = (ρ,m,Et)T ∈ R

+×R
3, is the vector

unknown of the densityρ, momentum vectorm
and total energy per unit volumeEt. The solution
is sought for in the spatial domainΩ ∈ R

2, with
boundary∂Ω for all timest ∈ R

+. System (1) is
to be made complete by specifying suitable ini-
tial and boundary conditions, see e.g. [12]. In
Eq. (1),f = (fx, fy)

T ∈R
4×R

2 is the flux function
defined asf(u) =

(

m, m⊗m/ρ + P(u) I ,
[

Et +
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i kηik∂Cik

Ci
Ck

Fig. 1 Edge associated with the finite volume in-
terface∂Cik = ∂Ci ∩∂Ck and metric vectorηik (in-
tegrated normal) in two spatial dimensions. The
two shaded regions are the finite volumesCi and
Ck; dashed lines indicate the underlying triangu-
lation.

P(u)
]

ρ/m
)T

, whereI is the 2×2 identity matrix
andP is the pressure and where the scalar prod-
uct in Eq. (1) is computed asf(u) ·n= fxnx+ fyny.
The vectorn = n(s, t) = (nx,ny)

T is the outward
unit vector normal to the boundary∂C (t) of the
control volumeC (t) and it is a function of the
curvilinear coordinatesalong∂Ci and of the time
as well. The termuv = (ρv,m⊗ v,Etv)T, with
v = v(s, t) local velocity of ∂C (t), accounts for
the flux contribution due to the movement of the
control volumeC (t).

2.1 Edge-based finite volume solver and In-
terface Velocity Consistency

The discrete counterpart of the Euler equation (1)
is obtained by selecting a finite number of non
overlapping volumesCi(t) ⊂ Ω(t), with bound-
ary ∂Ci(t), such that

S

i Ci(t) ≡ Ω(t). According
to the node-centered finite volume approach con-
sidered here, each finite volumeCi surrounds a
single nodei of the triangulation ofΩ, as shown
in Figure 1. For each finite volume, equation (1)
reads

d[Vi ui]

dt
= −

I

∂Ci

[

f(u)−uv
]

·ni , ∀i ∈K , (2)

whereVi = Vi(t) is the volume (area in two spa-
tial dimensions) ofCi,K is the set of all nodes of

the triangulation andni = ni(s, t) denotes the out-
ward normal with respect to the volumeCi, see
Fig. 1. The unknownu is approximated overCi

by its average valueui = ui(t). The right hand
side of (2) is now rearranged to put into evidence
the boundary contribution, namely,
I

∂Ci

[

f(u)−uv
]

·ni =

∑
k∈Ki,6=

Z

∂Cik

[

f(u)−uv
]

·ni +
Z

∂Ci∩∂Ω

[

f(u)−uv
]

·ni,

(3)

whereKi, 6= = {k ∈ K ,k 6= i|∂Ci ∩ ∂Ck 6= /0} is
the set of the indexesk of the finite volumesCk

sharing a portion of their boundary withCi, Ci

excluded. In the finite volume jargon, the set
∂Cik = ∂Ci ∩ ∂Ck is often referred to as the cell
interface between the volumesCi and Ck (Fig-
ure 1). Each interface∂Cik is associated to the
corresponding edgei-k connecting nodesi andk
of the triangulation ofΩ. A suitable (approxi-
mate) integrated numerical fluxΦik ∈ R

5, repre-
senting the flux across the cell interface∂Ci∩∂Ck,
is now introduced [15]. Considering a centered
approximation of the unknown and of the flux
function at the cell interfaces, the domain con-
tributions read

Z

∂Cik

[f(u)−uv
]

·ni ≃

f(ui)+ f(uk)

2
·

Z

∂Cik

ni −
ui +uk

2

Z

∂Cik

v·ni

=
1
2

[(

f(ui)+ f(uk)
)

·ηik −
(

ui +uk
)

νik
]

= −Φik(ui ,uk,νik,ηik),

whereηik is the integrated outward normal,ηik =
R

∂Cik
ni , and whereνik is the integrated interface

velocity, which satisfies the followinginterface
velocity consistency(IVC) condition

νik =
Z

∂Cik

v·ni. (4)

Thanks to the piecewise constant representation
of the unknown in the finite volume framework,
u = ui over the boundary portion∂Ci ∩Ω and the
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boundary contribution in (3) simplifies to
Z

∂Ci∩∂Ω

[

f(u)−uv
]

·ni ≃

f(ui) ·
Z

∂Cik

ni −ui

Z

∂Cik

v·ni

= f(ui) ·ξi −ui νi = −Φ
∂(ui ,νi,ξi),

(5)

whereξi is the integrated outward normal,ξi =
R

∂Ci∩∂Ω ni, and whereνi is the integrated interface
velocity of thei-th boundary node, defined by the
following interface velocity condition

νi =
Z

∂Ci∩∂Ω
v·ni , (6)

It is well known [15] that the use of the
second-order integrated numerical flux intro-
duced above may lead to the appearance of spu-
rious oscillations in advection dominated flows
and in particular near discontinuities of the flow
variables. Following [24], a high-resolution ex-
pression for the integrated numerical flux is used
in the present work based on the Total Variation
Diminishing (TVD) approach. To this purpose,
the second order approximationΦII

ik is replaced
by the first order Roe [18] fluxΦI

ik near flow dis-
continuities. The switch is controlled by the the
limiter of van Leer [24]. Note the the above high-
resolution version of the scheme requires the def-
inition of an extended edge data structure that in-
cludes also the extension nodesi⋆ andk⋆, that are
needed in the evaluation of the limiter function.
As done by [26], the extension nodes belong to
the two edges best aligned withi-k. For a gen-
eral, namely, not centered approximation of the
numerical fluxes, one finally obtains

d
dt

[Vi ui] = ∑
k∈Ki,6=

Φ(ui ,uk,νik,ηik)+Φ
∂(ui ,νi,ξi),

(7)
The implementation of the finite volume scheme
described above is straightforward and very ef-
ficient, see e.g. [20]. All computations are per-
formed only over the edges of the mesh: edges
are present in one-, two- and three-dimensional
grids and therefore the extension to different spa-
tial dimension requires only few modifications to

the code, that are limited to the definition of the
vector unknown and to the associated flux func-
tion.

2.2 Time integration

The expressions of the average interface and
boundary velocity Eq. (4) and Eq. (6) satisfy-
ing the IVC conditions are now used to com-
plete system (7) expressing the conservation of
mass, momentum and total energy in the ALE
framework. This leads to a system of Differ-
ential Algebraic Equations (DAE) consisting in
Ndof = N× (d + 2) Ordinary Differential Equa-
tions (ODE), withNdof the total number of de-
grees of freedom,N the total number of grid
points andd = 1,2,3 the number of spatial di-
mensions, andNik +Ni,∂ algebraic relations, with
Nik andNi,∂ number of grid edges and of bound-
ary nodes, respectively. Note that the algebraic
equations for the interface velocitiesνik and νi

are totally uncoupled from the ODE fluid dynam-
ics subsystem, if the coordinates of the grid nodes
are known functions of the time. As a conse-
quence, in this case the complete system (7)–(4)–
(6) can be reduced to simple ODEs by substitu-
tion. This is not the case for example in fully cou-
pled fluid-structure interaction problems in which
the node velocity is obtained by solving the grid
movement problem which in turn depends from
the structural problem solved with the loads com-
ing from the flow field, thus resulting in a coupled
system composed by structural, fluid dynamics
and mesh deformation problem as well. More-
over, the coupled form of the system is preferred
here to stress the existence of a consistency con-
straint on the interface velocities which leads to
an additional system of algebraic (or ODE, cf.
system (8)) to be solved together with the ODE
system describing the flow dynamics.

The integrated interface velocity represents
the derivative of the volume swept by the inter-
face during the mesh movement. So, the system
of Differential Algebraic Equations (DAE) can
be formally recasted as a system ofNdof + Nik +
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Ni,∂ ODEs as


































d
dt

[Vi ui ] = ∑
k∈Ki,6=

Φ(ui ,uk,νik,ηik)+Φ
∂(ui ,νi,ξi),

dVi,ik

dt
= νik ,

dVi,∂
dt

= νi ,

(8)
where the following definitions have been intro-
duced
dVi,ik

dt
=

Z

∂Cik

v·ni and
dVi,∂

dt
=

Z

∂Ci∩∂Ω
v·ni .

(9)
The above ODE system can be solved by means
of standard integration techniques, as detailed in
the following. In this respect, it is to be noted that
the derivativesdVi/dt, dVi,ik/dt anddVi,∂/dt are
related by the following scalar identity

dVi

dt
=

I

∂Ci

v·ni = ∑
k∈Ki,6=

Z

∂Cik

v·ni +
Z

∂Ci∩∂Ω
v·ni =

∑
k∈Ki,6=

dVi,ik

dt
+

dVi,∂
dt

.

(10)

The adoption of IVC conditions (4) and (6) for
the computation of the integrated interface veloc-
ities implies the automatic fulfillment of Eq. (10)
which represents an additional conservation law
that must considered when moving and deform-
ing domains are considered: thevolume conser-
vation law.

The Backward Euler (BE) time discrete coun-
terpart of system (8) is easily obtained as














































Vn+1
i u

n+1
i −Vn

i u
n
i =

[

∑
k∈Ki,6=

Φ(ui ,uk,νik,ηik)
n+1 +Φ

∂(ui ,νi,ξi)
n+1

]

∆tn

Vn+1
i,ik −Vn

i,ik = νn+1
ik ∆tn

Vn+1
i,∂ −Vn

i,∂ = νn+1
i ∆tn

(11)
where all quantities are assumed to be known
at time leveln and the grid-dependent quanti-
tiesVn+1

i ,ηn+1
ik andξn+1

i are computed from the

(known) positions of the grid nodes at time level
n+ 1. The average interface velocities therefore
reads

νn+1
ik =

Vn+1
i,ik −Vn

i,ik

∆tn

νn+1
i =

Vn+1
i,∂ −Vn

i,∂

∆tn

(12)

Note that the following relation, which is the dis-
crete counterparts of (10), holds

Vn+1
i −Vn

i = ∆Vn
i = ∑

k∈Ki,6=

∆Vn
i,ik +∆Vn

i,∂.

The nonlinear system for the fluid variablesu at
time leveln+1 is solved here by means of a mod-
ified Newton method, in which the Jacobian of
the integrated flux function is approximated by
that of the first-order scheme, and by resorting to
a dual time-stepping technique [25], to improve
the conditioning number of the Jacobian matrix.

The expressions of the integrated interface
velocities νik and νi satisfying the IVC con-
dition for a Backward Differences Formulæ
(BDF) scheme are now derived. For a nonlin-
ear ODEdy/dt = f (y, t), the second-order BDF
scheme with variable time step readsα−1∆yn +
α0∆yn−1 = f (yn+1, tn+1)∆tn, where ∆yn+1 =
yn+1 − yn and α−1 = (1+ 2βn)/(1+ βn), α0 =
−(βn)2/(1+ βn) with βn = ∆tn/∆tn−1. There-
fore, the interface velocities satisfying the IVC
conditions in a two-step BDF scheme read

νn+1
ik =

α−1∆Vn
i,ik −α0∆Vn−1

i,ik

∆tn

νn+1
i =

α−1∆Vn
i,∂ −α0∆Vn−1

i,∂

∆tn .

(13)

Using this approach any generic high order
Multi-Step (MS) time integration scheme can be
easily implemented. In fact, the above definitions
of the interface velocities allows for the IVC con-
dition to be identically satisfied, i.e. the conser-
vation of volume, and, differently from other ap-
proaches [21], do not require to modify the co-
efficientsα of the BDF scheme, thus preserving
the time accuracy.
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3 Mesh movement technique

At each time step the structural elements move
either rigidly or elastically depending on the phe-
nomenon under investigation. In any case, the
boundary of the aerodynamic domain must be
moved following this prescribed motion and the
elements on the inner mesh of the domain must
be modified accordingly. All these operations
must be performed preserving the overall qual-
ity of the mesh to reduce numerical errors. The
displacement of internal nodes can be obtained
using different strategies but for non-structured
meshes the more widespread by far are those
based on some form of elastic analogy. Batina [3]
introduced the elastic analogy by representing
each side of the grid as a spring with a nonlinear
stiffness proportional to the edge length. To avoid
the occurrence of invalid elements with negative
volumes, Degand and Farhat [7] introduced addi-
tional torsional springs at each vertex.

The grid deformation algorithm presented
here extends to idea of the elastic analogy by
representing each element as a deformable con-
tinuum. Differently from the spring analogy,
such a choice make the method less prone toele-
ment breakdown: the crossing of an element node
through a face. To reduce the computational bur-
den, a simple linear constitutive law is imple-
mented, i.e.

σ = Dε.
When two dimensional grids are investigated,
the analogy with the plane strain elastic
model is exploited; the stress and strain vec-
tors are σ = {σx1x1,σx2x2,σx1x2}

T , and ε =
{εx1x1,εx2x2,εx1x2}

T , and theD matrix equal to

D =
E

(1+ν)(1−2ν)





1−ν ν 0
ν 1−ν 0
0 0 1−2ν



 .

A robust method for grid deformation is achieved
adopting a local Young modulus proportional to
the minimal dimension of each element, as stated
by the following simple law

Eel =
1

min
j,k∈el

‖x j −xk‖β . (14)

In this way small elements close to wall bound-
aries are stiffer, so they tend to move rigidly with
walls, leaving the burden to absorb the required
deformations on the larger elements, usually lo-
cated far from the boundaries. The coefficient
β can be used to control the mesh deformation
behavior, increasing the stiffness ratio between
small and large elements. A Poisson coefficient
ν ∈ [0;0.35] is chosen in order to avoid bad nu-
merical conditioning of the problem. Additional
details can be found in [6].

When large boundary movements are faced
with simple mesh deformations distorted and tan-
gled elements may appear, leading to large nu-
merical errors. For this reason it becomes nec-
essary to adopt a technique to improve the mesh
quality without going through global remeshing.
In order to avoid any interpolation of the fluid
fields between different grids, as explained in the
following Section 4, it is essential to keep con-
stant the total number of vertices. A very sim-
ple, but extremely effective, technique to improve
the quality of triangular meshes, without insert-
ing new vertices, is the edge swapping. The ba-
sic idea is to flip the edge of an element, chang-
ing the topological structure by local reconnec-
tion, without the addition or removal of vertices
(see Figure 2). The capability of the swapping
to improve the quality of triangular or tetrahe-
dral meshes is well assessed [11]. Edge swap-
ping has been used in connection with deforming
meshes [2] where two vertices that move in the
opposite direction are allowed to disconnect to
avoid excessive stretching of the element. As a
result the elements seems toflow in the domain
allowing bodies to move freely into the computa-
tional grid (see Figure 2).

To decide if an edge must be swapped it
is necessary to fix a quality measure of ele-
ments. Following the analysis presented by
Shewchuk [22], what it is most important to
improve is the condition number of the stiff-
ness matrix associated with the fluid problem.
The element size distribution is controlled by the
need to minimize the error bound and it does
not have to be fixed by the swapping procedure.
So, a scale-invariant quality measureQ has been

6
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Fig. 2 Edge swapping applied to a deforming grid. A driver force cause the translation of the lower row
of vertices; the dashed edge are flipped transforming stretched elements in more regular ones. Blue edges
are those created/deleted during the first swapping step, while red lines represent edges created/deleted
during the second step. At the end of the process the first vertex on the left of lower row is connected by
a new edge with the last edge on right of the upper row.

-0.015
-0.01
-0.005
 0
 0.005
 0.01
 0.015
 0.02
 0.025

x

y

-0.5  0  0.5  1  1.5

 0

 0.5

 1

 1.5

 2

 2.5

Fig. 3 Element quality measureQ for a triangle
of vertices(0,0), (1,0), (x,y). The highest value
is associated with the equilateral triangle with the
third vertex in(0.5,

√

(3)/2).

chosen among those presented in [22] for two-
dimensional grids, defined as

Q =
A

∑ℓ2
i +

√

(∑ℓi
2)2−48A2

, (15)

whereA is the element are andℓi the i-th edge
length. Figure 3 illustrates the value of quality
measureQ for different triangles. MeasureQ is
signed, which means that is negative if the area is
negative, so it is possible to recognize the occur-
rence of inverted elements.

The complete mesh movement procedure is
organized as described in the following pseudo-
code:

Grid deformation(displacement of
boundary node)

Fig. 4 Mesh movement applied to the 180 deg.
rotation of a NACA 0012 profile. The external
boundary nodes are kept fixed. Up original con-
figuration 0 deg. ; bottom grid after 180 deg. ro-
tation.

for each edgedo
find the associated elements
Q(current elements)
Edge swap
Q(new elements)
if min(Q) increasesthen

Apply swap
end

end

The cycle on grid edges can be applied a fixed
number of times (one or more), or it can be re-

7
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Fig. 5 Mesh movement strategy applied to an 80-chords long forward translation of NACA 0012 profile.

peated up to the case where no additional edge
swap is performed.

Figure 4 show the application of this
mesh movement scheme to the rotation of a
NACA0012 airfoil. The airfoil is rotated while
keeping the nodes on the external boundary fixed.
Looking at the picture for different rotation an-
gles, it is clear how the inner elements, smaller
and so more rigid, follow the movement of the
airfoil, keeping the mesh fine where it is still nec-
essary. The edge swapping allows the inner rigid
core of elements to slide inside the external grid.
Figure 5 shows the same technique applied to the
forward translation of the NACA0012 profile by
80 chords, obtained using a sequence of deforma-
tion plus swapping steps.

4 ALE scheme for variable grid connectivity

In principle, due to the modification of the grid
connectivity resulting from the edge-swapping
procedure detailed in the previous section, the so-
lution at timetn+1 is to be re-interpolated over the
new (modified) grid. In the present section, the
idea of interpreting the change in the grid con-
nectivity as a special case of grid deformation is

investigated. Two advantages are expected: elim-
ination of possible errors introduced by the flow
field interpolation; possibility to use high order
schemes for time integration. For simplicity, the
Backward Euler scheme is considered first.

In figure 6, the change of the shape of the fi-
nite volumesCi andC j due to the swap of edge
j-l into edgei-k is depicted. With reference to
Figure 6(a), the insertion of edgei-k can be in-
terpreted as the expansion of a single point over
∂Ci at timetn into the interface∂Cn+1

jl , which has

a non zero measure at timetn+1. The numerical
flux associated with edgei-k at timetn+1 reads

Φ
n+1
ik = Φ(un+1

k ,un+1
i ,νn+1

ik ,ηn+1
ik )

where the interface velocityνn+1
ik is equal to

∆Vn
ik/∆tn, with ∆Vn

ik being the shaded area
spanned by the interface∂Cik during the time
step. Similarly, in figure 6(b), the removal of
edge j-l results in the interface∂Cn

jl collapsing

into a single point over∂C j at timetn+1. The nu-
merical flux associated with edgej-l at timetn+1

therefore reads

Φ
n+1
jl = Φ(un+1

j ,un+1
l ,νn+1

jl ,0)

8
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i

i

k

k

j

j

l

l

Cn+1
i

Cn
i

∂Cn+1
ik

∆Vn
ik

tn+1

tn

(a)

i

i

k

k

j

j

l

l

Cn+1
j

Cn
j

∂Cn
jl

∆Vn
jl

tn+1

tn

(b)

Fig. 6 Computation of the interface velocities
in case of edge-swapping. a) Area spanned by
edge i-k, which is created at timetn+1. b)
Area spanned by edgel - j, which is removed
(swapped) at timetn+1.

whereηn+1
jl ≡ 0 since the interface collapses and

therefore only the ALE fluxes due to the move-
ment of the interface contribute to the numeri-
cal flux across interface∂Cn+1

jl . In the expres-

sion above,νn+1
jl = ∆Vn

jl /∆tn 6= 0, so there is a fi-
nite interface velocity even thought the integrated
normalηn+1

jl is null. So, it is possible to conclude
that edge swapping eventually results in the oc-
currence of additional fluxes, associated with the
grid edges that has been eliminated. The Back-
ward Euler scheme corresponding to (11) there-
fore reads

Vn+1
i u

n+1
i −Vn

i u
n
i =

[

∑
k∈K n+1

i,6=

Φ(ui ,uk,νik,ηik)
n+1

+ ∑
k∈(K n

i,6=−K
n+1
i,6= )

Φ(ui ,uk,νik,0)n+1

+Φ
∂(ui ,νi,ξi)

n+1
]

∆tn

where the setK n
i,6=−K n+1

i,6= is the set of the nodes
connected toi at time tn that no longer share
a common edge withi at time tn+1 as a con-
sequence of edge swapping. In other words,
the edgesi-k, with k ∈ (K n+1

i,6= −K n
i,6=) are the new

edges, whereas edgesi-k, with k∈ (K n
i,6=−K n+1

i,6= ) are
those that were present at timetn and have been
deleted during the edge swapping. A similar pro-
cedure allows to extend standard BDF and multi-
step schemes to the case of moving mesh includ-
ing edge-swapping — using the same approach
shown in Section 2.2 —, without the need of in-
troducing any interpolation of the solution.

It is important to show how the presented ap-
proach is in perfect agreement with the volume
conservation law expressed by Eq.(10). Figure 7
highlights the changes of cell volumes due to
edge swapping. Moving from step 0 to step 1
the edgei-l is swapped with edgem-k. As a con-
sequence the area of cellCm is increased by two
factors: the creation of∂Cmk, which is responsi-
ble for the volume marked in green; the volumes
swept by the movement of the interfaces∂Cml and
∂Cmi connected with the newly created interface
∂Cmk, marked in red. For the cellsCl andCi the

9
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green volume is subtracted — actually half of it
for each cell — since it represents the volume
spanned by edge that collapse, and the same is
done for the red volumes. Indeed, the devised
approach allows to read the effects of edge swap-
ping simply as a deformation of the cells associ-
ated with each vertex; in this way the dynamic
problem under investigation is kept within the
framework of ALE formulation, and so all comes
naturally and so no special “tricks” are required
to implement high order integration schemes.

Exactly the same procedure applies to the
cases where multiple swapping are applied to the
same cell. Figure 7 shows the effect of a sequence
of two edge flip: i-l with m-k followed by k-i
with m- j. The bottom part of Figure 7 shows how
the total variation of the area associated withCm

can be computed by a simple summation of the
contributions coming from each swap operation.
The computation of contributions associated with
each swap step supplies a simple way to compute
the total cell volume variation and the associated
fluxes from the old grid to the new one.

5 Numerical results

As an example, in Figure 8, the results ob-
tained for an oscillating airfoil flying at Mach
number 0.75 are shown. Standard ALE results
refer to computations performed on an airfoil-
centered reference, with the airfoil slightly vary-
ing its pitch in time, see [13]. Numerical simu-
lations obtained with the present method are in-
stead performed on a fixed grid (laboratory refer-
ence) through which the airfoil is translating (and
oscillating) at Mach number 0.75. The airfoil dis-
placement is as large as 100 airfoil chords. The
present results agree fairly well with the available
reference ones thus demonstrating the validity of
the proposed approach.

6 Conclusions

A novel approach for analysis of unsteady flow in
moving domains has been presented. Combining
the mesh deformation with the edge swapping it
has been possible to deal with cases where large

displacement of the boundaries are required. By
keeping the number of vertex constant it has been
possible to show how all the element topology
modification can be interpreted as a change in
the cell volume. As a consequence, the usual
ALE formulation for moving and deforming grid
can be applied without the application of inter-
polation schemes while moving from one grid to
the following configuration. Preliminary results
on a simple 2D problem have been shown. Fu-
ture applications of this technique to more inter-
esting 2D cases (store separation) is under way.
The extension of the proposed approach to three-
dimensional cases is not expected to show ad-
ditional problems, since the most complex part,
i.e. the edge and face swapping technique for
tetrahedrons, is well assessed in the current lit-
erature [11].
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