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Abstract  

A new approach for the analysis of subsonic 
flow is proposed and the capability of capturing 
the detail flow properties is investigated. 
Especially, the natural transition phenomenon 
is focused on. The flows around two-
dimensional aerofoil of the NACA0012 under 
relatively high Reynolds number conditions (Re 
≃  106) are analyzed. The development of so 
called T-S wave and the laminar-turbulent 
transition are clearly captured. Locations of 
transition points are compared with the 
experiments and agreements are excellent. The 
detail comparison with the linear stability 
analysis indicates that the most unstable 
disturbance in the linear unstable region is 
captured quantitatively by taking care of grid 
resolution in the chord direction. The 
disturbance distribution inside the boundary 
layer in the transitional region is examined and 
the phase jump is also captured.  

1   Introduction  
Recently, high-accuracy and high-

resolution finite different schemes are widely 
used in many applications such as problems of 
aeroacoustics and the stall of an airfoil and so 
forth. These flows often require accurate 
unsteady treatments with, for example, 
turbulence, transition from laminar to turbulent 
boundary layer, flow separation and flow 
compressibility. Direct numerical simulations 
are seemingly possible only for simple 
geometries at low Reynolds numbers even in 
near future. Therefore, less expensive methods 
such as Large Eddy Simulations (LES) are 
promising approach for high Reynolds number 

flows with more complex geometries. However, 
getting quantitatively acceptable results for 
them are still now challenging. 

Rapid advances in higher-order LES 
computation method have enabled us to analyze 
such complicated flow phenomenon around 
relatively complicated geometries. One of 
examples is Computational Aeroacoustics 
(CAA) in high-Reynolds number flows. Even 
the direct capturing infinitesimal sound wave is 
feasible by solving the unsteady compressible 
Navier-Stokes equations, which is sometimes 
referred to as Direct Noise Computations 
(DNC) [1]. Therefore, improvements of 
numerical methods and detail validation of them 
are now very important.        

 In this paper, a new approach for the 
analysis of subsonic flow is proposed, in which 
LES with ADM (Approximate Deconvolution 
Model) [2] are combined with the generalized 
characteristic interface conditions [3] for 
singular lines in a grid and the generalized 
Navier-Stokes characteristic boundary 
conditions and so on.  Other numerical 
techniques used in this approach are selected in 
order to treat complex flow properties around a 
complex shape by the use of least number of 
grid points as possible.  

By this approach, the capability of 
capturing the detail flow properties is 
investigated. Especially, the natural transition 
phenomenon is focused on. The flows around 
two-dimensional aerofoil of the NACA0012 
under relatively high Reynolds number 
conditions (Re≃ 106) are analyzed. Locations of 
transition points are compared with the 
experiments and the detail comparison with the 
linear stability analysis is discussed.  
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2   Numerical Method  
In this study, the three-dimensional 

compressible Navier-Stokes equations are 
employed as the basic equations. For the flow 
containing turbulence and transition, ADM type 
approach originally developed by Stolz et. al. 
[2] is used. In this method, an approximation to 
the unfiltered solution is obtained from the 
filtered solution by the series expansion of 
deconvolution operator. The effect of smaller 
scales than the filter width is modeled by a 
relaxation regularization including a 
dynamically estimated relaxation parameter.  

In practical computations with structured 
grid, singular points can be frequently found 
where an abrupt grid change exists. These 
singularities pose troublesome problems 
especially when high order and high resolution 
scheme is applied. An excellent theory was 
proposed [4], which solves the above singular 
problem by decomposing a computational 
domain along a line or surface containing the 
singular points and by imposing accurate 
characteristic-based interface conditions at the 
interface. However, the original theory has 
limitations on the combination between the 
adjacent computational coordinate definitions, 
and these two coordinates have to be the same 
direction and the same coordinate index. A new 
generalized theory has been proposed by 
authors [3] for more flexible coordinate 
arrangement. This theory is applied to the 
region around a trailing edge when a flow 
around an airfoil is solved with a C-type single 
mesh.  

Other aspects such as the computation of 
spatial derivatives, time integration and 
boundary conditions are also considered to 
attain high-accuracy and high-resolution 
schemes as a whole. The spatial derivatives of 
the inviscid and viscous flux terms are solved 
by the optimized 6th order tri-diagonal (OSOT) 
compact scheme suggested by Kim et al. [5], [6]. 
For the time integration, the low storage type of 
2-step 4th order low-dissipation and low-
dispersion Runge-Kutta (LDDRK) scheme (the 
first step is a 5-stage scheme and the second 
step is a 6-stage scheme) proposed by Hu et al. 
[7], [8] is used. This scheme increases 

numerical stability in the explicit time 
integration, and reduces the dissipation and 
dispersion errors simultaneously. CFL=1 is used 
throughout this study. For the inflow, outflow 
and wall boundary conditions, the Navier-
Stokes characteristic boundary conditions 
(NSCBC) extended to the generalized 
coordinate system by Kim et al. [9], [10] are 
applied. The forced damping of waves with the 
sponge method near the outer boundary [11] is 
also applied combined with the implicit 
damping through the extension of grid intervals 
in the direction from body to outer boundary. 

 

3   Results and Discussions 

3.1 Experiments and Numerical Conditions 
In this study, the flow around two-

dimensional airfoil of the NACA0012 under 
relatively high Reynolds number condition is 
studied.  

The flow conditions and the dimensions of 
the airfoil are according to the experiments by 
Tokugawa et.al. [12].  In the experiments,  the 
location of the natural location was examined in 
detail for the NACA0012 in low-speed wind 
tunnel facilities. The chord length of the airfoil 
was 1.0 m and the angle of attack was 0 degree. 
The transition locations were detected by three 
independent approaches; the non-dimensional 
dynamic pressure measurements by Preston 
tubes, the local velocity fluctuation 
measurements by hot wires and the 
measurements of the surface temperature 
distribution by the use of infrared cameras. The 
estimated locations by these methods agreed 
well in the different two wind tunnels; the 
Large-scale low-noise wind tunnel of Railway 
Technical Research Institute and  Low-speed 
wind tunnel in Japan Aerospace Exploration 
Agency referred to as “RTRI” and “LWT1” 
respectively in the following. 

Three cases are selected according to the 
different chord wise grid spacing in transition 
region near wall surface for this numerical 
research. The numerical conditions for each 
case are summarized in Table 1. 
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For the 30 m/s case in Case 3 conducted as 
a preliminary calculation, the results of linear 
stability analysis with the averaged flow profiles 
did not coincide with the results directly 
obtained from the data of fluctuating velocity of 
LES. The most amplified frequency of the 
unstable disturbance in the transition area from 
the linear stability analysis was about 700Hz at 
40% chord length, whereas the fluctuating data 
showed about 200Hz. The frequency with the 
peak spectrum in the wind tunnel tests at 50% 
chord also supported the analytical value 
showing about 600Hz.  

For the Case 3, the averaged grid intervals 
in this direction around 50% chord length was 
about 17mm near the surface. If we assume the 
phase velocity of the unstable disturbances is 
about 40% of the uniform velocity, the 
estimated wavelength corresponding to 600Hz 
is about 20 mm. So, the possible reason of the 
disagreements in the Case 3 was expected 
because the grid resolution in the chord wise 
direction was not enough to capture these 
disturbances. In the grid for the Case 2, the 
averaged grid interval is reduced to about 6 mm 
with which the wavelength of disturbances can 
be captured with better resolution than the Case 
3. For the Case2, better results were obtained as 
expected. The frequency spectrum of velocity 
fluctuation was almost comparable to the 
experimental data. However, the frequency of 
the most unstable disturbance in the linear 
unstable region was still slightly 
underestimated; the numerical flow result had a 
peak at about 400 Hz at 40% chord length.  

These observations show that the 
numerical resolution in the transitional region is 
very important and the result can be improved 
with finer grid intervals there.  So, the averaged 
grid interval is reduced further to about 2.7 mm. 
We call this case as “Case 1”. 

3.2 Numerical Results and Comparison with 
Experiments  

Fig. 1 shows the contour of instantaneous 
vorticity of the spanwise component -ωz   at 0.8 
mm away from the wall for the Case 1 to 3. As 
can be seen from these figures, the so-called 2-
D T-S wave is growing at the beginning of the 
boundary-layer transition near the leading edge 
and then is deformed into the peak-valley 
structure due to the secondary instability, 
resulting in amplifying oblique T-S waves. This 
process agrees with the scenario of 2-D 
boundary-layer transition observed in the low 
turbulence uniform flow.  

In the experiments, the location of 
transition points from laminar to turbulent flows 
was determined by the three independent 
approaches as mentioned above. Among them, 
two approaches through the dynamic pressure 
and surface temperature measurements are 
based on the analogy with the abrupt increase of 
the wall friction coefficient cf at the transition 
area. In this study, therefore, it is convenient to 
use the cf directly calculated from the numerical 
results in order to compare the transition points 
with the experiments. 

The definition of the transition points is as 
follows. Firstly the cf line is extrapolated by 
three different lines. Two intersections usually 
appear along the cf curve. Then one of the 
intersections close to the leading edge is defined 
as “the onset of transition.” Whereas, the 
intersection close to the trailing edge is defined 
as “the end of transition.” Finally, the transition 
location is defined as the middle point of those 
two intersections. In Fig. 2, the distributions of 
cf are presented for the 15 and 30 m/s cases of 
the Case 1 with three extrapolated lines.  

 Fig. 3 shows the top view of the contour 
map for the cases corresponding to Fig. 1. The 
uniform flow comes from the left hand side and 
the indices on the top of the figures denote the 
chordwise location under the normalization with 
the chord length. Three arrows put on the each 
case denote locations of the onset, the transition, 
and the end, respectively. In this figure, it is 
shown that each arrow goes to upstream with 
the increase of the uniform flow velocity. This 
forward shift of the transition location with the 

 Case 1 Case 23 Case32 

Aerofoil NACA0012 

Chord length: c 1.0m 

Angle of attack: α 0 degree 

Uniform flow velocity: U∞  15, 30 m/s 15, 30 m/s 15, 20, 25, 30 m/s
Reynolds number: Re∞   62.2 10×  for 30 m/s 

Total grid points 
(circumferential× radial× spanwise) 

3.6 million 
(1001 × 71 × 51) 

3.6 million 
(1001 × 71 × 51) 

3.7 million 
(601 × 121 × 51)

Spanwise length 0.125 c 0.125 c 0.25 c 
Radial grid spacing on the wall surface 41 10 c−×  42 10 c−×  42 10 c−×  
Chord wise grid spacing in transition 

region near wall surface 2.7 mm 6 mm 17 mm 

 

Table 1   Summary of Numerical Conditions.
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increase of the Reynolds number is quite 
reasonable.  

The transition points estimated under the 
same definition mentioned above are compared 
with the experimental results as shown in Fig. 4. 
The vertical line /Trx c  in this figure is a non-
dimensional transition location from the leading 
edge. Two kinds of experimental results are 
presented here according to the independent two 
wind tunnels; “RTRI” and “LWT1”. Three data 
for each experiments corresponding to different 
approaches of measurements mentioned above 
are shown in the figure. The discrepancy 
between the experimental results in two wind 
tunnels is caused by the difference of the 
turbulent level. This level for “RTRI” 
symbolized by triangle is about 0.05%, whereas 
that for “LWT1” symbolized by circle is about 
0.15%. The transition location generally moves 

forward when the turbulent level increases, 
therefore, this discrepancy seems reasonable.  

The estimated transition points from CFD 
results for each case for the 30 m/s case are 
delayed slightly from those in the experiments, 
which also seems reasonable because the 
turbulent energy level is considered quite small 
in CFD. These overall results show that the 
transition locations themselves agree well with 
experiments, especially for “RTRI”, and the 
effect of difference of the grid interval in the 
transition region between the Case 1 and 2 is not 
noticeable. 

Fig. 5 is the detail of the power spectrum 
density distributions of unstable waves at mid-
span for the 30 m/s case of the Case 1 at each 
chord wise locations from x/c = 0.05 to 0.5. The 
stream wise velocity u at 0.8mm distant from 
wall surface is analyzed here. These figures 
show the development of unstable flow region  

U∞=15 m/s  U∞=30 m/s  

U∞=30 m/s  U∞=15 m/s  

U∞=15 m/s  U∞=30 m/s  
(a) Case 1 

(c) Case 3 

(b) Case 2 

Fig. 1  Instantaneous Vorticity -ωz  (0.8 mm away from the wall ). 
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0 c 0.5 c 0.6 c 0.7 c 1.0 c

U∞=15 m/s, Case 2 

U∞=15 m/s, Case 3 

onset 
transition 
end  

 

 

Fig. 3 Transition Location for Each Cases. (Contour is the same as in Figure 2.) 
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before the transition point well. The prominent 
increase of amplitude begins between x/c = 0.2 
and 0.3. The frequency with the peak spectrum 
at 40% chord is observed around 700 Hz in Fig. 
5 (f). 

3.3 Comparison with Linear Stability 
Analysis  

In order to validate the present results more 
quantitatively, the linear stability analysis based 
on the eN method is conducted. The averaged 
velocity profile inside the boundary layer 
directory obtained from the present numerical 
result is used as input data. In this study, only 
the numerical results for U∞= 30 m/s, Case 1 is 
shown. Another independent approach is also 
tried for the same case by the famous Kaups-
Cebeci manner [13] and SALLY code [14] for 
the comparison of the velocity profile and its 
stability, respectively.  

First of all, how to obtain the N factor, 
which corresponds to the amplitude of small 
disturbance propagating inside the boundary 
layer, is roughly explained here. The 
amplification rate of the small disturbance at 
each stream wise location is estimated using the 
common Orr-Sommerfeld equation, 

*

2 2 2 2 2 21 ( ) ( )( ) 0D w i U D w i D Uw
Re

δ

α ω α α α− + − − + =  

(1) 
This equation is derived by the substitution 

of the following plane wave solution of small 
disturbance represent as Eq. (2) into the 

disturbance equation, which is obtained from 
the basic equation describing the flow field 
under the two dimensional parallel flow 
assumption with the unsteady small 
disturbance, 

( ) exp{ ( )}y i x tα ω= −u u               (2)  
In Eq. (1) and (2), α denotes a complex 

wave number, ω a real frequency of the 
disturbance and U mean velocity in the 
tangential direction along the surface. w  is the 
normalized disturbance of velocity in the 
orthogonal direction and ( )yu denotes a vector 
consists of the small disturbance in the 
linearized disturbance equations. The growth 
rate of the disturbance wave depends on the 
sign of the imaginary part of wave number αi. 

Namely, the amplitude of the disturbance wave 
increases with the increase of x if the sign of the 
imaginary part of wave number is negative. In 
other words, the disturbance wave is stable 
when αi is positive, and unstable when αi is 
negative. Since the disturbance wave develops 
in the exponential manner under the present 
assumption, its intensity is usually estimated by 
eN method which was proposed by Smith and 
Gamberoni [15] and Van Ingen [16], and the 
definition of the N factor is given as following, 

∫−=≡ 1

0

)/ln( 0

x

x idxAAN α    (3) 

A0 denotes the initial amplitude of the 
disturbance wave at location x0, and A denotes 
amplitude at x1. In general, the laminar-
turbulent transition occurs when this N factor 
reaches to around 12-15 at the location of the 
corresponding x1. 

In order to calculate the N factor, the 
complex wave number α at each chord wise 
location has to be obtained by Eq. (1) as a 
function of the frequency ω of the disturbance 
wave. Then integrating the αi along to x 
direction, the growth of the N factor is obtained 
for each frequency. Usually, how define the 
location x0 as initial position is an important 
problem. Here x0 is defined as the neutral point 
which corresponds to the position changing the 
sign of αi from positive to negative.  

Results of the linear stability analysis for 
disturbance waves with typical frequencies 
(200-1,000Hz) are shown in Fig. 6 for the Case1. 

Fig. 4 Comparison of transition locations for each cases.  
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It can be seen from this figure that in the leading 
edge region up to x/c = 0.15, the flow is stable 
and transfers to unstable area where the N factor 
increases. Furthermore, the critical point, which 
the stability changes from stable to unstable, 
moves upstream with the increase of the 
frequency of the disturbance. N factor for the 
disturbance with 700Hz obtained by the SALLY 
code is also shown in the same figure. These 
two lines corresponding to this frequency 
almost coincide with each other at least before 
x/c = 0.35, but become separate thereafter. So, 
the influence of nonlinearity begins to appear 
around there.  Finally the slope of the N factor 
for the numerical result decreases around the 
half chord position where the boundary-layer 
transition is supposed to begin. The 
corresponding N factor to the transition location 
from the numerical result in this case is about 
12.5 by the SALLY code, which coincides with 
the general criteria used for the estimation of the 
transition points by the linear stability theory. 

In general, the frequency of the most 
unstable disturbance varies at each chord wise 
locations. The N factor as a function of the 
frequency is shown in Fig. 7 for two different 
locations at x/c = 0.4 and 0.5. From this figure, 
the range of unstable region can be estimated 
and the most unstable disturbance also can be 
known. At the position of x/c = 0.4, the most 
unstable disturbance is of about 700Hz. Then 
the peak changes to lower frequency at the 
position of x/c = 0.5 and its value is about 
600Hz.  

These results from the linear stability 
analysis can be used to discuss the quality of the 
numerical results directly obtained from the 
unsteady calculation for U∞= 30 m/s, Case 1. It 
can be clearly seen from Fig. 6 that the 
disturbance levels between 200 and 1,000Hz 
decrease up to  x/c = 0.15 and this tendency can 
be also observed in Fig. 5 (a), (b) and (c), which 
indicates that the flow is in the stable region. On 
the other hand, Fig. 5 (e), (f) and (g) show that 
amplitudes of the disturbances increase and that 
lower frequencies slightly delay, which 
corresponds to the linear stability analysis in the 
range from x/c=0.3 to 0.5 as in Fig. 6.  

3.4 Disturbance Distribution in Boundary 
Layer and Formation of Oblique Wave  

In the foregoing discussion, it is shown that 
the results of this CFD analysis can explain the 
development of 2-D T-S wave and that the 
frequency of the most unstable disturbance in 
the linear unstable region is captured 
quantitatively. Here, the characteristics of 
disturbance distribution inside the boundary 
layer are examined. 

In Fig. 8 (a), the disturbance amplitude of 
streamwise velocity for U ∞ =30 m/s case at 
x/c=0.4 for Case 1 is shown. The root mean 
square of disturbance amplitude is normalized 
to its inner maximum value in this figure. There 
exist the inner and the outer amplitude 
maximum inside the boundary layer. The phase 
profile is also show in Fig. 8 (b) .The phase 
jump is clearly observed near the amplitude 
maximum. These are the typical characteristics 
observed in near wall flows on the flat plate in 
lower Reynolds number region [17]. 

Fig. 1 indicates that just before the 
transition, the amplifying oblique T-S waves 
exist and that the region of them becomes 
smaller as the grid interval in the chord 
direction in CFD decreases, namely, as the 
solution approaches the real situation. The 
streamwise velocity fluctuation u - u , around 
the transition region for U∞=30 m/s case, Case 1 
are shown in Fig. 9. This figure indicates that 
the amplifying oblique T-S waves are formed 
just after x/c=0.4. Up to x/c=0.4, the wave is 
almost two-dimensional and the wavelength 
directly estimated from Fig. 9 is about 18 mm. 

In this case where the grid spacing is rather 
coarse, no more expected detail structures such 
as Λ-vortices are observed. However, the results 
of good agreement of the transition locations 
with experiments indicate that the LES 
approach used here can simulate the location of 
the natural transition with rather coarse grid 
points without capturing completely detail 
transitional flow structures. 

 

4   Conclusion  
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A new approach for the analysis of 
subsonic flow is proposed and the capability of 
capturing the detail flow properties is 
investigated both qualitatively and 
quantitatively. Especially, the natural transition 
phenomenon around the two dimensional airfoil 
is focused on.  

The flow around two-dimensional aerofoil 
of the NACA0012 under relatively high 
Reynolds number condition ( Re ≃  106 ) are 
analyzed with the 3.5 million grid points. In this 
study, care is taken for grid intervals in the 
chord wise direction of the transition region. It 
is shown that the development of so called T-S 
wave and the laminar-turbulent transition are 
clearly captured. The locations of these 
transition points obtained from numerical results 
are compared with the experiments and 
agreements are excellent.  

The detail comparison with the linear 
stability analysis indicates that the most 
unstable disturbance in the linear unstable 
region is captured quantitatively by taking care 
of grid resolution in the chord direction.  

The characteristics of disturbance 
distribution inside the boundary layer in the 
transitional region are also examined. There 
exist the inner and the outer amplitude 
maximum inside the boundary layer and the 
phase jump is also captured. These are the 
typical characteristics observed in near wall 
flows on the flat plate in lower Reynolds 
number region. 

References 
 [1] O. Marsden, C. Bogey and C. Bailly.  Direct Noise 

Computation around a 3-D NACA 0012 airfoil. AIAA 
paper 2006-2503, 2006. 

[2] Stolz, S., Adams, N. A., and Kleiser, L. The 
approximate deconvolution model for LES of 
compressible flows and its application to shock-
turbulent-boundary-layer interaction. Phys. Fluids, 
Vol. 13, pp. 2985-3001, 2001. 

[3] Sumi, T., Kurotaki, T.and Hiyama, J. Generalized 
characteristic interface conditions for high-order 
multi-block computation. International Journal of 
Computational Fluid Dynamics, Vol. 21, pp. 335-350, 
2007. 

[4] Kim, J, and Lee, D. Characteristic Interface 
Conditions for Multiblock High-Order Computation 

on Singular Structured. Grid. AIAA Journal, Vol. 41, 
pp. 2341-2348, 2003. 

[5] J. Kim and D. Lee. Optimized Compact Finite 
Difference Schemes with Maximum Resolution. AIAA 
Journal, Vol. 34, pp. 887-893, 1966. 

[6] J. Kim and D. Lee. Implementation of Boundary 
Conditions for Optimized High-Order Compact 
Schemes. Journal of Computational Acoustics, Vol. 5, 
pp. 177-191, 1997. 

[7] F. Hu, M. Hussaini and J. Manthey. Low-Dissipation 
and Low-Dispersion Runge-Kutta Schemes for 
Computational Acoustics. Journal of Computational 
Physics, Vol. 124, pp. 177-191, 1996. 

[8] D. Stanescu and W. Habashi. 2N-Storage Low 
Dissipation and Dispersion Runge-Kutta Schemes for 
Computational Aeroacoustics. Journal of 
Computational Physics, Vol. 143, pp. 674-681, 1998. 

[9] Kim and D. Lee. Generalized Characteristic Boundary 
Conditions for Computational Aeroacoustics. AIAA 
Journal, Vol. 38, pp. 2040-2049, 2000. 

[10] J. Kim and D. Lee. Generalized Characteristic 
Boundary Conditions for Computational 
Aeroacoustics, Part 2. AIAA Journal, Vol. 42, pp. 47-
55, 2000. 

[11] T. Colonius. Modeling Artificial Boundary 
Conditions for Compressible Flow. Annual Reviews of 
Fluid Mechanics, pp. 315-345, 2004. 

[12] Tokugawa, N., Takagi, S, et al. Influence of External 
Disturbances on  Natural Boundary-Layer Transition 
in 2-D Wing Flows. J. Jpn Soc. Fluid Mech., Vol. 22, 
No. 6, pp. 485, 497, 2003. 

[13] Kaups,K., and Cebeci,T. Compressible Laminar 
Boundary Layers with Suction on Swept and Tapered 
Wings.  J.A,, Vol. 14, No. 7,  pp.661, 1977. 

[14] Strowski,A., and Orszag,S. Mass Flow Requirements 
for LFC Wing Design. AIAA Paper 77, pp.1222, 1977. 

[15] Smith,A.M.O. and Gamberoni,N. Transition, 
Pressure Gradient and Stability Theory. Douglas 
Aircraft Co.Rept. ES 26388, El Segundo, California, 
1956. 

[16] Van Ingen,J.L. A Suggested Semi-empirical Method 
for the Calculation of the Boundary Layer Transition 
Region. Univ.of Techn.,Dept.of Aero.Eng.Rept.UTH-
74, Delft , 1956. 

[17] A. V. Boiko, G. R. Grek, A. V. Dovgal and V.V. 
Kozlov. The Origin of Turbulence in Near-Wall Flows. 
Springer-Verlag , 2002. 

Copyright Statement 
The authors confirm that they, and/or their company or 
institution, hold copyright on all of the original material 
included in their paper. They also confirm they have 
obtained permission, from the copyright holder of any 
third party material included in their paper, to publish it as 
part of their paper. The authors grant full permission for 
the publication and distribution of their paper as part of 
the ICAS2008 proceedings or as individual off-prints 
from the proceedings. 



 

9  

LARGE EDDY SIMULATION AROUND 2-D AIRFOIL WITH 
NATURAL TRANSITION AT HIGH REYNOLDS NUMBERS

 

10
2

10
3-180

-160

-140

-120

-100

-80

-60

-40

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3-180

-160

-140

-120

-100

-80

-60

-40

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3-180

-160

-140

-120

-100

-80

-60

-40

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3-180

-160

-140

-120

-100

-80

-60

-40

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3-180

-160

-140

-120

-100

-80

-60

-40

-20

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3

-180

-160

-140

-120

-100

-80

-60

-40

-20

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3-180

-160

-140

-120

-100

-80

-60

-40

-20

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y
 [

d
B

]

10
2

10
3

-180

-160

-140

-120

-100

-80

-60

-40

-20

Frequency [Hz]

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it

y 
[d

B
]

Fig. 5  Power Spectrum Distribution of Unstable Waves for Case A (U=30 m/s, streamwise velocity fluctuation at 
0.8mm distant from wall surface) 
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(a) x/c=0.05 
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Fig. 9 Streamwise Velocity Fluctuation u -u  for U∞=30 m/s Case,   Case 1. 
 (0.8 mm away from the wall) 

x/c=  0.4 0.6 0.5 

Fig. 7 Variation of N Factor with Ffrequency at  
x /c = 0.4 and 0.5 for Case 1. 
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Fig. 8 Disturbance Amplitude of Streamwise Velocity and Phase Distributions at 700Hz 
for U∞=30 m/s Case at x/c=0.4 for Case 1.  
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Fig. 6 Variation of N Factor with Chord Wise Location  
x / c for Case1.  


