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Abstract  

A numerical solution technique is developed to 
simulate the flowfield of hovering helicopter 
rotor. The present method uses a coupled 
prescribed wake-Euler solver to efficiently 
allow the vortical wake effects. The three-
dimensional Euler equations written in a 
rotating coordinate frame are solved by using a 
cell-centered finite volume scheme that is based 
on the Roe's flux-difference splitting on 
unstructured meshes. High-order accuracy is 
achieved via the reconstruction of flow 
variables using the MUSCL interpolation 
technique. Calculations are carried out for an 
isolated rotor in hover for two operating 
conditions of subsonic and transonic tip Mach 
numbers, 0.44tipM =  and 0.877tipM = , and the 
collective pitch angle c 8θ =  (the Caradona 
and Tung test cases). The computed surface 
pressure distributions for each case are 
compared with available numerical and 
experimental data. The results indicate that for 
conventional grids, the calculated surface 
pressure distributions do not agree with the 
experimental data especially at inboard sections 
of the blades. This difference may be due to the 
fact that the numerical methods using course 
grids have inherent numerical dissipation which 
can affect the structure of the rotor wake. To 
improve the computed results, a perturbation 
method is used and wake effects are modeled 
using only a tip vortex trailed from the tip of 
each blade. The resulting surface pressure 
distributions using the proposed technique 
exhibit good agreement with the numerical and 
experimental results, especially for the subsonic 
case. 

1  Introduction  
The accurate numerical simulation of the 
helicopter rotor flow in hover or forward flight 
leads to an accurate calculation of rotor blade 
aerodynamic loads. The flowfield around a rotor 
is difficult to model due to the presence of 
vortical wake and transonic flow near the tip of 
blades. The complexity of the rotor flowfield 
results from effects of strong vortical wake and 
primary vortical structures that are convected 
away from the rotor disk at relatively low 
speeds. The vortical wake of rotor, consists of 
the inboard vorticity region (the vortex sheet) 
and the tip vortex, induces a three-dimensional 
induced flowfield that reduces the effective 
pitch angle of each blade and consequently 
affects the aerodynamic characteristics of rotor 
blades. Thus, flow solvers have to be able to 
accurately resolve the vortical wake of rotor. 

Potential flow solvers simplify the 
mathematical formulation and achieve efficient 
solutions for rotor flows [1,2]. Although the 
potential flow methods can and should be used 
whenever possible, it is desirable to use 
computational methods that can complement 
these solvers when the potential flow 
assumption breaks down. One of the drawbacks 
of using potential solvers is that potential flow 
formulation does not admit for distributed 
vorticity in the flowfield. For rotor flows, a 
large portion of the flowfield near the blades is 
rotational. In addition, potential flow solvers 
can not accurately predict the aerodynamic 
characteristics near the tip region of the blades 
where compressibility effects are significant and 
the flow may be in transonic regime. 
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Euler/Navier-Stokes schemes can 
accurately compute subsonic/transonic 
flowfields around a rotor and admit the vortical 
solutions. However, Euler/Navier-Stokes 
solvers using conventional numerical methods 
and grids are unable to capture the vortical 
flowfields due to high levels of numerical 
viscosity present in these schemes, particularly 
on course grids far away from the rotor disk. 
A number of Euler/Navier-stokes solvers have 
been developed to simulate helicopter rotor 
flowfields. Some of these solvers have used 
high-order accuracy methods with fine grids  
[3-7] or used grid refinement/adaptation 
schemes [8.9] to accurately solve the vortical 
flowfields and capture the shed vorticity and the 
tip vortices. However, these methods require 
significant computer resources. Some attempts 
have been focused to reduce the computational 
time through the use of a hybrid Navier-
Stokes/full potential method [10-12]. Another 
way is to use artificial far field boundary 
conditions, e.g. a sink placed at rotor hub to 
create the correct inflow [13]. 

One alternative to accurately compute the 
helicopter rotor flow is to use a coupled free 
wake-CFD solver. A number of coupled free 
wake-CFD methods have been used to simulate 
the vortical wake for rotor flow and include 
realistic wake effects [14,15]. In these solvers, 
both the inboard vortex sheet and the tip 
vortices are modeled. For rotor flow due to high 
loading near the tip of the blades, the use of tip 
vortices, instead of full wake modeling, may 
determine the correct induced flowfield and 
consequently the rotor aerodynamic loads in an 
efficient manner. 

The objective of the present work is to 
develop an efficient and more economical flow 
solver for accurate computation of the 
aerodynamic characteristics of helicopter rotor 
in hover. The method presented herein uses a 
coupled prescribed wake-Euler solver to 
efficiently allow the vortical wake effects. The 
computational domain consists of unstructured 
tetrahedral cells. The numerical method used is 
a cell-centered finite volume scheme that is 
based on the Roe's flux-difference splitting [16] 
on unstructured meshes. For a high-order 

scheme, the estimation of the flow variables at 
each cell face is achieved by MUSCL 
formulation [17]. To efficiently model the 
vortical wake and improve the computed results, 
the Euler equations are coupled to a prescribed 
wake model that is incorporated into the finite-
volume solver using a prescribed flow, or 
perturbation technique [14,18]. In the present 
study, the wake effects of each blade are 
modeled using only a tip vortex trailed at the tip 
of each blade and the effects of inboard vortex 
sheet is modeled implicitly by reducing the 
strength of the tip vortex. The initial geometry 
of tip vortex is constructed using the prescribed 
wake model introduced by Landgreb [19,20].  

The present calculations are performed for 
an isolated rotor in hover and for two operating 
conditions of subsonic and transonic tip Mach 
numbers, 0.44tipM =  and 0.877tipM = , and for 
the collective pitch angle c 8θ = . This test case 
was experimentally studied by Caradona and 
Tung [21]. The computed surface pressure 
distributions for each case with and without 
wake modeling are compared with numerical 
results as well as experimental data. 

2  Governing Equations  
Euler equations are a suitable set of equations 
for computing the subsonic/transonic flowfields 
around a rotor and admit the vortical solutions. 
The Euler equations are formulated in a rotating 
coordinate frame ( , , )x y z  attached to the rotor 
blades in terms of absolute-flow velocities. 
Therefore, the absolute flow in the far field 
remains uniform but the relative flow is 
nonuniform. For this coordinate system, x  is in 
the chordwise direction, y  is in the radial 
direction, and z  is in the normal direction 
(Fig. 1). The inertial coordinates ( ', ', ')x y z  are 
taken to coincide with ( , , )x y z  at an instant in 
time t . The computational domain consists of 
unstructured tetrahedral cells. The governing 
equations may be written in an integral form for 
an arbitrary grid cell as 
 

ˆ( ). ( )
V V V
dV ndS dV

t ∂

∂ + =
∂ ∫∫∫ ∫∫ ∫∫∫F Q S QQ

  

(1)
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where the solution vector of conservative 
variables Q , the inviscid flux vector ( )F Q  and 
the source term ( )S Q , due to the centrifugal 
force of rotation of the blades,  are given by 
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and  V  is the cell volume, n̂ dS  is a vector 
element of surface area with outward unit 
normal vector ˆ ˆ ˆ ˆ( , , )x y zn n nn , ρ  is the density, p  
is the pressure, E  is the total energy per unit 
volume, Ω  is the angular velocity in the z  
direction relative to the inertial frame ( , , )x y z′ ′ ′ , 

( , , )u v wV =  is the absolute velocity vector in 
the Cartesian coordinates ( , , )x y z  where ( , , )u v w  
are the absolute velocity components relative to 
the inertial frame ( , , )x y z′ ′ ′ . In addition, 

 ˆ.nV =V n  is the normal velocity component of 
flow, and   ) ˆ( .r n nU V V⊥ = − −V V n =  is the 
normal relative velocity where ( , )y xΩ Ω−V =  is 
the grid velocity vector. The term nV  is only a 
function of space and is fixed at each cell for the 
grid with constant rigid-body rotation. Also, the 
surface unit vector ˆ ˆ ˆ ˆ( , , )x y zn n nn  can be 
calculated only once without the rotational 
matrix being involved. 

The preceding equations are 
nondimensionalized by the reference 
parameters. The density and pressure are 
normalized by their freestream values, ρ∞  and 
p∞ , the total energy per unit volume by p∞ , 
the velocities by  /a γ∞  where a∞ is the 
freestream speed of sound, and lengths by the 
rotor blade cord c  and the time by /c aγ ∞ . 
The ratio of specific heats for air is prescribed 
as 1.4γ = .  

Using the above nondimensionalization, the 
following definition for the angular velocity can 
be obtained 

tipM
R

γ
Ω = 

where tipM  is the tip Mach number and 
* /R R c=  is the nondimensional rotor radius 

or the rotor blade aspect ratio. 
The above formulation in the rotating 

coordinate frame has in exactly the same form 
of the equations in the inertial frame, except for 
an additional source term which has been 
introduced into the right side of the equation 
and represents the centrifugal force of rotation 
of the blades. The preceding formulation using 
the absolute-flow velocities allows more 
accurate calculation of the fluxes in the finite-
volume method on unstructured grids in the far 
field where the grid is highly stretched. In 
addition, the far field boundary conditions can 
be easily implemented. 

 

3  Numerical Method 
A finite-volume discretization is applied to Eq. 
(1) which describes a relationship where the 
time rate of change of the state vector Q  within 
the domain V  is balanced by the net fluxes of 
F  and ( )F Q  across the boundary surface V∂ . 
The domain is divided into a finite number of 
unstructured tetrahedral cells and Eq. (1) is 
applied to each cell. The state variables Q  are 
volume-averaged quantities. 

In the present work for simulating rotor 
flows, the Roe’s upwind scheme [16] is used. 
The numerical flux of the inviscid terms across 
each cell face k  using Roe’s flux-difference 
splitting can be written as 

1
2[ ( ) ( ) ( )]k L R R L k= + − −F F Q F Q A Q Q

 (2)

where A~  is the Roe-averaged flux Jacobian 
matrix (A = ∂ ∂F/ Q ) and LQ  and RQ  are the 
state variables to the left and right of the 
interface k , and 
 

1 2 3( )R L− = ∆ + ∆ + ∆A Q Q F F F 
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where ( )( ) ( )R L−∆ = , the superscript ~ 
denotes Roe-averaged quantities, 

( )/H E p ρ= +  is the total enthalpy, a  is the 
speed of sound and 
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The left and right states LQ  and RQ  are 
computed by upwind-biased interpolation of the 
primitive variables [ , , , , ]Tu v w pρ=q . For a first-
order scheme, the state of the primitive 
variables q  at each cell face is set to the cell-
centered average on either side of the face. 
High-order accuracy is achieved via the 
reconstruction of flow variables using the 
MUSCL interpolation technique [17] 
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where 1κ = −  is used for the second-order 
accuracy. The symbols ∇  and ∆  are backward 
and forward difference operators, respectively, 
and s  is the flux limiter to ensure the monotone 
interpolation. For computing rotor flows in 

transonic regime, oscillations in the numerical 
solution near shock wave are expected to occur. 
To eliminate these oscillations and prevent 
nonphysical solution, a continuously 
differentiable flux limiter is employed [22] 
 

2 2

2
s

ε
ε

∇∆ +
=

∇ + ∆ +
 

 
(4)

 

where ε  is a very small constant, typically 
61.0ε −= , used to prevent the division by zero 

in smooth regions of the flow. 

4  Time Integration 
A semidiscrete form of the governing equations 
for each cell can be written as 
 
 

, 1, 2, 3,. . .j
j jV jt
∆

= =∆
Q

R
  

(5)
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=
= − ∆∑R S Q F 

and jV  is the cell volume and jR  is the residual 
accrued by summation of the inviscid fluxes 
through the four faces k  of a tetrahedral cell j . 
The explicit scheme is obtained by evaluating 
the total residual at the right-hand side of Eq. 
(5) at the time level n .  For time integration, the 
classical fourth-order Runge-Kutta scheme [23] 
may be implemented to achieve time accuracy 
and stabilize governing equations. For the 
present calculations, only steady state solutions 
are considered and time accuracy in the 
integration is not required. Here, the first-order 
Euler explicit scheme is used and the solution 
convergence to steady state is accelerated by 
implicit residual smoothing. 

5  Boundary Conditions  
At every time step, one should specify the 
boundary conditions at the blade surface and the 
far field boundaries. At the blade surface, the 
flow tangency condition is used for inviscid 
flows. The slip boundary condition is 
implemented by imposing no flux through the 
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wall by setting the flow variables within dummy 
cells that are effectively inside the blade surface. 
The relative velocity components within a 
dummy cell, ( , , )r r r du v w , are evaluated from the 
values in the cell j  adjacent to the surface, 
( , , )r r r ju v w , as follows [22] 
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where ˆ ˆ ˆ ˆ( , , )x y zn n nn  is the unit vector normal to 
the boundary face. Also, the density and the 
pressure within the dummy cell are set equal to 
the values in the cell adjacent to the surface.  

The far field boundary conditions are 
applied at a finite distance from the blade 
surface. The treatment of the far-field boundary 
condition is based on the one-dimensional 
Reimann invariants normal to the far field 
boundary. This procedure correctly accounts for 
wave propagation in the far field which is 
important for fast convergence to steady state 
solution. For the far field boundary where the 
flow is subsonic, the fixed and extrapolated 
Riemann invariants corresponding to incoming 
and outgoing waves are introduced 
 
 

2 2,
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Then, the actual normal velocity nV  and the 
speed of sound a  in the far field are obtained by 
adding and subtracting the preceding invariants 
as follows 
 
 

1 1), ( 1)( )
2 4n e eV = ( + aR R R Rγ∞ ∞= − − 

 

As an outflow boundary, the tangential velocity 
component and entropy are extrapolated from 
the interior, while at an inflow boundary, they 
are specified using far field values. 

6  Prescribed Wake Model 
For full free wake modeling, whole rotor wake 
including the inboard vortex sheet and the tip 
vortex trailing from each blade, must be tracked 
for  many  rotor  revolutions  to properly predict  

 
 
Fig. 1  Geometry of the tip vortex trailed from tip of 
each blade. 

 
the effects of rotor wake. Although full free 
wake modeling will give an accurate solution of 
the rotor wake, this is computationally difficult 
to do and very time consuming. For 
computational economy, however, it is usually 
only necessary to model the blade tip vortices 
that will result in a minor loss of accuracy of the 
rotor wake effects. 

In the present study, the wake effects of 
each blade are modeled using only a tip vortex 
trailed at the tip of each blade (Fig. 1) and the 
effects of inboard vortex sheet is modeled 
implicitly by reducing the strength of the tip 
vortex. The initial geometry of tip vortex is 
constructed using the prescribed wake model 
introduced by Landgreb [19,20]. For this wake 
model, the axial and radial coordinates of the tip 
vortex are, respectively,  
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and 
 

1 0.25( / 0.001 )T twk C σ θ= − +  

2 (1.41 0.0141 ) /2tw Tk Cθ= − +  
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where wψ  is the age angle, bN  is the number of 
blades, R  is the rotor radius, twθ  is the value of 
blade twist, σ  is the rotor solidity and TC  is the 
thrust  coefficient.  Also,  A   is the contraction 
ratio of the wake, its experimental value is 0.78 
and ϒ  can be obtained by 
 

0.145 27 TCϒ = + 

To calculate the induced velocity caused by the 
wake effects and incorporate these effects into 
the Euler solver, the geometry of the vortex 
trailed from the tip of each blade is discretized 
to vortex filaments that are linked together using 
a piecewise linear reconstruction (Fig. 1). 
Assuming the flow is predominately 
incompressible, according to Helmholtz third 
law, the net circulation strength of the each tip 
vortex is constant across the filaments. The 
induced velocity associated with each vortex 
filament can be computed by the Biot-Savart 
law 
 
 

0 34
d
rπ

Γ ×= l rV  
 

(8)
 
 

where dl  is the differential element of 
prescribed wake geometry, Γ  is the circulation 
and r  is the vector connecting between the 
wake filament and centeriod of the cell. In the 
present computations, to account for the effects 
of inboard vortex sheet, the strength of tip 
vortex is determined by %80 of the maximum 
bound circulation on the blade span. 

7  Perturbation Method 

As mentioned before, the artificial 
viscosity required for numerical stability, 
especially for course grids (Fig. 2), causes the 
rotor wake to be smeared as the vortices are 
convected away the rotor disk. Therefore, a 
sufficiently fine grid is needed to reduce the 
level of numerical diffusion of vorticity and 
resolve the structure of the rotor wake. This 
usually leads to large computational time and 
high memory required.  
 

 
 

 
Fig. 2  Comparison of vortex core size with far field 
grid resolution for an unstructured grid. 
 

An alternative way is to use a perturbation 
scheme [14,18]. In this method, the structure of 
rotor wake and its location may be specified 
without the need to utilize a sufficiently fine 
grid to resolve the rapid flow gradients. The 
idea of the perturbation method is that for some 
region, the flowfield is dominated locally by the 
velocity field associated with the rotor wake and 
the effect of rotor blade is weak near the wake 
region. 

In the present study, the rotor wake is 
modeled only by the tip vortices. Using the 
induced velocity field of the tip vortices, a state 
vector 0 0 0 0 0 0 0 0[ , , , , ]Tu v w Eρ ρ ρ ρ=0Q  that 
approximately satisfies the steady Euler 
equations can be readily calculated. Then, by 
subtracting the flux integral associated with this 
state vector from Eq. (1), the resulting integral 
equation can be written as follows 
 
 

}{

}{
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dV ndS
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0

0

Q F Q F Q

S Q S Q

 
 

(9)

 
 

The surface integral associated with the 
flowfield 0Q  is zero. However, 0Q  will not 
necessarily satisfy the discrete equations due to 
the truncation error, and for a fine grid, this term 
will be small. 

By applying the discrete spatial operator, 
Eq. (5), to the flowfield 0Q , the residual 0R  is 
calculated at each cell. Therefore, by subtracting 
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the residual 0R  from the residual R  due to the 
complete state vector Q , the following discrete 
Euler equations are obtained 
 
 

( ) { }
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, 0 ,
( )

( ) ( )

, 1, 2, 3,. . .
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(10)

 

It is clear that the residual R  is driven to 0R  at 
the steady state condition. Therefore, the 
truncation error of the scheme can be corrected 
in the region of the tip vortices, and the state 
vector Q  and the associated residual R  should 
show similar behavior as 0Q  and 0R . Away 
from the region of tip vortices, the residual 0R  
will be small, because the gradients of the 
flowfield are weak and hence, the solution in 
these regions will be the same as the solution 
associated with the regular finite-volume 
method. 

 

8  Results and Discussion  
The developed Euler code has been thoroughly 
verified by comparison with available numerical 
solutions and experimental results for the case 
of nonrotating body. These verifications include 
transonic flow at a freestream Mach number of 

0.84M∞ =  and an angle of attack of 8α =  
over ONERA M6 wing and supersonic flow 
over a secant ogive cylinder bottailed (SOCBT) 
body at 3.0M∞ = . The results of the developed 
Euler code are in good agreement with the 
available results. Details of these investigations 
have been reported in Ref. 24. 

To show the efficiency and accuracy of the 
present flow solver, the inviscid flowfield is 
computed for an isolated rotor in hover. This 
test case was experimentally studied by 
Caradona and Tung [21]. The experimental  
model consists of a two-bladed rigid rotor with 
rectangular planform blades with no twist or 
taper. The blades are made of NACA 0012 
airfoil sections with an aspect ratio of 6. 
Calculations are performed for the two 
operating conditions of  subsonic  and  transonic  

 
 

(b) 
 
 

 
(a) 

 
Fig. 3 (a) Blade surface triangulation and (b) 
computational grids for Caradonna and Tung test 
case. 

 
tip Mach numbers, 0.44tipM =  and 

0.877tipM = , and for the collective pitch angle 
8α = .   Surface pressure data are available at a 

number of chordwise locations and at several 
radial stations for code validation. The results 
using the present flow solver are compared with 
numerical and experimental results and the 
effects of wake modeling on the flowfield 
characteristics are investigated 

Figure 3 shows the blade surface 
triangulation and also computational grid for the 
Caradonna and Tung test cases. The 
computational domain consists of unstructured 
tetrahedral cells using a Delaunay method. The 
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grid is chosen to be fine at the leading and 
trailing edges especially at the tip region of the 
blades (Fig. 3a). The three-dimensional grid 
consists of 474551 tetrahedral and 97457 node 
points. The surface triangulation on the blade 
surface consists of 69762 triangles. The far field 
boundary is a sphere with 30 radii away from 
the center of rotation. For unstructured grids, 
without an adaptation procedure, usually course 
grids are generated far away from the body 
surface (Fig 3b). For rotor flows using 
conventional grids and without using a wake 
modeling, the vortical wake effects can not be 
accurately simulated. This can be found by 
comparing the results of the blade surface 
pressures using the wake modeling and without 
any wake modeling. 

Figure 4 compares the computed surface 
pressure coefficient using the second-order 
solution with the experimental data at different 
spanwise locations. The calculations are 
presented for both subsonic and transonic tip 
Mach numbers. The results indicate that without 
wake modeling, the computed pressure 
distributions for the inboard sections of the 
blade are not in agreement with those of 
experiment. This may be due to the numerical 
viscosity present in the conventional numerical 
schemes, particularly on course grids. As a 
result, due to improper capturing of the vortical 
wake, the induced flowfield can not be 
accurately computed. It causes to increase the 
angle of attack of the blades in inboard sections 
where the computed pressure distributions do 
not match with the experimental results. 

Figure 5 demonstrates the effect of wake 
modeling using the proposed method on the 
computed surface pressure coefficient at 
different stations for the subsonic case, 

0.44tipM = . The geometry of prescribed tip 
vortex is constructed using the prescribed wake 
model introduced by Landgreb. The resulting 
pressure distributions using the proposed 
prescribed wake-Euler solver exhibit good 
agreement with the experimental data at all 
sections. It is seen that the free wake model 
improves the quality of the solution. The results 
are  also  compared  with  those of  Agarwal and  

 
 
 

 
 

Fig. 4 Comparison of surface pressure coefficient for 
2nd order solution and experimental data at different 
stations for two tip Mach numbers. 

 
Deese [25]. They solved the Euler equations for 
the flowfield around the rotor using a Jameson's 
scheme. They used the results of a free wake 
solution to calculate the induced angle of attack 
for each section of the rotor blade and then 
correct the geometric angle of attack of the 
blade at all stations to account for the wake 
influence. It is found that the present results 
without the wake modeling exhibit good 
agreement with those of Agarwal and Deese. 
This may be due to good performance of  
the present  solution  or  high  level  of  artificial  

 
 

Mtip=0.44 & θC=8°

Mtip=0.877 & θC=8°
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Fig. 5 Effect of wake modeling on computed surface pressure coefficient for 0.44tipM = and collective pitch 

angle 8cθ =  
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Fig. 6 Effect of wake modeling on computed surface pressure coefficient for 0.877tipM = and collective 

pitch angle 8cθ =  
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diffusion present in their numerical method. It is 
also clear that the present wake modeling 
improves the results considerably. The present 
prescribed wake-Euler solver uses only the tip 
vortices for the wake modeling instead of a full 
free wake modeling, and therefore can be 
efficiently applied to account for the vortical 
wake effects of rotor flow in hover. Figure 5 
also shows the surface pressure contours for the 
case of subsonic tip speed. From the figure the 
effect of radially increasing speed can be 
observed. 

The proposed method is also applied to the 
transonic case, 0.877tipM = , to examine the 
accuracy and validity of the results. Figure 6 
shows the computed surface pressure coefficient 
at five radial stations. The agreement of the 
pressure distributions computed by using the 
proposed technique with the experimental data 
and the results of Agarwal and Deese is good, 
especially for the outboard region ( / 0.5r R > ). 
The difference for the inboard stations may be 
due to the effect of inboard vortex sheet which 
is not considered in the present solution. It is 
also obvious that the transonic regions near the 
tip of the blades are accurately computed. In 
Fig. 6, the surface pressure contours for this 
case is also shown. The effects of radially 
increasing speed and transonic regions at the 
outboard stations of the blades and the 
corresponding shock wave are evident. 

9  Concluding Remarks 

A coupled prescribed wake-Euler solver has 
been developed to compute inviscid flow 
around rotor under hovering conditions. The 
aerodynamic characteristics including the 
surface pressure distributions for both subsonic 
and transonic conditions are compared with 
available numerical and experimental data.  
The results indicate for conventional grids and 
without wake modeling, the calculated pressure 
distributions especially at inboard sections of 
the blades are not in agreement with 
experimental data. This may be due the 
presence of the numerical dissipation especially 
for course grids which can affect the structure of 

the rotor wake. To improve the predicted 
results, a perturbation method has been used and 
wake effects are modeled using only a tip vortex 
trailed from the tip of each blade. The resulting 
surface pressure distributions exhibit excellent 
agreement with the numerical and experimental 
results especially for subsonic conditions. For 
the transonic condition small deviations exist 
for the inboard region, however, the transonic 
regions and corresponding shock wave are 
accurately computed. The present methodology 
introduces a useful and efficient solver for 
simulating hovering helicopter rotor flow 
instead of a more complete wake modeling, 
especially for subsonic conditions. 
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