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Abstract  

 The study on the unsteady aerodynamic 
analysis of biomorphing airfoils is important in 
its applications to the aerial and hydro robots. 
The wake patterns and thrust characteristics of 
biomorphing airfoils are investigated using an 
unsteady panel method. To trace complicated 
wake shapes behind airfoils, a core addition 
scheme, a vortex core model, and the fourth 
order Runge-Kutta convection scheme are 
employed. Present results are verified by 
comparing them with flow visualization, exact 
solution and published computed results.  

1  Introduction  
Mimicking small birds or insect has led to 

the development of small scale flying robots [1]. 
The flapping-wing mechanism to generate lift to 
overcome its weight has the advantage that 
when the size decreases flapping-wing flight is 
much more efficient than fixed-wing flight [2]. 
The basic understanding of propulsion 
mechanism of fish and cetaceans can be utilized 
to enhance the current technology [3].  

The basic propulsion mechanism of 
flapping foils has been known that the shed 
wakes from the foils’ trailing edges are 
developed as the staggered array of vortices 
with reverse direction of rotation to a von 
Karman vortex street (known as the Knoller-
Betz effect)[4-6]. Jones et al.[6] showed that the 
formation and evolution of unsteady wakes is 
fundamentally an inviscid phenomenon over a 
broad range of Strouhal numbers. The tails of 
some of the fastest swimming animals resemble 

high aspect ratio foils, which has led to the 
theoretical and numerical studies [3].   

When multiple foils operate side by side, 
the vortex-to-vortex interaction can results in a 
drag wake and the deterioration of propulsive 
performance [3]. The strong interaction between 
foils close to each other produces the drag-
wake-like flow fields. However, two foils 
flapping in antiphase show that the strong 
interaction can produce larger thrust than other 
configurations [7]. This phenomenon is similar 
to the biomorphing foil propulsion near the 
ground. However, there has not much published 
literature on this phenomenon. 

The purpose of this paper is to investigate 
the wake patterns and propulsive characteristics 
of biomimetic foils moving near the ground. To 
accurately simulate the closely coupled 
interacting wakes between foils, a core addition 
scheme and a vortex core model are combined. 
A time history of aerodynamic coefficients of a 
flapping foil is compared with other numerical 
data. 

2  Unsteady Panel Method  
Generally, two coordinate systems(one is a 

body-fixed coordinate system, and the other is 
the ground-fixed coordinate system) are used to 
simulate the foils moving through the fluid. The 
foils of creatures such as insects or birds in 
nature are moving under the significant 
influence of the viscosity. However, man-made 
foils can be fly at higher velocities than the foils 
of creatures. Thus, it is assumed that the viscous 
effect is confined within a thin boundary layer. 
To simplify the complicated unsteady problems 
of morphing and oscillatory motions combined, 
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it is further assumed that the flow is inviscid, 
incompressible and irrotational over the entire 
flow field, excluding the foils’ boundaries and 
their wakes.  

The isentropic flow around the deforming 
foils can be solved using the continuity equation 
coupled with energy equation. Mass should be 
conserved regardless of the coordinate systems. 
Therefore,  

02 =Φ∇  

(in a body-fixed coordinate system) 

(1) 

The foils deforming body surface is 
discretized into N equal length panel elements. 
The vorticity on each element is considered to 
be linear. As shown in Fig. 1, the vorticity of 
linear strength on each element is represented as  

1 1( ) ( )j j jx x xγ γ γ + += + −  (2) 

The wake is represented by free vortices 
which deform freely by the assumption of a 
force-free position during the simulation. These 
free vortices are connected to the bound vortices 
at the trailing edge of the foil through the Kutta 
condition. The strengths of the elementary 
solutions are obtained by enforcing boundary 
conditions as follows. 
A. The flow disturbance, due to the foil’s 
motion through the fluid, should vanish far from 
the plates. This boundary condition can be 
satisfied automatically by using the vortices as 
the singularity distributions. 

 
 
Fig. 1 Nomenclature of the Present Method. 
B. Zero normal flow across the foils’ solid 
boundaries. The continuity equation (1) does not 
directly include time-dependent terms. Time 
dependency is introduced through the 
modification of “zero normal flow on a solid 

surface” and the use of the unsteady Bernoulli 
equation. The kinematic velocity ( v ) is given as 
follows, 

0[ ]relv V v r= − + +Ω×  (3) 

where OV is the velocity of the body-fixed 
system's origin, r = (x, y, z) is the position 
vector of the foil’s surface the body-fixed 
system, Ω  is the rate of rotation of the body-
fixed coordinate system with respect to the 
ground-fixed coordinate system. The additional 
relative motion within the body-fixed coordinate 
system is represented as relv . The zero-velocity 
normal to a solid surface boundary in the body-
fixed frame becomes 

0( ) 0relV v r n∇Φ − − −Ω× ⋅ =  (4) 

where n  is the normal to the body's surface, in 
terms of the body-fixed coordinates (x,y). 

 
(a) coordinate systems 

 
(b) nomenclature of relative velocities 

 
Fig. 2 Nomenclature for the Unsteady Motion 
of a Morphing Foil. 
For a foil in heave oscillation near the ground, 
the kinematics of the foil can be represented as 
follows 
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( ) ( ( ), ( ))R t X t Y t=  

( )
( ) cos( )o h

X t U t
Y t W t h t hω φ

∞

∞

= −
= − + − +

 

{ sin( )}O o h hV U i W h iω ω φ∞ ∞= − − + −  

(5) 

where h is the distance between the origin of the 
body-fixed coordinate system and the ground, 
ho is the heaving amplitude, hω is the heaving 
oscillation frequency. Both U∞ and W∞  
represent the left moving and sinking velocity 
components of OV , respectively. 

   The relative velocity, relv , is zero when the 

foil is rigid. When the foil deforms, relv  is the 
relative velocity of the foil surface. 

/rel c cv dr dt rω= + ×  (6) 

Fulfilling the boundary condition on the 
surface requires that, at each collocation point, 
the normal velocity component will vanish and 
we can write Eq. (4) as 

( )
1

2
1

( )
N

ij i iN w i iw i
j

A A tγ γ
+

+
=

⎛ ⎞
+ ⋅ = − + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ n V V n

     
on the foil for i=1,2,...., N (5) 

(7) 

where the influence matrix element ijA  
represents the normal velocity component at a 
control point, i , by the vortex (having a unit 
circulation) at the panel element, j. The 
elements ija  are functions of geometry. jΓ is the 
unknown circulation of the point vortex 
representing the vorticity of the panel element, j. 

iq represents the normal velocity component 
induced at control point i by the starting vortex 
and its image. wiV is the velocity induced by the 
wake vortices and their images whose positions 
and circulations are known. At the beginning, 

wiV is zero. The calculation begins at t = tΔ  and 
the wake at this moment consists of a single 
vortex, cΓ .  

C. Kelvin condition. The use of the Kelvin 
condition that the circulation around a fluid 
curve enclosing the plates and their wakes are 
conserved, will supply an additional equation. 
D. The unsteady Kutta condition. This condition 
at the trailing edge of a plate is satisfied by 
shedding the vorticity generated at the trailing 
of a plate at the local fluid particle velocity. 
E. Continuous pressure across the wake. This 
condition is fulfilled with convecting wakes 
downstream at the local fluid particle velocity.  
To find the solutions of Eq. (5), an initial 
condition describing the position of the wake 
and its vorticity must be prescribed. At each 
time step, a newly shed starting vortex is fixed 
at a point l/4 l behind a plate’s trailing edge as 
required by the unsteady Kutta condition. All 
the circulation strengths are determined 
including the effects of their images by Gauss 
elimination. At the end of each time step, the 
shed vortex is convected downstream to its new 
position at the local fluid particle velocity. The 
procedure is repeated for any desired number of 
time steps. 

Since the wake is force-free, each vortex 
representing the wake must move with the local 
flow velocity. The local flow velocity is the 
result of the velocity components induced by the 
wake and the plate. The 4th-order Runge-Kutta 
method is used for the convection scheme. 

In the body fixed frame, thrust (or drag) is 
calculated using the momentum conservation 
theorem. 

[ ]( ) ( ) ( )T or D V y V y U dyρ
∞

∞−∞
= −∫    

(8) 

where ( )V y is the velocity profile at the cross 
section behind a chord length from the plate’s 
trailing edge. 

The mean camberline of a flexible foil can be 
represented as a following equation. 

( , ) ( )cosc c cf x t H x x t
U
ω ω
∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠  

2 2( ) ( )c cH x A x c b⎡ ⎤= − −⎣ ⎦  

(9) 
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The time variation of the mean camberline as 
represented in Eq. (9) has the form of the 
traveling wave (See Fig. 3). 

     
Fig. 3 Time Variation of the Mean 
Camberline. 

3 Results and Discussions  

Fig. 4 shows the induced drag coefficients of 
a foil undergoing heaving oscillation. Present 
method is validated by comparing the present 
result with the computed result by CFD[8]. 
Present result for dxw=0.05 is in good 
agreement with the CFD result[8]. 

 

 
Fig. 4 Time History of the Induced Drag 
Coefficient. 
 
   Fig. 5(a) shows the computed wake patterns 
behind heaving foils using the CFD[8]. Fig. 5(b) 
also shows the computed wake patterns of the 
foil and its image using the present method. It 
can be deduced from the figure that the present 
result is in good agreement with the CFD 
results[8]. 

 

      
(a) particle traces of CFD 

  
(b) present method 

Fig. 5 Comparison of Wake pattern 
behind Heaving Foils for k=2, h0=0.4, and 
y0=1.4. 
 

Fig. 6 and 7 shows the wake pattern behind a 
morphing foil and its thrust coefficients when 
the foil is moving at a constant speed near the 
ground. Lai and Platzer[9] investigated the wake 
shapes behind a plunging foil. They found that, 
when the vortex patterns in a mushroom form is 
pointing upstream, the drag is producing. The 
vortex on the upper part of the vortex street has 
the clockwise rotation direction and the vortex 
on the lower part of the street has the clockwise 
rotation direction. This vortex pattern is called 
as von Karman vortex street. When the 
mushroom head points upward, then the foil 
produces zero drag (or zero thrust). The thrust is 
produced when the mushroom head points 
downstream. In this case the rotation direction 
of the von Karman vortex street is reversed  and 
these vortex streets are called as reverse von 
Karman street. The vortex patterns in Fig. 6 
show that the mushroom head points 
downstream. When the foil is moving forward 
in close proximity to the ground, the mushroom 
head changes the pointing direction from 
downstream to upstream. As shown in Fig. 7, 
the value of the time-averaged thrust coefficient 
decreases with the foil moving closer to the 
ground. 
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Fig. 6 Wake Patterns Behind a Foil Near the 
Ground. 
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Fig. 7 Ground Effect on the Thrust 
Generation. 
 

4. Summary 

An unsteady panel method is developed with 
a boundary condition that treats the relative 
velocity components caused by the deformation 
of the foil. For the present mean camberline 
change of the foil, the thrust of the foil in 
ground effect is smaller than that of the foil out 
of the ground effect. It can be deduced that the 
present result can be applied to the unsteady 
aerodynamic analysis of a biomorphing foil in 
ground effect. 
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