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Abstract

In this paper, a combination of optimal and
non-linear control methodologies is utilized to
perform an optimally determined Herbst type
trajectory as a post stall maneuver for a typical
fighter by means of Thrust Vectoring Control
System [TVCY. There are two major parts
involved in this investigation. First, the Herbst
maneuver is determined following a variational
formulation of the problem over three major
segments of the trajectory. Second, a closed-
loop control system is designed for the aircraft
by means of Dynamic Inversion (DI) method
using a combination of aerodynamic control
surfaces and TVCS Results include time
variations of optimal state trajectories and
control  strategies required for tracking
with/without constraints.

1 Introduction

High maneuverability is one of the most
important requirements for most fighter
aircrafts. Post stall simulations have shown that
high performance maneuvers in this region
could cause tactical air superiority in close air
combat situations and thus increase the
maneuverability and agility of the aircraft.
Fighters can often be designed to perform post
stal maneuvers such as Herbst, using a
combination of complicated control systems and
new technology developments in the area of
thrust vectoring [1]. Design of a complex three-
dimensional post-stall trgjectory is by itself a

formidable task that can only be executed by
advanced technology aircrafts equipped with
thrust  vectoring  capabilities  [1,2,3/4].
Fortunately, the optimal control theory provides
a basis for determination of the optimized
maneuver trgjectory with/without constraints
[5,6,7]. Determination of non-linear control
systems for tracking complex super-maneuvers
using different schemes such as DI method have
been investigated by some researchers [8,9]. In
this paper, the feasibility of performing the
Herbst maneuver is investigated for a typical
fighter aircraft where the desired optimal
trajectory is obtained wusing variational
formulation. In addition, a closed-loop tracking
control system is designed for the selected
arcraft by means of DI method using a
combination of aerodynamic control surfaces
and TVCS which satisfy the given physical
constraints while tracking the desired optimal
trgjectory. Due to existing potential for thrust
vectoring capability and related data, an F-18
HARYV is selected for maneuver simulation.

2 Equations of Motion

Non-linear, six degrees of freedom governing
equations of motion for arigid aircraft assuming
flat earth are presented in equation set (1) [9]:
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where v,a,p,7,y,u ae veocity, angle of
attack, sidedip angle, flight path angle, heading
angle about the velocity vector and the bank
angle respectively. p,q,r are the angular rates

in the body-axis roll, pitch and yaw; x,y,h are
the components of aircraft 3-D position and
T, T,, T, are the body axis components of thrust

and m isthe aircraft mass.

3 Optimal Trajectory Deter mination

3.1 Herbst Maneuver Description

Herbst maneuver is taken after Dr. Herbst’ swho
first presented the idea of flight in post stall
region. Dr. Herbst defined super
maneuverability as the ability to perform a
maneuver at high angle of attack with controlled
sidedlip angle. The X-31 aircraft performed this
maneuver for the first time. When the maneuver
begins, aircraft angle of attack increases until it
enters the post stall region and the velocity
decreases. Obvioudly in this situation, the
aircraft cannot be controlled only by
aerodynamic control surfaces. Therefore the
TVCS should be applied in order to compensate
for the lack of aerodynamic control
effectiveness. Subsequently, aircraft performs a
180-degree turn, and accelerates in a new flight
direction [1]. A three-dimensiona view of the
Herbst maneuver is shown in figure (1).

3.2 Optimal Control Problem Formation

The mathematical model, based on the equation
set (1), is developed in order to obtain the
optimal trgjectory for the assumed post stall
maneuver. Following methodologies and
assumptions are applied in order to solve the
proposed optimal control problem:

1) «, u areconsidered as control variables.
2) p isignored due to definition of the Herbst

maneuver.
3) Because of low velocity and thus low
dynamic pressure in the Herbst maneuver,
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the aerodynamic control surfaces are not
very effective. So they are kept at fixed
positions in optimal control formulation.

4) Throttle setting is considered at its
maximum value during the maneuver.

5) All of the aircraft aerodynamic derivatives
are taken from reference [3]. Because of the
non-linear nature of the problem, these
derivatives are fitted with polynomials that
are functions of angle of attack. For
example, CL, =f(x) is estimated with a

second order polynomial.
6) T,,T,,T, aedefined as:

T, =Tcos(s,,)co8(6,,) T, =Tcos(d,,)sin(s,,) »
T,=Tsin(s,,) 2

where 6,6, arethrust vector angles providing

yaw and pitch moments.
In the optimal control problem, the state
vector is comprised of

X=[vy y pgr xyhl"and the control
vector includes u=[a u 5, 5,] - There are

some constraints on the thrust vector angles, the
rate of deflection of thrust vector angles and
symmetric load-factor (n,) that must be
satisfied [2,3,4]:

-25<6,<16",-20° <6, <1T 3
5o <80989 5, <509 (4
Sec S

_ LCOS(O!)-‘:—DSin((Z)—TZ <43 (5)
s <4

The performance index (J) is considered as
aterminal control criterion with free final time.
Thus for this problem, the goa is to minimize
the deviation of the system states from their
desired value r (t;) [5] .

-2<n

z
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where K is a weighting matrix in the
performance index (J).

The necessary conditions for optimal
trajectory and control are derived from the
system Hamiltonian defined in equation set (7):

H(X,u,p,t) = p,V+p, v+ p, 7+
S (7)

pp p+ pqq+ pr r+ pxX+ py y+ phh

where H is Hamiltonian function and
PP, B, Ppi Py Py Py Py, Py ae  the
Lagrangian coefficients. Subsequently, the state,

costate and the optimality condition as well as
the required boundary conditions are devel oped.
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In order to ssimplify solution of the formed
free final time optimal control problem, time is
normalized as:

dA_i A (14

t=t; g, 0<¢<1, d_g_ N

where t; is constant and A describes state and

co-state variables.

Obviously the formed  Two-Point
Boundary Vaue Problem (TPBVP)
[Eq.(8)&(9)] cannot be solved by analytical
methods. So it should be solved by means of an
appropriate numerical method. In this study, the
steepest descent approach is utilized to solve the
resulting optimal control problem. It is
important to obtain appropriate responses for



optimal states and control that can satisfy al of
the constraints mentioned in relations (3) to (5).

3.3 Solving M ethodology and Results

As stated above, the steepest descent (SD)
methodology is adapted here to solve the
resulting optimal control problem. SD approach
is especially useful for non-constrained optimal
problems; so in order to satisfy the constraints
of the problem and simplify the solution
procedures, the following assumptions are used:
1) Final time is taken to be free, so initially
there is no time restriction on the maneuver.

2) The maneuver is broken down into 3 stages
of simpler maneuvers [10,11]. Continuity of
stages at stage connection points are imposed
as part of boundary specification.

3) Steepest descent method requires an initia
guess for control variables [5]. This guess is
chosen such that al of the constraints are
satisfied.

4) At every stage of the maneuver, two of the
nine states are selected to minimize their
deviation from the desired value. In the first
stage v,y, in second stage v, y and in the
third stage v, y are chosen for this purpose.

Initial values of the state vector for the first
stage are taken as:
[Vi7e 21 PG 1y % Yy ] =[100 00000 0 01000]
while initial values of the state vector for the
second stage will be:

Vi o 7a PL G X Y, ] =[30 -1.025 1.0471
.033 0.7725 —.6907 553.4036 —80.0302 1324.4]

And finaly, initial values of the state vector for
the third stage will turn out to be:

Vi 2070 Py O 1y % Y, h]=[32 —26178 —0.0593
0.3539 0.6829 —2.6992 511.5101 —144.514 1384.18]
where the velocity is in m/sec, angles are in
radians and angular rates are in rad/sec. Time
history of some of the optimal states and
controls for the Herbst maneuver are shown in
figures (2) to (9). It is seen that the assumed
constraints in relations (3) to (5) are satisfied
and the load factor variation during the
maneuver is in the acceptable range. As aresult,
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the optimal traectory is admissible. A three-
dimensional graph of the obtained optimal
maneuver is also shown in figure (10).

4 Control System Design

4.1 Mathematical M odel

Once the optimal traectory of the Herbst
maneuver based on the typical fighter aircraft
requirements is obtained, designing a suitable
control system to track this trgectory is of
interest. Equation set (1) is used again here as
the mathematicak model. The required
aerodynamic derivatives are obtained from
reference [3] and our aerodynamic model
utilizes this data set.

Thrust forces, in contrast with the optimal
control problem, are formulated in a new way:

T.=T,T,=T6,T,=T6, (15)

where ‘5y‘,|5z|sl. It is assumed that thrust

vector doesn’t produce rolling moment.

The example chosen aircraft, namely F-18
HARV, has two right and left stabilators, which
together can produce pitch and yaw moments
and thus stabilators play the roles of both the
elevator and ailerons. Defining left-hand
stabilator deflection as del and similarly right-
hand stabilator deflection as der, with positive
magnitude when turning down, the equivalent
elevator and aileron deflections can be derived
as.

5e:del +der’da:del—der (16)
2 2
Total equivalent aileron angle (0,) is
caculated by adding the aerodynamic

contribution of aileron to the aerodynamic
contribution of da.
In this case, state and control vectors are

chosen as X =[v,z,7,a,8, 1 p,q,r, X y,h] and
u=I[6,.8,,6,,96,,6,], respectively.
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4.2 Dynamic Inversion [DI] Method

This method is specialy used to solve tracking
non-linear control problems. Assume the system
dynamics as.

x=f(X)+G(x)u ,y =k(x) (17)

Where x is nx1 the state vector, u is mx1 the
control vector and f(x),G(x),k(x) are nonlinear
matrices. A linear relation, similar to equation
(18), can be achieved between inputs and
interested outputs by differentiating the output
equation:

y =h(x) +c(x)u (18)

If equation (18) is inversed and solved for
u,
u=c(x) " x[y—h(x)] (19)

Then by substituting the desired output

(yq) for y, the value of control signal (u) is

calculated in order to obtain a suitable tracking
of the desired outputs.

4.3 Closed-L oop Control System

In its most basic, first-order form, DI requires
that the system has at least as many inputs as
states. This is generaly not the case for aircraft
control systems. This problem is solved by
formulating the problem as a two-time scale
problem [9]. Thus with using a model reduction
method, the fast dynamics corresponds to the
states p,q,r and will be controlled by inputs

5,,6,,0,,6,,6,. The sow dynamics corresponds
to the slow states «, 8, and will be controlled
by inputs p,q,r. The reason of using two-time
scale is that the effect of the aerodynamic
control surfaces and thrust vectoring controls on
states «, B, 1, as slow dynamics, is weaker than
statesp,q,r, as fast dynamics. The designed
closed-loop control system with inner and outer
loops are shown in figure (18).

4.4 Inner Loop Control System design

In the inner loop, the fast dynamics control
system is designed. Desired state dynamics of
inner-loop control system are defined as:

Py =K, (P = P).Gg =k, (0, —0).Fa =k (1, —1) (20)

where p_,q.,r. are obtained from outer loop
and k_.k ,k are the inner-loop gains. p,q,r

pritgr
relations in equation set (1) can be converted to
the form required by equation (18):

(=1 + 1) pa+[1, (1, —1,) 1 2]ar |
Ld, =17
_ 2_ 2 21
() = GEIBLEIGEL (21)
[lx(lx_Iy)+|fz]pqy_|xz(|x_|y+Iz)qr
L lez_lfz i
- I i}
z 0 XZ
L0, =17 I
1
c(x) = 0 — 0 (22)
Iy
| |
XZ O X
_lez_lxz2 lez_lxzz_
p |
g |=h(x)+c(x)] m+m, (23)
f n+n;

Figure (17) shows the configuration of the
designed inner-loop. Inner loop has two blocks.
In the first block, Aerodynamic and thrust
moments are obtained as:

| Py
m+m, [=c(x)x( dq, |-h(x)) (24)
n+n, f,

The relation between unknown variables
5,.6,,6,,6,,6, and the obtained moments is

presented below:



b
| =g(C\, B+ E(Cm p+C,r)+Cud, +C59,)

m+m, =qSC(C,, +C, o + %Cmq +C,50.) + T, 1

b
n+n. = qS)(CnﬂIB + E(Cnp p+ C:nrr) + (25)
Cosa0a +Co50, ) +TO

| 1s the longitudinal distance between

engine thrust and aircraft center of gravity
(C.G.). In the second block, obtained moments
l,m+m;,n+n, are divided between five
control variables 6,,5,,6,,6,,6,. Thisisdonein
an iterative manner, first by assuming
5, =6,=0 at the beginning and thus J,,4,,J,
are obtained from the equation set (25). This
strategy continues until all of the aerodynamic
control surfaces are saturated, then they remain
at thelr maximum values and Thrust control
variables are activated; J,is activated when

o is saturated and J,is activated when 6, is

saturated. Constraints on aerodynamic control

surfaces are presented below:

—24 <5,<24°,-30° <5, <30°,-24° <5, <10°
(26)

4.5 Outer Loop Control System design

Desired dynamics of the outer-loop is defined
as.

da =k, (a,~a). By =Ks (B~ B) 1 =K, (u; — 1)

(27)

where «_, 1, are achieved from optimal control
problem. In addition, it is assumed that 3. =0
because of the Herbst maneuver definition and
k,.K,,k, ae the outer-loop gans. As
mentioned before, the effect of the aerodynamic
control surfaces and thrust vectors on «, S, u1s

ignored, in comparison with their effect on
p,q,r . Hence, h(x)and c(x)can be obtained
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similar to the inner loop case. The
corresponding relation between the inputs and
the desired outputs for the outer loop is:

p a
e [=c ()% (| By |-h(x)) (28)
fe Hy

5 Conclusions

In this paper, initialy an optimal model of the
Herbst maneuver is obtained for a selected
aircraft. Then a control system is designed in
order to track the desired states, determined
from the optima control problem. As
mentioned, the thrust vectoring commands
é,,0,are applied when aerodynamic controls

0,,0, are saturated. But no substitution is
assumed for the conditions that &, is saturated.

Hence, in the closed-loop control system design
procedure, both conditions of unconstrained
alleron o,, as well as constrained aileron are

investigated. In the wunconstrained aileron
situation, the proposed inner-loop gains are
k =k —k =307 and the proposed outer-
p q r sec

rad
k =k,=k,=7—
a B u sec
respectively. In the constrained aileron case, the
proposed inner-loop gains are
k —k =k =307 and the proposed outer-
p q r sec

loop gans are

loop gainsare k, =k, =k, =5@ respectively.
Sec
These gains are obtained in order to achieve
admissible tracking error for the Herbst
maneuver and acceptable thrust controls. It is
concluded from the results that for the
unconstrained problem, the desired values of
a, B, 1 are tracked with good precision and £
does not exceed one degree during the whole
maneuver. In contrast, in the o, constrained

problem, «,f,u are not within the desired

6
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values. As a result, it is proposed to apply
thrust-vectoring control in roll direction, in this
case, in order to achieve a more precise tracking
of the desired trajectory during the maneuver.
Variations of the control inputs and states for
both the unconstrained and the constrained
aileron, o,, during the maneuver are shown in

figures (2) to (15). In addition, variation of the
load factor,n,, in both the unconstrained and

the constrained aileron during the maneuver is
shown in figure (16). It is seen that the load
factor is within the admissible region of
equation (5) for both cases.

Authors are currently looking into the
design of arobust control system to perform the
Herbst maneuver when atmospheric turbulence
is present. The result of this complementary
research will be published later.
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Fig. 1. A three-dimensional view of the Herbst
maneuver structure

alpha (deg)

DI without Aileron Constraint
""""" Optimal Results \ -~

DI with Aileron Constraint \ -

0 2 4 6 8 10 12 14 16 18 20
t(s)

Fig. 2. Time variation of the angle of attack
(deg)



mu (deg)

v (m/s)

0 T T T T T T
-20 PN b
1
] /
40 t ! ]
1
]
1
F !
601 3 / 1
!
u 1
u ’
’
: II
-80+ D ] N
R/ 1
N/ ’
b J
- - - \ ,
100 DI without Aileron Constraint \‘ ,,l i
===== Optimal Results N K
----- DI with Aileron Constraint ‘\/'
120 I 1 I I I 1 I I 1
0 2 4 6 8 10 12 14 16 18 20
t(s)
Fig. 3. Time variation of x (deg)
4 T T T T T T
"
L \ 4
2 H |
\\‘ i “ ‘ ! 'II
2+ v \ H i
\ /
4+ \ H B
\ /
6l ) ] i
- |I ,I
\ s
-8t | L B
Voo
-10F |'. ", 4
1o} DI without Aileron Constraint H I' i
+--weeoo- Optimal Results \ !
-14} | ===== DI with Aileron Constraint '\ 4 B
N
16 I 1 I I I 1 I I 1
0 2 4 6 8 10 12 14 16 18 20
t(s)

Fig. 4. Timevariation of £ (deg)

110

100

920

801

701

601

501

40

30

DI without Aileron Constraint

----- Optimal Results
----- DI with Aileron Constraint

20
0

1‘0
t(s)

Fig. 5. Time variation of v (m/s)

20

POURTAKDOUST, SH., KARIMI, J., SHAJIEE, S.

chi (deg)

gamma (deg)

h (m)

50

-100

-150)

DI without Aileron Constraint

=====: Optimal Results
===== DI with Aileron Constraint

-200

L
2 4 6 8 10 12 14 16 18 20
t(s)

Fig. 6. Time variation of y (deg)

70

60

50

40

30

20

DI without Aileron Constraint

- Optimal Results
------ DI with Aileron Constraint

I I I !

| | Yremn
2 4 6 8 10 12 14 16 18 20
t(s)

Fig. 7. Time variation of y (deg)

1450

1400

1350

1300r

12501

12001

1150F

1100f

1050

DI without Aileron Constraint

---------- Optimal Results
----- DI with Aileron Constraint

1000
0

Il Il Il
300 400 500
x (m)

Fig. 8. variation of h versus x (m)

Il
100 200 600



y (m)

da (deg)

Design of a Tracking Control System for an Optimal Post-Stall Maneuver Using Dynamic | nversion Approach

t(s)

Fig. 11. Time variation of J, (deg)

0 T
DI without Aileron Constraint
Optimal Results
50 DI with Aileron Constraint 4
100} ,
150 | ,
-200 b
250 . . . . .
0 100 200 300 400 500 600
x (m)
Fig. 9. variation of y versus x (m)
- T
1400 1~ SR | |
[
Phe ! I |
- I
1350 | S
- ! 1
1300+ ~ To--_ |
| : TTT
4 - - ! !
1250 ‘ A‘Aﬁ,:A,VAF‘J
- I I
1200 4 ~ e \
_ ! 1 : T
150+~ DI without Aileron Constraint J
_ - NP Optimal Results !
1100 + - Dl with Aileron Constraint <:
1080+~ |
-400
1000 -
600
400
300 200 100 0 0
y(m
x (m)
Fig. 10. Three-dimensional trgjectory
600 T T T T T T
400t 5 1
Y
= e %
- L)
. kS
2001 B . i
. "
e H
0 - 1 r L 1 rea s s crw o
= o | s == g
LRl -
HH i:
we =
200t EH H 1
- =
- "
- :.
-400} : H ]
DI Controls, Aileron constrained ::
-600}| =====1DI Controls, Aileron unconstrained g
i
-800 , I \ \ . . . . .
0 2 4 6 8 10 12 14 16 18 20

dr (deg)

de (deg)

dy

30

20¢

10

Aileron constrained
= Aileron unconstrained

3
0
_10L
20}
-30 : :
o 2 4 6 8

10
t(s)

Fig. 12. Time variation of &, (deg)

-20!

5L

DI, Aileron constrained
= = = = DI, Aileron unconstrained

-25

e

0.4

I I I I
0 2 4 6 8 10 12 14 16 18 20

t(s)

Fig. 13. Time variation of &, (deg)

DI Controls, Aileron constrained

===== D| Controls, Aileron unconstrained

0.2

-0.2

-0.4

-0.6

-0.8

I ! I !

Fig

I
0 2 4 6 8 10 12 14 16 18 20

t(s)
. 14. Time variation of thrust deflection

angle, o, , (deg)



POURTAKDOUST, SH., KARIMI, J., SHAJIEE, S.

DI Controls, Aileron constrained 25
DI Controls, Aileron unconstrained DI without Aileron Constraint
0.8r 7 DI with Aileron Constraint
06
0.4
N 0.2 g
0
0.2}
04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20 05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
t(s) o 2 4 6 8 10 12 14 16 18 20
t(s)
Fig. 15. Time variation of thrust deflection Fig. 16. Time variation of the load factor, n,
angle, o, , (deg)
. &,
Pa 1 5'
— - »
c} Inner Loop m+mT Control Vector —5’
LA Elock p| Divider Block —rﬁ"’
ra otnT —»
—m™ - Y
"
Fig. 17. Inner-loop configuration
2 owr Fast .
Dynamics Dynarmes 6 D.0.F
Control Control Arcraft  |—
Law p Law ™ Dvnarnics
(Innet Loog)

Fig. 18. Designed closed-loop control system

10



