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Abstract 
 
In this paper, a combination of optimal and 
non-linear control methodologies is utilized to 
perform an optimally determined Herbst type 
trajectory as a post stall maneuver for a typical 
fighter by means of Thrust Vectoring Control 
System [TVCS]. There are two major parts 
involved in this investigation. First, the Herbst 
maneuver is determined following a variational 
formulation of the problem over three major 
segments of the trajectory. Second, a closed-
loop control system is designed for the aircraft 
by means of Dynamic Inversion (DI) method 
using a combination of aerodynamic control 
surfaces and TVCS. Results include time 
variations of optimal state trajectories and 
control strategies required for tracking 
with/without constraints. 

1 Introduction  
High maneuverability is one of the most 
important requirements for most fighter 
aircrafts. Post stall simulations have shown that 
high performance maneuvers in this region 
could cause tactical air superiority in close air 
combat situations and thus increase the 
maneuverability and agility of the aircraft. 
Fighters can often be designed to perform post 
stall maneuvers such as Herbst, using a 
combination of complicated control systems and 
new technology developments in the area of 
thrust vectoring [1]. Design of a complex three-
dimensional post-stall trajectory is by itself a 

formidable task that can only be executed by 
advanced technology aircrafts equipped with 
thrust vectoring capabilities [1,2,3,4]. 
Fortunately, the optimal control theory provides 
a basis for determination of the optimized 
maneuver trajectory with/without constraints 
[5,6,7]. Determination of non-linear control 
systems for tracking complex super-maneuvers 
using different schemes such as DI method have 
been investigated by some researchers [8,9]. In 
this paper, the feasibility of performing the 
Herbst maneuver is investigated for a typical 
fighter aircraft where the desired optimal 
trajectory is obtained using variational 
formulation. In addition, a closed-loop tracking 
control system is designed for the selected 
aircraft by means of DI method using a 
combination of aerodynamic control surfaces 
and TVCS which satisfy the given physical 
constraints while tracking the desired optimal 
trajectory. Due to existing potential for thrust 
vectoring capability and related data, an   F-18 
HARV is selected for maneuver simulation. 

2 Equations of Motion  
Non-linear, six degrees of freedom governing 
equations of motion for a rigid aircraft assuming 
flat earth are presented in equation set (1) [9]: 
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)cos()cos( χγvx =  

)sin()cos( χγvy =  

)sin(γvh =     (1) 

where µχγβα ,,,,,v  are velocity, angle of 
attack, sideslip angle, flight path angle, heading 
angle about the velocity vector and the bank 
angle respectively. rqp ,,  are the angular rates 
in the body-axis roll, pitch and yaw; hyx ,,  are 
the components of aircraft 3-D position and 

zyx TTT ,,  are the body axis components of thrust 
and m  is the aircraft mass. 

3 Optimal Trajectory Determination 

3.1 Herbst Maneuver Description 
Herbst maneuver is taken after Dr. Herbst’s who 
first presented the idea of flight in post stall 
region. Dr. Herbst defined super 
maneuverability as the ability to perform a 
maneuver at high angle of attack with controlled 
sideslip angle. The X-31 aircraft performed this 
maneuver for the first time. When the maneuver 
begins, aircraft angle of attack increases until it 
enters the post stall region and the velocity 
decreases. Obviously in this situation, the 
aircraft cannot be controlled only by 
aerodynamic control surfaces. Therefore the 
TVCS should be applied in order to compensate 
for the lack of aerodynamic control 
effectiveness. Subsequently, aircraft performs a 
180-degree turn, and accelerates in a new flight 
direction [1]. A three-dimensional view of the 
Herbst maneuver is shown in figure (1).  

3.2 Optimal Control Problem Formation 

The mathematical model, based on the equation 
set (1), is developed in order to obtain the 
optimal trajectory for the assumed post stall 
maneuver. Following methodologies and 
assumptions are applied in order to solve the 
proposed optimal control problem: 

 
1) α , µ  are considered as control variables. 
2) β  is ignored due to definition of the Herbst 

maneuver. 
3) Because of low velocity and thus low 

dynamic pressure in the Herbst maneuver, 
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the aerodynamic control surfaces are not 
very effective. So they are kept at fixed 
positions in optimal control formulation. 

4) Throttle setting is considered at its 
maximum value during the maneuver. 

5) All of the aircraft aerodynamic derivatives 
are taken from reference [3]. Because of the 
non-linear nature of the problem, these 
derivatives are fitted with polynomials that 
are functions of angle of attack. For 
example, )(αfCLq =  is estimated with a 
second order polynomial. 

6) zyx TTT ,,  are defined as: 

)cos()cos( yvpvx TT δδ= , )sin()cos( yvpvy TT δδ= ,
)sin( pvz TT δ=     (2) 

where pvyv δδ ,  are thrust vector angles providing 
yaw and pitch moments. 

 In the optimal control problem, the state 
vector is comprised of 

Thyxrqpv ][ χγ=X and the control 
vector includes T

pvyv ][ δδµα=u . There are 

some constraints on the thrust vector angles, the 
rate of deflection of thrust vector angles and 
symmetric load-factor ( Zn ) that must be 
satisfied [2,3,4]:  

1120,1625 ≤≤−≤≤− yvpv δδ  (3) 

syvpv
deg80,

sec
deg80 ≤≤ δδ   (4) 

3.4
)sin()cos(
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=≤−
mg

TDL
n z

z
αα  (5) 

The performance index (J) is considered as 
a terminal control criterion with free final time. 
Thus for this problem, the goal is to minimize 
the deviation of the system states from their 
desired value )( ftr  [5] . 

KrXX
2

)()()),(( ffff tttthJ −==  (6) 

where K is a weighting matrix in the 
performance index (J). 

The necessary conditions for optimal 
trajectory and control are derived from the 
system Hamiltonian defined in equation set (7):  
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  (7) 

where H  is Hamiltonian function and 
γχ pppv ,, rqp ppp ,, hyx ppp ,,  are the 

Lagrangian coefficients. Subsequently, the state, 
costate and the optimality condition as well as 
the required boundary conditions are developed. 
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In order to simplify solution of the formed 
free final time optimal control problem, time is 
normalized as:  

10, ≤≤⋅= ςςftt ,
dt
dAt

d
dA

f=
ς

  (14) 

where ft is constant and A  describes state and 
co-state variables. 

Obviously the formed Two-Point 
Boundary Value Problem (TPBVP) 
[Eq.(8)&(9)] cannot be solved by analytical 
methods. So it should be solved by means of an 
appropriate numerical method. In this study, the 
steepest descent approach is utilized to solve the 
resulting optimal control problem. It is 
important to obtain appropriate responses for 
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optimal states and control that can satisfy all of 
the constraints mentioned in relations (3) to (5). 

3.3 Solving Methodology and Results  
As stated above, the steepest descent (SD) 
methodology is adapted here to solve the 
resulting optimal control problem. SD approach 
is especially useful for non-constrained optimal 
problems; so in order to satisfy the constraints 
of the problem and simplify the solution 
procedures, the following assumptions are used: 
1) Final time is taken to be free, so initially 

there is no time restriction on the maneuver. 
2) The maneuver is broken down into 3 stages 

of simpler maneuvers [10,11]. Continuity of 
stages at stage connection points are imposed 
as part of boundary specification. 

3) Steepest descent method requires an initial 
guess for control variables [5]. This guess is 
chosen such that all of the constraints are 
satisfied. 

4) At every stage of the maneuver, two of the 
nine states are selected to minimize their 
deviation from the desired value. In the first 
stage γ,v , in second stage χ,v  and in the 
third stage χ,v  are chosen for this purpose.  

Initial values of the state vector for the first 
stage are taken as: 

]10000000000100[][ 111111111 =hyxrqpv χγ  
while initial values of the state vector for the 
second stage will be:  

]4.13240302.804036.5536907.7725.0033.

0471.1025.130[][ 111111111

−−

−=hyxrqpv γχ  

And finally, initial values of the state vector for 
the third stage will turn out to be: 

]18.1384514.1445101.5116992.26829.03539.0

0593.06178.232[][ 111111111

−−

−−=hyxrqpv γχ  

where the velocity is in m/sec, angles are in 
radians and angular rates are in rad/sec. Time 
history of some of the optimal states and 
controls for the Herbst maneuver are shown in 
figures (2) to (9). It is seen that the assumed 
constraints in relations (3) to (5) are satisfied 
and the load factor variation during the 
maneuver is in the acceptable range. As a result, 

the optimal trajectory is admissible. A three-
dimensional graph of the obtained optimal 
maneuver is also shown in figure (10). 

4 Control System Design 

4.1 Mathematical Model 
Once the optimal trajectory of the Herbst 
maneuver based on the typical fighter aircraft 
requirements is obtained, designing a suitable 
control system to track this trajectory is of 
interest. Equation set (1) is used again here as 
the mathematical model. The required 
aerodynamic derivatives are obtained from 
reference [3] and our aerodynamic model 
utilizes this data set. 

Thrust forces, in contrast with the optimal 
control problem, are formulated in a new way: 

zzyyx TTTTTT δδ === ,,   (15) 

where 1, ≤zy δδ . It is assumed that thrust 
vector doesn’t produce rolling moment.  
The example chosen aircraft, namely F-18 
HARV, has two right and left stabilators, which 
together can produce pitch and yaw moments 
and thus stabilators play the roles of both the 
elevator and ailerons. Defining left-hand 
stabilator deflection as del and similarly right-
hand stabilator deflection as der, with positive 
magnitude when turning down, the equivalent 
elevator and aileron deflections can be derived 
as: 

2
,

2
derdeldaderdel

e
−

=
+

=δ  (16) 

Total equivalent aileron angle ( aδ ) is 
calculated by adding the aerodynamic 
contribution of aileron to the aerodynamic 
contribution of da . 

 In this case, state and control vectors are 
chosen as ],,,,,,,,,,,[ hyxrqpv µβαγχ=X and 

],,,,[ zyera δδδδδ=u , respectively. 
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4.2 Dynamic Inversion [DI] Method  
This method is specially used to solve tracking 
non-linear control problems. Assume the system 
dynamics as: 

)(,)()( xyuxxx kGf =+=   (17) 

Where x  is 1×n  the state vector, u  is 1×m  the 
control vector and ( ) ( ) ( )xxx kGf ,,  are nonlinear 
matrices. A linear relation, similar to equation 
(18), can be achieved between inputs and 
interested outputs by differentiating the output 
equation: 

uxxy )()( ch +=    (18) 

If equation (18) is inversed and solved for 
u ; 

)]([)( 1 xyxu hc −×= −    (19) 

Then by substituting the desired output 

( dy ) for y , the value of control signal (u ) is 
calculated in order to obtain a suitable tracking 
of the desired outputs.  

4.3 Closed-Loop Control System  
In its most basic, first-order form, DI requires 
that the system has at least as many inputs as 
states. This is generally not the case for aircraft 
control systems. This problem is solved by 
formulating the problem as a two-time scale 
problem [9]. Thus with using a model reduction 
method, the fast dynamics corresponds to the 
states rqp ,,  and will be controlled by inputs 

zyera δδδδδ ,,,, . The slow dynamics corresponds 
to the slow states µβα ,,  and will be controlled 
by inputs rqp ,, . The reason of using two-time 
scale is that the effect of the aerodynamic 
control surfaces and thrust vectoring controls on 
states µβα ,, , as slow dynamics, is weaker than 
states rqp ,, , as fast dynamics. The designed 
closed-loop control system with inner and outer 
loops are shown in figure (18). 

 

4.4 Inner Loop Control System design  
In the inner loop, the fast dynamics control 
system is designed. Desired state dynamics of 
inner-loop control system are defined as: 

)(),(),( rrkrqqkqppkp crdcqdcpd −=−=−= (20) 

where ccc rqp ,,  are obtained from outer loop 
and rqp kkk ,,  are the inner-loop gains. rqp ,,  
relations in equation set (1) can be converted to 
the form required by equation (18): 
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Figure (17) shows the configuration of the 
designed inner-loop. Inner loop has two blocks. 
In the first block, Aerodynamic and thrust 
moments are obtained as: 
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The relation between unknown variables 
zyera δδδδδ ,,,,  and the obtained moments is 

presented below: 
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xTl  is the longitudinal distance between 
engine thrust and aircraft center of gravity 
(C.G.). In the second block, obtained moments 

TT nnmml ++ ,,  are divided between five 
control variables zyera δδδδδ ,,,, . This is done in 
an iterative manner, first by assuming 

0== zy δδ  at the beginning and thus era δδδ ,,  
are obtained from the equation set (25). This 
strategy continues until all of the aerodynamic 
control surfaces are saturated, then they remain 
at their maximum values and Thrust control 
variables are activated; zδ is activated when 

eδ is saturated and yδ is activated when rδ is 
saturated. Constraints on aerodynamic control 
surfaces are presented below: 

2424 ≤≤− aδ , 3030 ≤≤− rδ , 1024 ≤≤− eδ
     (26) 

4.5 Outer Loop Control System design  
Desired dynamics of the outer-loop is defined 
as: 

)(),(),( µµµβββααα µβα −=−=−= ccdcd kkk  

     (27) 

where cc µα ,  are achieved from optimal control 
problem. In addition, it is assumed that 0=cβ  
because of the Herbst maneuver definition and 

µβα kkk ,,  are the outer-loop gains. As 
mentioned before, the effect of the aerodynamic 
control surfaces and thrust vectors on µβα ,, is 
ignored, in comparison with their effect on 

rqp ,, . Hence, )(xh and )(xc can be obtained 

similar to the inner loop case. The 
corresponding relation between the inputs and 
the desired outputs for the outer loop is:  
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5 Conclusions 
In this paper, initially an optimal model of the 
Herbst maneuver is obtained for a selected 
aircraft. Then a control system is designed in 
order to track the desired states, determined 
from the optimal control problem. As 
mentioned, the thrust vectoring commands 

zy δδ , are applied when aerodynamic controls 

er δδ ,  are saturated. But no substitution is 
assumed for the conditions that aδ  is saturated. 
Hence, in the closed-loop control system design 
procedure, both conditions of unconstrained 
aileron aδ , as well as constrained aileron are 
investigated. In the unconstrained aileron 
situation, the proposed inner-loop gains are 

sec
30 radkkk rqp ===  and the proposed outer-

loop gains are 
sec

7 radkkk === µβα  

respectively. In the constrained aileron case, the 
proposed inner-loop gains are 

sec
30 radkkk rqp ===  and the proposed outer-

loop gains are 
sec

5 radkkk === µβα  respectively. 

These gains are obtained in order to achieve 
admissible tracking error for the Herbst 
maneuver and acceptable thrust controls. It is 
concluded from the results that for the 
unconstrained problem, the desired values of 

µβα ,,  are tracked with good precision and β  
does not exceed one degree during the whole 
maneuver. In contrast, in the aδ  constrained 
problem, µβα ,,  are not within the desired 
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values. As a result, it is proposed to apply 
thrust-vectoring control in roll direction, in this 
case, in order to achieve a more precise tracking 
of the desired trajectory during the maneuver. 
Variations of the control inputs and states for 
both the unconstrained and the constrained 
aileron, aδ , during the maneuver are shown in 
figures (2) to (15). In addition, variation of the 
load factor, Zn , in both the unconstrained and 
the constrained aileron during the maneuver is 
shown in figure (16). It is seen that the load 
factor is within the admissible region of 
equation (5) for both cases.  

Authors are currently looking into the 
design of a robust control system to perform the 
Herbst maneuver when atmospheric turbulence 
is present. The result of this complementary 
research will be published later. 
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Figures  

 
Fig. 1. A three-dimensional view of the Herbst 

maneuver structure 
 

 
Fig. 2. Time variation of the angle of attack 

(deg) 
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Fig. 3. Time variation of µ  (deg)  

 

 
Fig. 4. Time variation of β  (deg) 

 
 

 
Fig. 5. Time variation of v  (m/s)  

 

 
Fig. 6. Time variation of χ  (deg) 

 
 

 
Fig. 7. Time variation of γ  (deg) 

 

 
Fig. 8. variation of h versus x (m)  
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Fig. 9. variation of y versus x (m)  
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Fig. 10. Three-dimensional trajectory  

 

 

 
Fig. 11. Time variation of aδ (deg)  

 

 
Fig. 12. Time variation of rδ (deg)  

 

Fig. 13. Time variation of eδ  (deg)  

 

 
Fig. 14. Time variation of thrust deflection 

angle, yδ , (deg)  
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Fig. 15. Time variation of thrust deflection 

angle, zδ , (deg)  
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Fig. 16. Time variation of the load factor, Zn  

 

  

Fig. 17. Inner-loop configuration 

 

 
Fig. 18. Designed closed-loop control system 

 

 

 


