
25TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

Linux PC-Clusters are a cost-efficient platform
for parallel computational fluid dynamics
(CFD) applications. This paper investigates the
performance characteristics of an unstructured
explicit flow solver on multiple clusters.
Different node configurations and network
architectures are considered in the evaluation.
Single processor performance as well as overall
parallel performance are compared and
evaluated and recommendations are made for
performance and cost-efficiency.

1 Introduction

The current challenges in the aerospace field are
to offer products that are both better in
performance and also faster and cheaper to
produce. Thus the current business market
forces aircraft designers towards risk
minimization and a definitive reduction in cost
and time to market. The possibility to influence
life cycle cost is largest in the early design
stages. This means that the confidence in the
design must increase in the early phases
compared to today. Introducing high fidelity
simulations early in the design process will
facilitate this if the turn around time
requirement can be met. In early phases the
allowable time frame to conduct flow
simulations is very limited, in extreme cases in
the order of minutes. Also in later design stages
there is a need to reduce the total simulation
wall time to allow for more advanced physical
modeling or increased resolution that due to
computational cost not are feasible today.

The necessity of high fidelity modeling in the
design process is often conflicting with the
requirement of short turn around time. A
balance between modeling requirement and turn
around time limitation needs to be established at
every phase in the design cycle. A common way
to reduce the turn around time is to use powerful
parallel computer systems. Traditionally,
supercomputer resources have been equivalent
with large cost and therefore not widespread in
industry. This started to change in the late 1990s
when PC–cluster with Linux, so called Beowulf
systems ref. [1], became popular. Larger and
application specific computer systems are now
designed using cheap commodity components.

When designing a PC–cluster for a specific
application several design choices have to be
made. The compute node configuration and
interconnecting network are the two most
important components in a cluster affecting the
performance. Compute nodes are generally
equipped with one or two processor even though
other configurations are available. In this study
single and dual processor nodes are evaluated
and differences between 32- and 64-bit
architectures are investigated. A comparison is
made between commodity communication
hardware, such as switched Gigabit Ethernet, as
well as hardware specifically designed for high-
performance computing, such as SCI and
Infiniband.

Making the better choices will provide
improved performance of the flow solver and
thereby offering a chance to improve the
modeling capability or reducing the turn around
time in the design process. Other important
issues for parallel performance are parallel
implementation strategy, inter-processor

COST-EFFICIENT USE OF PARALLEL COMPUTERS IN
AIRCRAFT DESIGN

Mattias Sillén*
*Saab Aerosystems

Keywords: Linux-cluster, Parallel performance, CFD, Cluster configuration

Mattias Sillén

2

communication and load balancing. The
influence of these factors on total performance
is also analyzed on a typical aerodynamic
design example.

A previously reported study on parallel CFD
performance on Linux-clusters provides some
additional background of the code and the
parallel implementation, see ref. [2].

2 Numerical Solution Method

This study is based on results obtained with the
unstructured Navier–Stokes solver Edge [3],
developed at the Swedish Defence Research
Agency (FOI). The solver has an edge based
formulation that makes it possible to compute
on any type of mesh: structured, unstructured
(with tetrahedral, hexahedra, prism or pyramids)
or hybrid. The solver uses a node-centered
finite-volume technique where the control
volumes are formed by a dual grid obtained
from the control surface for each edge. The
spatial discretization is either central with
artificial dissipation or upwind: both approaches
are second order accurate. The basic iterative
scheme for the equations is a Runge-Kutta
algorithm. Local time stepping and implicit
residual smoothing accelerate convergence. An
agglomeration multi grid algorithm is used to
further accelerate the convergence. Within the
multi grid cycle a time-step is performed on the
fine grid, transferring the solution and the
residuals to the next coarser grid level,
performing a time-step on the coarse grid level
and interpolating the corrections back from the
coarse grid level to update the fine grid solution.
This process is applied recursively to all coarse
grid levels in the sequence. All results below are
obtained with the central scheme with artificial
dissipation.

 3 Parallel Implementation

The parallel implementation is based on domain
decomposition. In this approach each processor
executes its own copy of the program but
operates on a subset of the computational
domain. This is often referred to as the single

program, multiple data (SPMD) paradigm. For
parallel efficiency it is crucial that processors
are kept equally busy with local computations
and that the overall communication is kept to a
minimum and equally distributed between the
processors.

In the serial code, the flux balancing process
is computed by adding flux contributions from
each control surface of a control volume to
appropriate nodes. In the parallel
implementation, within each processor, flux
contributions are calculated in the same way.
Due to the node-centered finite volume
discretization ghost points are introduced where
the partition boundaries cross edges to compute
the fluxes locally, see Fig. 1.

Ghost point values are updated from the
partition holding their real images at each
Runge-Kutta stage. To maintain a complete
correspondence between serial and parallel
solutions additional entities are also
communicated between the domains. This
includes edge-based variables as spectral radius,
residual smoothing operations and boundary
conditions. Global reduction operations and
synchronization are handled by one processor
and communicated after a complete iteration
when also a decision is made to proceed with
the iteration process or stop and write the
solution.

Communication between the processes is
implemented using the MPI message-passing
library [4]. The communication pattern is
predetermined at run-time following the logics
of the domain decomposition. Communication

Partition boundary

Dual grid mesh

Nodes

Primary grid element,

Figure 1 Layout of primary grid cells, dual control
volume and partition boundary.

3

COST-EFFICIENT USE OF PARALLEL COMPUTERS IN AIRCRAFT DESIGN

is performed by packing data from all boundary
points on a given processors to be sent to
another processor into a single buffer that is sent
as a single message using non-blocking send.
This standard approach to communicate
between processors has the effect of reducing
latency overheads by creating fewer and larger
messages.

In the current parallel implementation the
same processor operates on all grid levels of a
partition. The domain decomposition is
performed only on the finest grid level. Control
volumes on coarser levels are assigned to the
partition that contains the largest part of each
individual control volume. This minimizes the
communication between processors when
changing grid level but may lead to load
imbalance on coarser grid levels. An alternative
is to perform domain decomposition on each
grid level separately. This will increase the
amount of communication when changing grid
level but will guarantee a better load balance
also on coarser grids levels, see [5].

4 Benchmark architecture

In this performance study five different clusters
are evaluated, listed in Table 1. They are based
on either 32- or 64-bit Intel processors. The
nodes are equipped with single or dual
processors and the interconnecting network is
either Gigabit Ethernet and/or high-speed
interconnects as SCI and Infiniband. In the
following sections the clusters are briefly
described. All clusters are designed by National
Supercomputer Centre (NSC) at Linköping
University in Sweden.

Table 1 Cluster specifications.

Monolith – 32-bit Intel Xeon

Monolith consists of 200 dual Xeon nodes. Each
node has 2 GB RAM and a 2.2 GHz Xeon
processors. The nodes are connected both by
Fast Ethernet and SCI. The topology for the SCI
network is a 3D torus (5x8x5). It entered service
in November 2002. The system is dedicated to
academic research in Sweden. A special mpi
implementation, ScaMPI, is used for the SCI
network. ScaMPI performance between two
nodes is about 4.5 µs in latency and 260 MB/s
in bandwidth. The Fast Ethernet network is only
intended for file transfer, not parallel
applications.

Maxwell – 32-bit Intel Xeon

Maxwell was build following the same
principles are Monolith. It contains 40 nodes
with dual 2.4 GHz Xeon processors linked by
SCI (2D 5x8) and Gigabit Ethernet. It entered
service in March 2003. The system is dedicated
to aeronautical simulations at Saab
Aerosystems. ScaMPI is used as mpi
implementation to communication over the SCI
network. For the Gigabit Ethernet the mpich
implementation is used. The mpich performance
between two nodes is about 30 µs in latency and
70 MB/s in bandwidth.

Stokes – 32-bit Intel P4

Stokes is a small commodity cluster with 32
Intel P4 processors each equipped with 2 GB
RAM and connected with a switched Gigabit
Ethernet network.

Dunder – 64-bit Intel Xeon
Dunder is equipped with 52 dual nodes
connected by Gigabit Ethernet and Infiniband

Name Processor # Nodes # proc./node GHz Cache size Network
Monolith Intel Xeon IA32 200 2 2.2 512 kB SCI, Fast Ethernet
Maxwell Intel Xeon IA32 40 2 2.4 512 kB SCI, Gigabit Ethernet
Stokes Intel P4 32 1 2.8 512 kB Gigabit Ethernet
Dunder Intel Xeon EM64T 52 2 3.4 2 MB Infiniband, Gigabit Ethernet
Darkstar Intel Xeon EM64T 44 2 3.4 2 MB Gigabit Ethernet

Mattias Sillén

4

(10 Gbps) network. The processors are 3.4 GHz
64-bit Xeon with 2MB L2 cache. The system is
dedicated for weather predictions and entered
service in September 2005. Parallel applications
use Scali MPI connect which enables runtime
selection of the interconnect.

Darkstar – 64-bit Intel Xeon

Darkstar is dedicated to aeronautical simulations
at Saab Aerosystems. It consists of 44 dual
processor (3.4 GHz 64-bit Xeon) nodes. The
nodes are connected by Gigabit Ethernet. The
processors are quipped with a 2MB L2 cache.
The system entered service in April 2006. The
lam mpi implementation is used.

5 Cluster Performance Evaluation
In parallel processing speedup and efficiency
are two important measures of the quality of the
parallel algorithm and there are a number of
factors limiting the speedup.

1) Software Overhead – Even with a

completely equivalent algorithm, software
overhead arises in the parallel
implementation, i.e. there are generally
more lines of code to be executed in the
parallel program than in the sequential
program.

2) Load Balancing – Speedup is generally
limited by the speed of the slowest node. So
an important consideration is to ensure that
each node performs the same amount of
work, i.e. the system is load balanced.

3) Communication Overhead – Assuming that
communication and calculation can not be
overlapped, any time spent communicating
the data between processors directly
degrades the speedup. Because of this, a
goal in the design of a parallel algorithm is
to make the grain size (relative amount of
work done between synchronizations -
communications) as large as possible, while
keeping all the processors busy. The effect
of communication on speedup is reduced, in
relative terms, as the grain size increases.

4) Amdahl’s Law – This states that the
speedup of a parallel algorithm is effectively
limited by the number of operations which
must be performed sequentially.

Analyzing the implementation of the flow

solver reveals that the load balancing and the
communication overhead are the most
significant factors affecting the parallel
performance. The communication overhead is
tightly coupled to network performance of the
cluster. There is very little software overhead in
the parallel implementation except the lines of
code added for data transfer between processors
and only few operations need to be performed
sequentially, typically global reductions.

A fixed size problem is used in the
performance evaluation as the focus is on
industrial applications and the intention is to
reproduce the situation in the design process.
When the problem is parallelized over more
processors two parts will influence the
performance results more than the other. Firstly
the computation to communication ratio will
decrease as the partitioning introduces new
internal boundaries between domains. Both the
total amount of data communicated as well as
the number of messages increase. The
communication pattern becomes more
fragmented and the mean message size
decreases. Secondly, when more processors are
added the total amount of fast cache memory
also increases. This means that a larger part of
the total problem will reside in the cache with a
subsequent performance gain. This is called
cache effect and can result in a super linear
speedup, i.e. higher speedup numbers than
number of processors.

The evaluation is performed with the Edge
code using inviscid flow modelling, given by
the Euler equations, around the highly resolved
Gripen fighter with external stores. A depiction
of the surface grid used in this evaluation is
shown in Figure 2. The case is geometrically
complex with detailed external stores placed
underneath the wings. A total of 3 million points
corresponding to approximately 18 million
tetrahedral volume elements are needed for a
full span model to adequately resolve the

5

COST-EFFICIENT USE OF PARALLEL COMPUTERS IN AIRCRAFT DESIGN

geometry and the flow features. A fully
converged steady–state solution can be achieved
in about 500 multi grid cycles. Computational
models of this type and resolution are currently
employed for configuration analysis,
aerodynamic interference analysis and
aerodynamic data generation. Often a large
number of cases with different flow conditions
are computed. In the present case the
aerodynamic installation effect on the external
stores is studied at transonic conditions with
sideslip. Figure 3 presents an example of the
pressure distribution on the upper side of the
aircraft where a blue color indicates low
pressure regions.

Processor performance
Initially the single processor performance is
compared for the 32 and 64 bit processors in
Fig. 4. The processor performance is measured
using both one and both (if available) processors
in a node. The Intel 8.1 F90 compiler is used in
all computations. A notable observation is that
when using nodes with dual processors, which
may be attractive from the point of view of
cost–efficiency when using an expensive
network or from compactness aspects, the
performance is reduced roughly 20 % when two
processors have to share on a common node
memory. The memory bandwidth is in this case
not up to the demands of the memory intensive
application.

The performance on the 64-bit Xeon is 2.3
times the performance on the 2.4 GHz 32-bit
Xeon even though the clock speed only differs
40 %. This is an effect of significantly larger L2
cache (2 MB compared to 512 kB) in the 64-bit
version and a twice as high memory bandwidth,
6.4 GB/s compared to 3.2 GB/s. Another
observation that the memory bandwidth is a
limiting factor is that increase in clock
frequency in not fully retrieved in the
performance for the 32-bit processors.

Network performance
The influence of the network is first evaluated
on the large SCI cluster Monolith. Using dual
nodes an aggregated computational performance
of 34 GFlops is reached on 256 processors.
Using only one processor per node it delivers 21

Figure 2 Surface mesh on test example

0

50

100

150

200

250

300

350

400

1 2

No. proc/node

M
Fl

op
s

Xeon-32 2.2 GHz Xeon-32 2.4GHz P4-32 2.8 GHz Xeon EM64T 3.4GHz

Figure 4 Single processor performance using
1 and 2 processors per node

Figure 3 Pressure distribution on test case

Mattias Sillén

6

GFlops on 128 processors, see Fig. 5. The
application demonstrates a nearly linear parallel
speed-up. This is also seen in the graph, Fig. 6,
where the parallel efficiency stabilizes on 1.05
for the single processor node and 0.85 for the
dual node. From this we conclude that the
network capacity is sufficient at least up to 256
processors. Analyzing the communication
behavior of the code reveals that the
communication pattern quickly gets latency
bound. Already at 8 processors the mean
message transfer time is affected by latency.
The low latency in the SCI network is found to
be crucial for good performance on larger
number of processors. From the speedup and the
efficiency graphs it is clear that the network
performs equally well using single and dual
nodes. It is believed that this is an effect of
using shared memory internally in the node to
handle messages between the processors
belonging to the same node. The load on the
network interface is relatively modest compared
to the network capacity, averaging at a few
Mbytes/s.

Gigabit Ethernet is tested up to 64

processors. The overall performance is
presented in Fig. 7 together with SCI and
Infiniband cluster performance graphs. After 8
processors the efficiency starts to fall and is
around 0.9 at 64 processors, see Fig. 8. The
main reason for this is the much higher latency
(25-30 µs) compared to the high-performance

alternatives (3-5 µs) The Infiniband network
performance is comparable to the SCI network,
even though the much larger L2 cache in the 3.4
GHz nodes give superlinear speedup effects.

1 8 16 32 64
Number of processors

0.8

0.9

1

1.1

1.2

1.3

E
ff

ic
ie

nc
y

Dunder Xeon 3.4GHz Infiniband
Darkstar Xeon 3.4GHz GigE
Maxwell Xeon 2.4GHz SCI
Maxwell Xeon 2.4GHz GigE

Figure 8 Parallel efficiency on clusters with
different network.

1 16 32 64 128 256
Number of processors

0

10

20

30

40

G
Fl

op
s

Dunder Xeon 3.4GHz Infiniband
Darkstar Xeon 3.4GHz GigE
Maxwell Xeon 2.4GHz SCI
Maxwell Xeon 2.4GHz GigE
Monolith Xeon 2.2GHz SCI
Stokes P4 2.8GHz GigE

Figure 7 Parallel performance on clusters with
different network.

0 32 64 128 256
Number of processors

0

10

20

30

40

A
gg

re
ga

te
 G

Fl
op

/s

Dual nodes
Single nodes

Figure 5 Overall performance on Monolith using
single and dual processor nodes.

0 8 16 32 64 128 256
Number of processors

0.8

0.85

0.9

0.95

1

1.05

1.1

Pa
ra

lle
l E

ff
ic

ie
nc

y

Dual node
Single node

Figure 6 Parallel efficiency on Monolith using
single and dual processor nodes.

7

COST-EFFICIENT USE OF PARALLEL COMPUTERS IN AIRCRAFT DESIGN

6 Domain decomposition

A key aspect in efficient use of multiprocessor
systems is the load balancing. For explicit
solvers such as the present CFD solver, the
amount of computational work per grid point is
roughly constant. A good load balance can
therefore be achieved by mapping
approximately the same number of grid points
to each processor. The partitioning can be
performed using various techniques; in this case
the standard graph partitioning program MeTiS
[6] is used. Balancing the workload alone is
however not sufficient when load balancing for
larger number of processors. Communication
load must also be kept at a low and balanced
level. This is exemplified here with a tetrahedral
grid containing 3 Mpoints partitioned from 2 up
to 256 partitions. Two versions of the MeTiS
software are used; p-MeTiS and k-MeTiS. Both
deliver completely balanced partitions
concerning number of points but they differ in
total number of boundary point. Figure 9 shows
the mean number of interface boundary points
per partitions. Above 4 partitions this is in favor
of the k-MeTiS algorithm that also tries to
minimize the number of points in the interface
between partitions. It is not clear why the k-
MeTiS algorithm fails to consistently deliver a
lower number of points to communicate also for
2 and 4 partitions.

In this performance evaluation the load
balancing is performed with the k-MeTis

algorithm that both distributes an equal amount
of grid points to all processors as well as
minimizes the number of grid points in the
domain boundary region. The additional effect
of reducing the number of grid points in the
boundary interface compared to only load
balancing the number of grid points, using p-
MeTiS, is visible from 64 processors, see Fig.
10. The difference at 256 processors is just
below 5 %. This will however be of much larger
importance when using larger parallel systems.

Conclusions

Different cluster configurations are evaluated
for performance using an unstructured flow
solver in an industrial environment. CFD
solvers are memory intense applications and
with dual processor nodes the memory
bandwidth will be a limiting factor. Examples
show a 20 % decrease in performance using
dual nodes compared to single processor nodes.
The cost difference between a dual node and
two single nodes is roughly in the 20-25 %
range.

In typical design applications the
communication is latency bound starting from
approximately 8 processors. Obtaining good
parallel performance for hundreds of processors
will require a low latency network, which
however is significantly more expansive than
the Gigabit Ethernet alternative. Gigabit

0 32 64 128 256
Number of processors

0

50

100

150

200

250

300

Pa
ra

lle
l S

pe
ed

up

p-MeTiS
k-MeTiS

Figure 10 Parallel speedup on Monolith using k-
MeTiS and p-MeTiS.

1 2 4 8 16 32 64 128 256
Number of partitions

0

5000

0000

5000

0000

k-MeTiS
p-MeTiS

Figure 9 Mean number of points communicated
between partitions using different MeTiS
algorithms.

Mattias Sillén

8

Ethernet is a cost-efficient alternative for
parallel applications up to about 80-100
processors. Above that it performs poorly.

The most appropriate cluster combination for
this flow solver depends on the total size of the
cluster and the size of the parallel application.
For a small cluster, up to 48 processors, single
nodes with Gigabit Ethernet will be a cost-
efficient solution. For larger clusters dual nodes
are preferred. Depending on the parallelization
strategy, number of processors per case, low
latency networks can be required. The typical
mesh size for a flow analysis around a complete
aircraft is today in the range of 3–20 million
points and this is usually parallelized on 20–80
processors. This will be well suited to run
efficiently on cluster configurations with
Gigabit Ethernet. Using more than 80–100
processors per case will require low latency
networks for efficiency.

References
[1] Sterling T L, Salmon J, Becker D J and Savarese D.

How to build a Beowulf, Cambridge, MA, MIT Press,
1999.

[2] Sillén M. Evaluation of parallel performance of an
unstructured CFD code on PC-clusters”, Journal of
Aerospace Computing, Information, and
Communication. Vol. 2, pp. 109-119, 2005.

[3] Eliasson P. Edge, A Navier-Stokes solver for
unstructured grids, Proceedings of Finite Volumes for
Complex Applications III, ISBN 1 9039 9634 1, pp.
527-534, 2002.

[4] MPI Forum, URL: http://www.mpi.org
[5] Mavriplis D J. Parallel performance investigation of

an unstructured mesh Navier-Stokes solver. The
International Journal of High Performance
Computing Applications, Volume 16, No. 4, Winter,
pp. 395-407, 2002.

[6] Karypis G and Kumar V. Analysis of Multilevel
Graph Partitioning, Technical Report 95-037,
University of Minnesota, 1995.

