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Abstract  

Linux PC-Clusters are a cost-efficient platform 
for parallel computational fluid dynamics 
(CFD) applications. This paper investigates the 
performance characteristics of an unstructured 
explicit flow solver on multiple clusters. 
Different node configurations and network 
architectures are considered in the evaluation. 
Single processor performance as well as overall 
parallel performance are compared and 
evaluated and recommendations are made for 
performance and cost-efficiency. 

1 Introduction  

The current challenges in the aerospace field are 
to offer products that are both better in 
performance and also faster and cheaper to 
produce. Thus the current business market 
forces aircraft designers towards risk 
minimization and a definitive reduction in cost 
and time to market. The possibility to influence 
life cycle cost is largest in the early design 
stages. This means that the confidence in the 
design must increase in the early phases 
compared to today. Introducing high fidelity 
simulations early in the design process will 
facilitate this if the turn around time 
requirement can be met.  In early phases the 
allowable time frame to conduct flow 
simulations is very limited, in extreme cases in 
the order of minutes. Also in later design stages 
there is a need to reduce the total simulation 
wall time to allow for more advanced physical 
modeling or increased resolution that due to 
computational cost not are feasible today.  

The necessity of high fidelity modeling in the 
design process is often conflicting with the 
requirement of short turn around time. A 
balance between modeling requirement and turn 
around time limitation needs to be established at 
every phase in the design cycle. A common way 
to reduce the turn around time is to use powerful 
parallel computer systems. Traditionally, 
supercomputer resources have been equivalent 
with large cost and therefore not widespread in 
industry. This started to change in the late 1990s 
when PC–cluster with Linux, so called Beowulf 
systems ref. [1], became popular. Larger and 
application specific computer systems are now 
designed using cheap commodity components. 

When designing a PC–cluster for a specific 
application several design choices have to be 
made. The compute node configuration and 
interconnecting network are the two most 
important components in a cluster affecting the 
performance. Compute nodes are generally 
equipped with one or two processor even though 
other configurations are available. In this study 
single and dual processor nodes are evaluated 
and differences between 32- and 64-bit 
architectures are investigated. A comparison is 
made between commodity communication 
hardware, such as switched Gigabit Ethernet, as 
well as hardware specifically designed for high-
performance computing, such as SCI and 
Infiniband.  

Making the better choices will provide 
improved performance of the flow solver and 
thereby offering a chance to improve the 
modeling capability or reducing the turn around 
time in the design process. Other important 
issues for parallel performance are parallel 
implementation strategy, inter-processor 
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communication and load balancing. The 
influence of these factors on total performance 
is also analyzed on a typical aerodynamic 
design example. 

A previously reported study on parallel CFD 
performance on Linux-clusters provides some 
additional background of the code and the 
parallel implementation, see ref. [2]. 

2 Numerical Solution Method 

This study is based on results obtained with the 
unstructured Navier–Stokes solver Edge [3], 
developed at the Swedish Defence Research 
Agency (FOI).  The solver has an edge based 
formulation that makes it possible to compute 
on any type of mesh: structured, unstructured 
(with tetrahedral, hexahedra, prism or pyramids) 
or hybrid.  The solver uses a node-centered 
finite-volume technique where the control 
volumes are formed by a dual grid obtained 
from the control surface for each edge. The 
spatial discretization is either central with 
artificial dissipation or upwind: both approaches 
are second order accurate.  The basic iterative 
scheme for the equations is a Runge-Kutta 
algorithm. Local time stepping and implicit 
residual smoothing accelerate convergence. An 
agglomeration multi grid algorithm is used to 
further accelerate the convergence. Within the 
multi grid cycle a time-step is performed on the 
fine grid, transferring the solution and the 
residuals to the next coarser grid level, 
performing a time-step on the coarse grid level 
and interpolating the corrections back from the 
coarse grid level to update the fine grid solution. 
This process is applied recursively to all coarse 
grid levels in the sequence. All results below are 
obtained with the central scheme with artificial 
dissipation.  

 3 Parallel Implementation 

The parallel implementation is based on domain 
decomposition. In this approach each processor 
executes its own copy of the program but 
operates on a subset of the computational 
domain.  This is often referred to as the single 

program, multiple data (SPMD) paradigm. For 
parallel efficiency it is crucial that processors 
are kept equally busy with local computations 
and that the overall communication is kept to a 
minimum and equally distributed between the 
processors.  

In the serial code, the flux balancing process 
is computed by adding flux contributions from 
each control surface of a control volume to 
appropriate nodes. In the parallel 
implementation, within each processor, flux 
contributions are calculated in the same way. 
Due to the node-centered finite volume 
discretization ghost points are introduced where 
the partition boundaries cross edges to compute 
the fluxes locally, see Fig. 1.  

Ghost point values are updated from the 
partition holding their real images at each 
Runge-Kutta stage. To maintain a complete 
correspondence between serial and parallel 
solutions additional entities are also 
communicated between the domains. This 
includes edge-based variables as spectral radius, 
residual smoothing operations and boundary 
conditions. Global reduction operations and 
synchronization are handled by one processor 
and communicated after a complete iteration 
when also a decision is made to proceed with 
the iteration process or stop and write the 
solution.  

Communication between the processes is 
implemented using the MPI message-passing 
library [4]. The communication pattern is 
predetermined at run-time following the logics 
of the domain decomposition. Communication 
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Figure 1 Layout of primary grid cells, dual control 
volume and partition boundary. 
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is performed by packing data from all boundary 
points on a given processors to be sent to 
another processor into a single buffer that is sent 
as a single message using non-blocking send. 
This standard approach to communicate 
between processors has the effect of reducing 
latency overheads by creating fewer and larger 
messages.  

In the current parallel implementation the 
same processor operates on all grid levels of a 
partition. The domain decomposition is 
performed only on the finest grid level. Control 
volumes on coarser levels are assigned to the 
partition that contains the largest part of each 
individual control volume. This minimizes the 
communication between processors when 
changing grid level but may lead to load 
imbalance on coarser grid levels. An alternative 
is to perform domain decomposition on each 
grid level separately. This will increase the 
amount of communication when changing grid 
level but will guarantee a better load balance 
also on coarser grids levels, see [5]. 

4 Benchmark architecture 

In this performance study five different clusters 
are evaluated, listed in Table 1. They are based 
on either 32- or 64-bit Intel processors. The 
nodes are equipped with single or dual 
processors and the interconnecting network is 
either Gigabit Ethernet and/or high-speed 
interconnects as SCI and Infiniband. In the 
following sections the clusters are briefly 
described. All clusters are designed by National 
Supercomputer Centre (NSC) at Linköping 
University in Sweden. 
 

Table 1 Cluster specifications. 

 

Monolith – 32-bit Intel Xeon 

Monolith consists of 200 dual Xeon nodes. Each 
node has 2 GB RAM and a 2.2 GHz Xeon 
processors. The nodes are connected both by 
Fast Ethernet and SCI. The topology for the SCI 
network is a 3D torus (5x8x5). It entered service 
in November 2002. The system is dedicated to 
academic research in Sweden. A special mpi 
implementation, ScaMPI, is used for the SCI 
network. ScaMPI performance between two 
nodes is about 4.5 µs in latency and 260 MB/s 
in bandwidth. The Fast Ethernet network is only 
intended for file transfer, not parallel 
applications. 

Maxwell – 32-bit Intel Xeon 

Maxwell was build following the same 
principles are Monolith. It contains 40 nodes 
with dual 2.4 GHz Xeon processors linked by 
SCI (2D 5x8) and Gigabit Ethernet. It entered 
service in March 2003. The system is dedicated 
to aeronautical simulations at Saab 
Aerosystems. ScaMPI is used as mpi 
implementation to communication over the SCI 
network. For the Gigabit Ethernet the mpich 
implementation is used. The mpich performance 
between two nodes is about 30 µs in latency and 
70 MB/s in bandwidth. 

Stokes – 32-bit Intel P4 

Stokes is a small commodity cluster with 32 
Intel P4 processors each equipped with 2 GB 
RAM and connected with a switched Gigabit 
Ethernet network.  

 

 

 

Dunder – 64-bit Intel Xeon 
Dunder is equipped with 52 dual nodes 
connected by Gigabit Ethernet and Infiniband 

Name Processor # Nodes # proc./node GHz Cache size Network 
Monolith Intel Xeon IA32 200 2 2.2 512 kB SCI, Fast Ethernet 
Maxwell Intel Xeon IA32 40 2 2.4 512 kB SCI, Gigabit Ethernet 
Stokes Intel P4 32 1 2.8 512 kB Gigabit Ethernet 
Dunder Intel Xeon EM64T 52 2 3.4 2 MB Infiniband, Gigabit Ethernet 
Darkstar Intel Xeon EM64T 44 2 3.4 2 MB Gigabit Ethernet 
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(10 Gbps) network. The processors are 3.4 GHz 
64-bit Xeon with 2MB L2 cache. The system is 
dedicated for weather predictions and entered 
service in September 2005. Parallel applications 
use Scali MPI connect which enables runtime 
selection of the interconnect. 

Darkstar – 64-bit Intel Xeon 

Darkstar is dedicated to aeronautical simulations 
at Saab Aerosystems. It consists of 44 dual 
processor (3.4 GHz 64-bit Xeon) nodes. The 
nodes are connected by Gigabit Ethernet. The 
processors are quipped with a 2MB L2 cache. 
The system entered service in April 2006. The 
lam mpi implementation is used. 

5 Cluster Performance Evaluation 
In parallel processing speedup and efficiency 
are two important measures of the quality of the 
parallel algorithm and there are a number of 
factors limiting the speedup.  

 
1) Software Overhead – Even with a 

completely equivalent algorithm, software 
overhead arises in the parallel 
implementation, i.e. there are generally 
more lines of code to be executed in the 
parallel program than in the sequential 
program.  

2) Load Balancing – Speedup is generally 
limited by the speed of the slowest node. So 
an important consideration is to ensure that 
each node performs the same amount of 
work, i.e. the system is load balanced.  

3) Communication Overhead – Assuming that 
communication and calculation can not be 
overlapped, any time spent communicating 
the data between processors directly 
degrades the speedup. Because of this, a 
goal in the design of a parallel algorithm is 
to make the grain size (relative amount of 
work done between synchronizations - 
communications) as large as possible, while 
keeping all the processors busy. The effect 
of communication on speedup is reduced, in 
relative terms, as the grain size increases. 

4) Amdahl’s Law – This states that the 
speedup of a parallel algorithm is effectively 
limited by the number of operations which 
must be performed sequentially.  

 
Analyzing the implementation of the flow 

solver reveals that the load balancing and the 
communication overhead are the most 
significant factors affecting the parallel 
performance. The communication overhead is 
tightly coupled to network performance of the 
cluster. There is very little software overhead in 
the parallel implementation except the lines of 
code added for data transfer between processors 
and only few operations need to be performed 
sequentially, typically global reductions.  

A fixed size problem is used in the 
performance evaluation as the focus is on 
industrial applications and the intention is to 
reproduce the situation in the design process. 
When the problem is parallelized over more 
processors two parts will influence the 
performance results more than the other. Firstly 
the computation to communication ratio will 
decrease as the partitioning introduces new 
internal boundaries between domains. Both the 
total amount of data communicated as well as 
the number of messages increase. The 
communication pattern becomes more 
fragmented and the mean message size 
decreases. Secondly, when more processors are 
added the total amount of fast cache memory 
also increases. This means that a larger part of 
the total problem will reside in the cache with a 
subsequent performance gain. This is called 
cache effect and can result in a super linear 
speedup, i.e. higher speedup numbers than 
number of processors.  

The evaluation is performed with the Edge 
code using inviscid flow modelling, given by 
the Euler equations, around the highly resolved 
Gripen fighter with external stores. A depiction 
of the surface grid used in this evaluation is 
shown in Figure 2. The case is geometrically 
complex with detailed external stores placed 
underneath the wings. A total of 3 million points 
corresponding to approximately 18 million 
tetrahedral volume elements are needed for a 
full span model to adequately resolve the 
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geometry and the flow features. A fully 
converged steady–state solution can be achieved 
in about 500 multi grid cycles. Computational 
models of this type and resolution are currently 
employed for configuration analysis, 
aerodynamic interference analysis and 
aerodynamic data generation. Often a large 
number of cases with different flow conditions 
are computed. In the present case the 
aerodynamic installation effect on the external 
stores is studied at transonic conditions with 
sideslip. Figure 3 presents an example of the 
pressure distribution on the upper side of the 
aircraft where a blue color indicates low 
pressure regions. 
 

 

 
 
 

Processor performance 
Initially the single processor performance is 
compared for the 32 and 64 bit processors in 
Fig. 4. The processor performance is measured 
using both one and both (if available) processors 
in a node. The Intel 8.1 F90 compiler is used in 
all computations. A notable observation is that 
when using nodes with dual processors, which 
may be attractive from the point of view of 
cost–efficiency when using an expensive 
network or from compactness aspects, the 
performance is reduced roughly 20 % when two 
processors have to share on a common node 
memory. The memory bandwidth is in this case 
not up to the demands of the memory intensive 
application.  

The performance on the 64-bit Xeon is 2.3 
times the performance on the 2.4 GHz 32-bit 
Xeon even though the clock speed only differs 
40 %. This is an effect of significantly larger L2 
cache (2 MB compared to 512 kB) in the 64-bit 
version and a twice as high memory bandwidth, 
6.4 GB/s compared to 3.2 GB/s. Another 
observation that the memory bandwidth is a 
limiting factor is that increase in clock 
frequency in not fully retrieved in the 
performance for the 32-bit processors.  

Network performance 
The influence of the network is first evaluated 
on the large SCI cluster Monolith. Using dual 
nodes an aggregated computational performance 
of 34 GFlops is reached on 256 processors. 
Using only one processor per node it delivers 21 

Figure 2 Surface mesh on test example  
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Figure 3 Pressure distribution on test case  
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GFlops on 128 processors, see Fig. 5. The 
application demonstrates a nearly linear parallel 
speed-up. This is also seen in the graph, Fig. 6, 
where the parallel efficiency stabilizes on 1.05 
for the single processor node and 0.85 for the 
dual node. From this we conclude that the 
network capacity is sufficient at least up to 256 
processors. Analyzing the communication 
behavior of the code reveals that the 
communication pattern quickly gets latency 
bound. Already at 8 processors the mean 
message transfer time is affected by latency. 
The low latency in the SCI network is found to 
be crucial for good performance on larger 
number of processors. From the speedup and the 
efficiency graphs it is clear that the network 
performs equally well using single and dual 
nodes. It is believed that this is an effect of 
using shared memory internally in the node to 
handle messages between the processors 
belonging to the same node. The load on the 
network interface is relatively modest compared 
to the network capacity, averaging at a few 
Mbytes/s. 

 

 
Gigabit Ethernet is tested up to 64 

processors. The overall performance is 
presented in Fig. 7 together with SCI and 
Infiniband cluster performance graphs. After 8 
processors the efficiency starts to fall and is 
around 0.9 at 64 processors, see Fig. 8. The 
main reason for this is the much higher latency 
(25-30 µs) compared  to the high-performance 

alternatives (3-5 µs) The Infiniband network 
performance is comparable to the SCI network,  
even though the much larger L2 cache in the 3.4 
GHz nodes give superlinear speedup effects.  
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Figure 8 Parallel efficiency on clusters with 
different network. 
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Figure 5 Overall performance on Monolith using 
single and dual processor nodes. 
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6 Domain decomposition 

A key aspect in efficient use of multiprocessor 
systems is the load balancing. For explicit 
solvers such as the present CFD solver, the 
amount of computational work per grid point is 
roughly constant. A good load balance can 
therefore be achieved by mapping 
approximately the same number of grid points 
to each processor. The partitioning can be 
performed using various techniques; in this case 
the standard graph partitioning program MeTiS 
[6] is used. Balancing the workload alone is 
however not sufficient when load balancing for 
larger number of processors. Communication 
load must also be kept at a low and balanced 
level. This is exemplified here with a tetrahedral 
grid containing 3 Mpoints partitioned from 2 up 
to 256 partitions. Two versions of the MeTiS 
software are used; p-MeTiS and k-MeTiS. Both 
deliver completely balanced partitions 
concerning number of points but they differ in 
total number of boundary point. Figure 9 shows 
the mean number of interface boundary points 
per partitions. Above 4 partitions this is in favor 
of the k-MeTiS algorithm that also tries to 
minimize the number of points in the interface 
between partitions. It is not clear why the k-
MeTiS algorithm fails to consistently deliver a 
lower number of points to communicate also for 
2 and 4 partitions. 

In this performance evaluation the load 
balancing is performed with the k-MeTis 

algorithm that both distributes an equal amount 
of grid points to all processors as well as 
minimizes the number of grid points in the 
domain boundary region. The additional effect 
of reducing the number of grid points in the 
boundary interface compared to only load 
balancing the number of grid points, using p-
MeTiS, is visible from 64 processors, see Fig. 
10. The difference at 256 processors is just 
below 5 %. This will however be of much larger 
importance when using larger parallel systems.  

Conclusions 

Different cluster configurations are evaluated 
for performance using an unstructured flow 
solver in an industrial environment. CFD 
solvers are memory intense applications and 
with dual processor nodes the memory 
bandwidth will be a limiting factor. Examples 
show a 20 % decrease in performance using 
dual nodes compared to single processor nodes. 
The cost difference between a dual node and 
two single nodes is roughly in the 20-25 % 
range.  

In typical design applications the 
communication is latency bound starting from 
approximately 8 processors. Obtaining good 
parallel performance for hundreds of processors 
will require a low latency network, which 
however is significantly more expansive than 
the Gigabit Ethernet alternative. Gigabit 
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Figure 10 Parallel speedup on Monolith using k-
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Figure 9 Mean number of points communicated 
between partitions using different MeTiS 
algorithms. 
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Ethernet is a cost-efficient alternative for 
parallel applications up to about 80-100 
processors. Above that it performs poorly. 

The most appropriate cluster combination for 
this flow solver depends on the total size of the 
cluster and the size of the parallel application. 
For a small cluster, up to 48 processors, single 
nodes with Gigabit Ethernet will be a cost-
efficient solution. For larger clusters dual nodes 
are preferred. Depending on the parallelization 
strategy, number of processors per case, low 
latency networks can be required. The typical 
mesh size for a flow analysis around a complete 
aircraft is today in the range of 3–20 million 
points and this is usually parallelized on 20–80 
processors. This will be well suited to run 
efficiently on cluster configurations with 
Gigabit Ethernet. Using more than 80–100 
processors per case will require low latency 
networks for efficiency.  
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