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Abstract

The numerical solution of the parabolized
Navier-Stokes (PNS) and globally iterated PNS
(IPNS) equations for accurate computation of hy-
personic axisymmetric flowfields is obtained by
using the fourth-order compact finite-difference
method. The PNS and IPNS equations in the gen-
eral curvilinear coordinates are solved by using
the implicit finite-difference algorithm of Beam
and Warming type with a high-order compact
accuracy. A shock fitting procedure is utilized
in both the compact PNS and IPNS schemes
to obtain accurate solutions in the vicinity of
the shock. The main advantage of the present
formulation is that the basic flow variables and
their first and second derivatives are simultane-
ously computed with the fourth-order accuracy.
The computations are performed for a bench-
mark case; hypersonic axisymmetric flow over
a blunt cone at Mach 8. The present results
for the flowfield variables and also their deriva-
tives are compared with those of the second-order
method and accuracy analysis is performed to in-
sure the fourth-order accuracy of the proposed
method. A sensitivity study is performed for
the basic flowfield, including profiles and their
derivatives obtained from the fourth-order com-
pact PNS and IPNS solutions, and the effects of
grid size and numerical dissipation term used are
discussed. The present work represents the first

known application of a high-order compact finite-
difference method to the PNS schemes which
are computationally more efficient than Navier-
Stokes solutions.

1 Introduction

Due to high sensitivity of some problems such as
flow stability analysis to very small disturbances
in basic flow variables, using high accuracy nu-
merical methods for solving basic flow variables
is essential. Traditional high accuracy finite-
difference methods use larger stencil sizes which
make boundary treatment difficult. Moreover,
spectral methods are restricted to special grids,
whereas compact methods are capable of produc-
ing higher order accuracies without any increase
in numerical stencil. Compared with the tradi-
tional finite-difference schemes of the same order
of accuracy, compact schemes have been proved
to be significantly more accurate with the added
benefit of using smaller stencil sizes, which can
be essential when treating non-periodic boundary
conditions [1, 2].

The objective of the present work is to im-
plement a fourth-order compact finite-difference
method to the parabolized Navier-Stokes equa-
tions for accurate computation of hypersonic
flows. The study has been shown that the PNS
schemes can be used for an efficient and fast
computing the basic flow and the associated flow
stability results in hypersonic speeds [3, 4]. It
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was also found that the stability results are more
sensitive to the accuracy of the basic flowfield
and the derivatives of the flow variables [3]-
[5]. Therefore, by implementation of the high-
order compact finite-difference method to the
PNS schemes [6, 7], accurate basic flow mod-
els suitable for the stability analysis and transi-
tion prediction of hypersonic flows are efficiently
provided.

In the present work, the high-order accurate
solution of hypersonic axisymmetric flows is ob-
tained by implementing a fourth-order compact
finite-difference method based on an implicit al-
gorithm to both the PNS and globally iterated
PNS (IPNS) equations. A shock fitting proce-
dure is used in both the PNS and IPNS com-
pact schemes to obtain accurate solutions in the
vicinity of the shock. The main advantage of
the present formulation is that the basic flow pro-
files and their first and second derivatives, re-
quired for the flow stability analysis, are automat-
ically computed with the fourth-order accuracy.
At first, the dispersive and dissipative properties
of the compact methods are discussed. Then,
the fourth-order compact method is implemented
to the quasi one-dimensional Euler equations to
solve compressible flow inside the Shubin noz-
zle. Finally, The results of the fourth-order com-
pact finite-difference method for the PNS and
IPNS schemes are presented for hypersonic flow
over a blunt cone at Mach 8. The present results
for the basic flow variables and also their deriva-
tives are compared with those of the second-order
method and accuracy analysis is performed to in-
sure the fourth-order accuracy of the proposed
method. A sensitivity study is performed to in-
vestigate the effects of grid size and numerical
dissipation term on the accuracy of basic flow
variables and their derivatives.

2 Governing Equations

2.1 The PNS Equations

The Thin Layer Navier-Stokes (TLNS) equations
are obtained from the full Navier-Stokes equa-
tions by neglecting viscous terms associated with

the streamwise derivatives. The PNS equations
are obtained by dropping the unsteady term in
the TLNS equations and modifying the stream-
wise pressure gradient in the streamwise momen-
tum equation to permit stable marching. The
PNS equations for axisymmetric compressible
flow can be written in dimensionless and conser-
vative form in the generalized coordinate system
(ξ,η) as follows:

∂F̄
∂ξ

+
∂Ḡ
∂η

+ H̄ = 0 (1)

F̄ = F̄i, Ḡ = Ḡi − Ḡv, H̄ = H̄i − H̄v

where the solution vector is

Ū = J−1Û = J−1 [ρ,ρu,ρv,E]T

andF̄i, Ḡi andH̄i are the inviscid flux vectors and
Ḡv andH̄v are the viscous flux vectors.

The PNS equations are a mixed set of
hyperbolic-parabolic equations in the marching
direction, provided that the inviscid flow is su-
personic, the streamwise velocity component is
everywhere positive, and the streamwise pres-
sure gradient term is either dropped in the sub-
sonic region or the departure behavior is sup-
pressed using a suitable technique. The presence
of the streamwise pressure gradient term in the
streamwise convective flux vector permits the up-
stream influences to occur in the subsonic region
of the boundary layer, which leads to exponen-
tially growing solutions referred to as departure
solutions [8]. Stable marching of numerical so-
lution of the PNS equations is achieved in the
subsonic region of the boundary layer by using
the methods proposed by Vigneron et al. [9] and
Schiff and Steger [10]. For this study, the Vi-
gneron et al. [9] technique is implemented to pre-
vent departure solutions.

In the Vigneron et al. approximation, the
streamwise pressure gradient in the momentum
equations is split into an implicit contribution and
an explicit contribution

∂p
∂ξ

=
[
ω

∂p
∂ξ

]

implicit
+

[
(1−ω)

∂p
∂ξ

]

explicit
(2)
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The weighting functionω is determined as

ω= min

[
1,

σγM2
ξ

1+(γ−1)M2
ξ

]
(3)

whereMξ is the local streamwise Mach number
andσ is a safety factor to account for nonlineari-
ties in the analysis. The value ofσ in the pressure
correction relation should be very close to 1; oth-
erwise undesirable oscillations appear around the
sonic line especially in the pressure profile. To
introduce the Vigneron et al. technique into the
PNS equations, a new vector̄F∗ is defined as

F̄∗ = F̄ − P̄ (4)

Thus, the new form of the PNS equations appears
as

∂F̄∗

∂ξ
+

∂P̄
∂ξ

+
∂Ḡ
∂η

+ H̄ = 0 (5)

where the inviscid vectors̄F∗ andP̄ are

F̄∗ = J−1




ρUc

ρuUc +ωξxp
ρvUc +ωξyp
(E + p)Uc


 ,

P̄ = J−1




0
(1−ω)ξx p
(1−ω)ξy p

0




and(u,v) are the Cartesian velocity components,
Uc denotes the contravariant velocity inξ direc-
tion, Uc = ξxu + ξyv, ρ is the density,p is the
pressure andE is the total energy per unit vol-
ume. In this study, the ratio of specific heats is as-
sumed constant,γ= 1.4 , the molecular viscosity
µ is determined by the Sutherland law and the co-
efficient of thermal conductivity is calculated by
assuming a constant Prandtl number,Pr = 0.72 .
Finally, the system of PNS equations is closed by
employing the perfect-gas equations of state. The
preceding equations have been nondimensional-
ized using the reference lengthL (RN dimen-
sional nose radius) and freestream conditions.

In the present PNS solver, the "elliptic" part
of the streamwise pressure gradient term (∂p/∂ξ)

responsible for upstream disturbance propagation
is omitted to permit the space-marching proce-
dure to be stable. This term will be treated ex-
plicitly in the IPNS equations as is discussed in
the next subsection.

2.2 The IPNS Equations

For solving the flowfields with significant up-
stream influences, the omitting of the explicit part
of the streamwise pressure gradient may affect
the accuracy of basic flow variables and their
derivatives. In these cases, the globally iter-
ated PNS equations, called the Reduced Navier-
Stokes (RNS) equations, can be used and the
upstream influences are taken into account by
the forward differencing of the elliptic part of
streamwise pressure gradient. The globally iter-
ated PNS (IPNS) scheme has been used by sev-
eral investigators. The IPNS model presented
herein is based on the method proposed by Bar-
nett and Davis [11]. This IPNS scheme utilizes
an alternating direction explicit (ADE) procedure
which is in the form of a two-step calculation
procedure for each global iteration. In the ADE
method, the streamwise pressure gradient is split
using Vigneron’s technique and a fictitious un-
steady term is appended to the elliptic part as fol-
lows:

∂p
∂ξ

= ω
∂p
∂ξ

+(1−ω)
[

∂p
∂ξ

− ∂p
∂t

]
(6)

to permit the upstream propagation of informa-
tion through the subsonic region in a hyperbolic
manner. Because the IPNS scheme employs the
full pressure gradient term in the subsonic re-
gion of the boundary layer, it can give a solution
comparable with that of the TLNS scheme [3, 4].
Thus, by implementing the fourth-order compact
finite-difference method to the IPNS scheme, a
high-order accurate basic flow model appropriate
for the stability analysis of hypersonic flow can
be efficiently provided.

2.3 Boundary Conditions and Initial Data

The boundary conditions at the wall consist of
no-slip conditions for velocity components, a
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specified wall-temperature or an adiabatic wall,
and zero pressure gradient approximation normal
to the wall. The wall for the cases studied here
is assumed to be adiabatic. At the upper bound-
ary, the bow shock is fitted using a shock fit-
ting technique to obtain an accurate solution of
the PNS equations near the shock. The advan-
tage of the shock-fitting method over the shock-
capturing method is in its capability to produce
oscillation-free profiles especially in the vicinity
of the strong shocks, and therefore, improve ac-
curacy of the results.

The PNS equations are not self-starting for
blunt body computations, and therefore need ap-
propriate initial conditions. The starting data of
the PNS equations is provided by the solution
of the TLNS equations for the blunt cone. The
TLNS equations in the nose region are solved by
the second-order method with fine grid in order to
have the initial data with sufficient accuracy. Fig-
ure 1 shows the initial conditions and the march-
ing procedure for the solution of the PNS equa-
tions. The starting solution on an initial data sur-
face where the inviscid flow is supersonic is ob-
tained from the solution of the TLNS model.

Fig. 1 Marching procedure and initial data surface for
starting the PNS solution over a blunt cone. The figure also
shows development of the velocity field.

2.4 Computational Grid

An algebraic grid scheme is used to compute
flowfield. The lines of constantη are distributed
uniformly along the body surface and are orthog-
onal to the body. To insure that the viscous re-
gions are adequately resolved, the lines of con-
stantη are clustered near the body surface ac-
cording to [8].

x− xw

xs− xw
= ā,

y− yw

ys − yw
= ā (7)

where

ā = 1+ β̄

[
1− ā1−η/ηmax

1+ ā1−η/ηmax

]

in which the clustering parameter̄β, is assigned
to be 1.01 for all calculations. The above grid is
used for both the PNS and IPNS equations.

3 Numerical Simulation

The numerical solution of the PNS and IPNS
equations in the generalized coordinate system
is obtained by using an implicit finite-difference
method in the wall-normal directionη, similar
to the Beam and Warming method [3, 4, 13], in
which the basic flow variables and their first and
second derivatives are automatically computed
with the fourth-order accuracy [6, 7]. The numer-
ical algorithm of the PNS equations for a march-
ing step∆ξ using the first-order backward Euler
implicit scheme can be written in delta form as

∆F̄∗+∆ξ
[

∂∆Ḡ
∂η

+∆H̄

]i

=

−∆ξ
[

∂Ḡ
∂η

+ H̄

]i

−∆Pi (8)

after linearization, the equations are reduced to
the following nonconservative form

C0∆Ū i +C1∆Ū i
η +C2∆Ū i

ηη = CR (9)

where∆Ū i = Ū i+1 − Ū i and ()η = ∂/∂η repre-
sents the derivative with respect toη. When the
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traditional central scheme is used, the unknowns
are ∆Ū i and the blocks are 4× 4 and the ma-
trix of coefficients is tridiagonal. Using a tra-
ditional fourth-order differencing does not keep
this matrix tridiagonal while the present compact
formulation keeps the tridiagonality of the sys-
tem of equations at the expense of having 12×12
blocks. The following fourth-order compact rela-
tions for the first and second derivatives are used
( f ′ = ∆Ūη, f ′′ = ∆Ūηη )

f ′i+1 +4 f ′i + f ′i−1

6
=

fi+1− fi−1

2∆η
+ O(∆η)4

f ′′i+1 +10f ′′i + f ′′i−1

12
=

fi+1−2 fi + fi−1

(∆η)2 + O(∆η)4 (10)

to complete the system of equations for com-
puting the flowfield. In addition to having less
truncation error of the present formulation of the
compact method in comparison with the tradi-
tional fourth-order scheme, the main advantage
of the present formulation is that the basic flow
variables and their first and second derivatives,
required for the flow stability analysis, are si-
multaneously computed with the fourth-order ac-
curacy. It has been shown that the traditional
finite-difference method for the discrete differen-
tiation of the basic flow profiles causes oscilla-
tions near wall where high clustering grid points
are used [3, 4]. The present formulation causes
less numerical oscillations compared to the tradi-
tional method.

3.1 Numerical Dissipation Term

High-order dissipation term must be added to
damp high-frequency oscillations associated with
the central differencing of derivatives in theη-
direction. Herein, a 6th-order dissipation term is
used to stabilize the numerical instability of the
method

De = εe

[
∂F̄∗

∂Ū

]
(∇ η∆η)3Ū i (11)

This term is added to the right-hand side of
the Eq. (9). The stability bound for the dissi-
pation coefficient is obtained from the stability
analysis of the numerical method (see App. A).
The present study demonstrates that the basic
flow profiles and their derivatives based on high-
order compact methods are sensitive to the grid
size and especially the numerical dissipation term
used in computing the flowfield, as discussed in
the numerical results section.

3.2 Boundary Treatment

The no-slip conditions for the velocity compo-
nents on the wall using the conservative variables
are

Ū i+1
2 = Ū i+1

3 = 0

implies

∆Ū i+1
2 = ∆Ū i+1

3 = 0 (12)

where subscripts indicate the elements of∆Ū , not
the grid numbers. Also the zero pressure gradient
approximation normal to the wall along with the
no-slip conditions gives

∂p
∂η

∣∣∣∣
wall

= 0

which implies

∂
∂η

(JŪ4)
i+1 = 0 (13)

or

Ji+1
η ∆Ū i

4+ Ji+1(
∆Ū i

4

)
η =

−
(

Ji+1
η ∆Ū i

4 + Ji+1(
Ū i

4

)
η

)
(14)

and the adiabatic wall with the above zero pres-
sure gradient yields

∂ρ
∂η

∣∣∣∣
wall

= 0

which implies

Ji+1
η ∆Ū i

1+ Ji+1(
∆Ū i

1

)
η =

−
(

Ji+1
η ∆Ū i

1 + Ji+1(
Ū i

1

)
η

)
(15)
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Note that Eqs. (14) and (15) are in the form of
Eq. (9). Finally, at the shock boundary the flow
variables are initially assumed to be the same
as the previous marching step (freestream con-
ditions), i.e.

(JŪ)i+1 = (JŪ)i

which implies

Ji+1∆Ū i =
(
Ji − Ji+1)Ū i (16)

At each station, the shock slope and the flow vari-
ables are iteratively corrected by using compati-
bility and Rankine-Hugoniot relations in an ex-
plicit manner. The iterative process is repeated at
the shock until the solution converges, and then
the solution marches on the next solution plane.

To have a tridiagonal system of equations,
two two-point compact third-order schemes are
used for the points adjacent to the wall and shock
boundaries

f j − f j+1 +(∆η) f ′j +

(∆η)2

6
(2 f ′′j + f ′′j+1) + O(∆η)4 = 0

f j − f j+1 +(∆η) f ′j+1 + (17)

(∆η)2

6
( f ′′j +2 f ′′j+1) + O(∆η)4 = 0

The simplicity of treating boundary conditions of
Von-Neumann type with the compact method is
one of the advantages of using compact schemes
that is worth mentioning here. The bound-
ary finite difference schemes 17 allow applying
boundary conditions, Eqs. (14) and (15), without
missing the tridiagonality of the system of equa-
tions while preserving the third-order accuracy at
the boundaries.

3.3 Block Tridiagonal System of Equations

The preceding system of Eqs. (9) and (10) along
with the above boundary conditions forms a
block tridiagonal system of equations for{X} =
{∆Ū i,∆Ū i

η,∆Ū i
ηη}T with a block size of 12×12

as follows:

[M]{X} = {R} (18)

where

[M] =




B1 D1
... ... . . .

A j B j D j
. . . . . . . . .

AJmax BJmax




,

{X} =





X1
...

Xj
...

XJmax





, {R} =





R1
...

R j
...

RJmax





where the block elements are

B1 =




C0 C1 C2

I hI h2I
3

I O −h2I
6


 ,

D1 =




O O O

−I O h2I
6

−I O −h2I
6


 ,

j = 1

A j =




O O O
−I −hI

3 O

I O −h2I
12


 ,

B j =




C0 C1 C2

O −4hI
3 O

−2I O −10h2I
12


 ,

D j =




O O O
I −hI

3 O

I O −h2I
12


 ,

2≤ j ≤ Jmax−1

AJmax =




O O O
−I −hI −hI

3

−I O h2I
6


 ,

BJmax =




C0 C1 C2

I O −h2I
6

I −hI h2I
3




j = Jmax

and the unknown and right-hand side vectors are

Xj =





∆U
∆Uη
∆Uηη



 , Xj =





CR

O
O




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whereI is a 4×4 identity matrix andO is a 4×4
zero matrix or zero vector of length 4. The matri-
cesC0, C1 andC2 introduce the governing equa-
tion 2 and also the boundary conditions into the
system of equations.

A block-tridiagonal solver is used to cal-
culate the incremental solution vector{X} =
{∆Ū i,∆Ū i

η,∆Ū i
ηη}T , and then the flow variables

and the first and second derivatives are automati-
cally determined as follows

Ū i+1 = Ū i +∆Ū i

Ū i+1
η = Ū i

η +∆Ū i
η (19)

Ū i+1
ηη = Ū i

ηη +∆Ū i
ηη

3.4 Solution of IPNS Equations

As mentioned before, for computing the flowfield
using the single sweep PNS scheme, the explicit
streamwise pressure gradient term∆Pi in Eq. (8)
is dropped. For the solution of the IPNS model,
the above algorithm can be used and the stream-
wise pressure gradient term is treated by employ-
ing the ADE procedure. The ADE method, using
a first-order forward difference formula for the
explicit pressure gradient term in Eq. (6), is writ-
ten in two steps as follows:

First step:

∂p
∂ξ

∣∣∣∣
i+1

= ω
pi+1

m − pi
m

∆ξ
+

(1−ω)

[
pi+1

k − pi
k

∆ξ
−

pi+1
m − pi+1

k

∆t

]
(20)

In this step, the PNS equations are solved
with the streamwise pressure gradient given by
Eq. (20). The solution is marched from the up-
stream to the downstream boundary to obtain
the pressure distribution at the intermediate time
level pm.

Second step:

pi+2
k − pi+1

k

∆ξ
−

pi+1
m − pi+1

k

∆t
=

pi+2
k+1− pi+1

k+1

∆ξ
+

pi+1
k+1− pi+1

m

∆t
(21)

The above equation is solved by marching the
solution from the downstream to the upstream
boundary to obtain the pressure at the new time
level pk+1. This simple relation enforces the
propagation of information upstream in a rela-
tively rapid manner.

An appropriate outflow boundary condition
for the IPNS solution is provided by setting the
streamwise pressure gradient equal to zero at the
outer boundary. The IPNS solution requires the
initial pressure distribution in the subsonic re-
gion. The initial guess can be adequately pro-
vided by solving the standard single sweep PNS
model. As this initial condition is provided, the
solution of the IPNS model is obtained by the
ADE procedure, and the pressure is stored at all
stations only in the subsonic region. Then, the
process is repeated until the solution converges
to a specified convergence criterion. To acceler-
ate the convergence rate of the IPNS model, the
under-relaxation procedure for pressure calcula-
tion in the subsonic region is applied as follows:

pk+1 = Ωp pk+1+(1−Ωp)pk, Ωp < 1 (22)

4 Numerical Results

The high-order accurate solution of hypersonic
axisymmetric flows is obtained by implement-
ing the fourth-order compact finite-difference
method to the PNS and globally iterated PNS
(IPNS) equations. At first, the dispersive and
dissipative properties of the compact method are
studied. Then, the fourth-order compact method
is implemented to the quasi one-dimensional Eu-
ler equations to solve compressible flow inside
the Shubin nozzle. Finally, The numerical solu-
tions of the fourth-order compact PNS and IPNS
schemes are presented for hypersonic flow over a
blunt cone at Mach 8. A sensitivity study is also
performed to investigate the effects of grid size
and numerical dissipation term on the accuracy
of basic flow profiles and their derivatives.
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Table 1 Stability bound of different space and time dis-
cretization for the linear wave equation wherer = c∆t/∆x
is the courant number.

Space Time Stability
Discretization Discretization Bound

Forward r = 0
Central 4th-order Central r = 0

Backward r ∈ ℜ
Forward r = 0

Forward 3rd-order Central r ∈ ℜ −

Backward r ∈ ℜ −
(
0, 1

3

)

Forward r = 0
Backward 3rd-order Central r ∈ ℜ +

Backward r ∈ ℜ −
(−1

3 ,0
)

4.1 Numerical Stability Analysis of Compact
Schemes

The central fourth-order and upwind third-order
compact schemes are first examined by solving
the one-dimensional linear wave equation, that
is, ut + cux = 0. The purpose of this task is to
confirm the numerical stability of the schemes.
Furthermore, the modified differential equations
for several time discretization schemes and also
amplitude and phase errors of each of them are
derived to study dispersive and dissipative prop-
erties of the methods. Table 1 shows the sta-
bility bound of different schemes. The results
show that forward time-differencing is uncondi-
tionally unstable and backward time-differencing
is unconditionally stable for the central compact
scheme for the linear wave equation.

4.2 One-Dimensional Nozzle Flow

Since the Navier-Stokes equations have nonlin-
ear terms which may lead to instability, before
applying the compact method to the parabolized
Navier-Stokes (PNS) equations, the fourth-order
compact scheme is applied to the quasi one-
dimensional Euler equations for computing com-
pressible flow inside the Shubin nozzle [7, 14] to
gain some numerical experiences. A 6th-order
dissipation term is used to stabilize the numeri-
cal instability of the scheme. The flow is super-
sonic and the characteristic boundary conditions
are used at the outlet. Figure 2 shows the non-
dimensional pressure distribution along the noz-

Table 2 Comparison of computed and exact pressure val-
ues at middle of the nozzle (x = 5) for εe = 0.001.

∆x Computed value Error
1.0 0.5413949558016263 0.4940560582674669E−03
0.5 0.5418449196455760 0.4409221431778132E−04
0.25 0.5418861898342086 0.2822025685245144E−05
0.125 0.5418887835033724 0.2283565213589966E−06
Exact 0.5418890022432340 ————–

zle using 20 grid points, while Table 2 gives the
value of non-dimensional pressure in the middle
of the nozzle (x = 5) and the corresponding error
for different grid spacing. The fourth-order accu-
racy of the method is demonstrated by compari-
son with the exact solution, as shown in Fig. 3.

2.99 3 3.01 3.02
0.939

0.94

0.941

0.942

x

p
* /p

in

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Exact
4th­order compact εe = 0.001
4th­order compact εe = 0.005
4th­order compact εe = 0.01

4.995 5.000 5.005

0.5416

0.5418

0.5420

0.5422

0.5424

Fig. 2 Comparison of computed and exact pressure dis-
tributions along the nozzle.

4.3 Hypersonic Flow over a Blunt Cone

The numerical solution of the parabolized
Navier-Stokes (PNS) equations for computing
supersonic/hypersonic flowfields is carried out by
using the fourth-order compact finite-difference
method. Both the PNS and globally iterated
PNS (IPNS) models are used. The geometry
and the freestream conditions are adapted to the
wind-tunnel blunt cone experiment of Stetson et
al [15]. For this blunt cone, the flow condi-
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ε = 0.01
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slope = 5.16

slope = 4.96

slope = 4.30

Fig. 3 Order analysis of numerical solution of the Shubin
nozzle by the 4th-order compact method. Symbols indi-
cate numerical values and solid lines indicate power-fitted
curves.

tions are a freestream Mach number ofM∞ = 8,
a freestream unit Reynolds number ofRe∞/m =
8.2021× 106 and a freestream temperature of
T ∗

∞ = 54.3K (the starred variables are referred to
dimensional ones). The blunt cone has a half-
angle of θc = 7◦, and the study is performed
at zero angle of attack. The blunt cone has
a spherical nose radius ofRN = 3.81mm, and
the freestream Reynolds number based on this
length isRe∞ = 31250. For this case, a sensi-
tivity study is performed for the basic state solu-
tion, including the profiles and their derivatives
obtained from the high-order compact PNS and
IPNS schemes, and the effects of grid size and
numerical dissipation term used are discussed.
All profiles and their derivatives calculated by the
fourth-order compact PNS and IPNS models are
presented at the marching station,S∗/RN = 175.

The second-order central TLNS code [5, 12]
solves the subsonic region of the flowfield up
to S = S∗/RN ≤ 4.0 with 80 grid points in the
streamwise direction and 100, 200 and 400 grid
points in the wall-normal direction to provide the
initial data plane for the solution of the PNS and
IPNS codes. The marching stepsize for the PNS

and IPNS codes,∆ξ, is chosen to be the same as
that of the TLNS code, that is,∆ξ = 0.05. Fig-
ure 1 shows the regions solved by the TLNS and
PNS equations. The present fourth-order com-
pact PNS and IPNS codes have been thoroughly
verified by comparison with those of the second-
order method [3, 4]. Details of these investiga-
tions can be found in Refs. [3]-[7].

A grid independence study is conducted to
evaluate the effects of grid size in the wall-normal
direction on the flow variables. For this study, the
Mach number profile is chosen due to its depen-
dency on both the momentum and energy equa-
tions. Figure 4 compares the Mach number pro-
file computed by the second-order central and
fourth-order compact PNS models at the desired
station,S∗/RN = 175. The results of the second-
order Beam and Warming method are performed
for different grid points in the wall-normal direc-
tion. It is clear that Jmax= 200 is an adequate
grid for the second-order method [3, 4]. It can
be seen that the results of the fourth-order com-
pact solution using Jmax= 100 are comparable
with those of second-order solutions using Jmax
= 200 and 400.

Mach Number

y n*
/R

N

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

Jmax = 100 (2nd­order Central)
Jmax = 200 (2nd­order Central)
Jmax = 400 (2nd­order Central)
Jmax = 100 (4th­order Compact)

Jmax = 200

Jmax = 100
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U ‘ U_~%^‘*
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Subsonic Region

M >1
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Fig. 4 Comparison of Mach number profile for the 2nd-
order central and 4th-order compact PNS models for the
blunt cone,M∞ = 8 andRe∞ = 31250 atS = 175.
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Fig. 5 Comparison of surface temperature distribution for
the 2nd-order central and 4th-order compact PNS models
for the blunt cone,M∞ = 8 andRe∞ = 31250.

Figure 5 presents a comparison of the surface
temperature distribution for the second-order
central and fourth-order compact PNS models
for different number of grid points in the wall-
normal direction. The compact method with
Jmax= 100 gives the same distribution as the
second-order method with Jmax= 400. The ef-
fect of numerical dissipation value in the compact
solution of the PNS model on the surface temper-
ature using Jmax= 100 is examined in Fig. 6. No
considerable difference is observed for the 6th-
order dissipation, while the 4th-order dissipation
significantly affects the surface temperature. The
reason is that the numerical value of the 6th-order
dissipation near the wall is much smaller than
that of the 4th-order dissipation, with the same
dissipation coefficient. The 4th-order dissipation
term was also found to have significant effects
on the surface temperature for the second-order
method [3, 4].

To verify the order of a numerical method in a
specific problem, it is usual to compare the value
of variables in the interior nodes among differ-
ent grid sizes. However, in this simulation due to
dependency of the shock position to the numeri-

S*/ RN

T
* w

/T
∞

0 50 100 150 200 250
11.6

11.8

12

12.2

12.4

12.6

12.8

4th­order dissipation, εe = 0.01
4th­order dissipation, εe = 0.005
6th­order dissipation, εe = 0.01
6th­order dissipation, εe = 0.005

Fig. 6 Effect of 6th- and 4th-order dissipation terms on
surface temperature distribution for the 4th-order compact
PNS model for the blunt cone,M∞ = 8 andRe∞ = 31250.

cal solution and also due to nonuniformity of the
grid, the position of the shock and consequently
the position of the grid points in the wall-normal
direction do not have the same location for dif-
ferent number of grid points. Due to this diffi-
culty, one should select the surface variables for
evaluating the accuracy of the method. However,
the accuracy of the method is influenced by the
boundary treatment used which is a third-order
compact finite-different scheme with respect to
the first derivatives. For this study, the skin fric-
tion coefficient due to its dependency on the first
derivative of the velocity is chosen to evaluate
the numerical accuracy of the compact method.
Three cases are considered for this analysis, that
are, Jmax= 100, 200 and 400 where the finest
grid is considered to be the exact solution. To
avoid local effects, the followingL2-norm is de-
fined

e =
(∫ S2

S1

|ψ−ψexact|2dS

)1
2

, ψ = Cf (23)

whereS1 is taken far enough to remove the ef-
fect of initial conditions. Using the above norm,
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the computed order of the compact method is ob-
tained as

log2

(
e100

e200

)
= 2.84

using

S1 = 100, S2 = 200

which seems reasonable considering the bound-
ary treatment used is third-order. However, the
above value is observed to be dependent onS1, S2

and the chosen variable and varies between 2.5−
3.5. Beside accurate computation of the ba-

Dp

y n*
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N

­0.12 ­0.10 ­0.08 ­0.06 ­0.04 ­0.02 0.00 0.02
0

2

4

6

8
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Jmax = 100 (4th­order Compact PNS)
Jmax = 200 (2nd­order Central PNS)
Jmax = 200 (2nd­order Central TLNS)

P S odel

IP S odel

TL S odel

Dp

y^‘*
_n/

R_N

Fig. 7 Comparison of first derivative of pressure profile
for the 2nd-order central and 4th-order compact PNS mod-
els and the TLNS model for the blunt cone,M∞ = 8 and
Re∞ = 31250 atS = 175.

sic flowfield, the accuracy of the first and second
derivatives of the flow variables with respect to
the wall-normal direction are crucial for the flow
stability analysis of high speed flows. In addition
to the global accuracy, the main advantage of the
present compact formulation for computing the
flowfield is that the basic flow variables and their
first and second derivatives are automatically cal-
culated with the fourth-order accuracy and no in-
termediate computation of the derivatives, which
usually produces oscillations in these profiles, is

DU

y n*
/R

N

­0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.4

0.8

1.2

PNS (4th­order Compact, Jmax = 100)
IPNS (4th­order Compact, Jmax = 100)
TLNS (2nd­order Central, Jmax = 200)

P S odel

TL S odel

IP S odel

M

Subsonic Regi on

M 1

1

y^‘*
_n/

R_N

D 2U

Subsonic Region

M >1

M <1

Fig. 8 Comparison of first derivative of velocity profile
for the 4th-oder compact PNS and IPNS models and the
TLNS model for the blunt cone,M∞ = 8 andRe∞ = 31250
atS = 175.

required. Hereinafter, the symbolD represents
the derivative with respect to the wall-normal di-
rection yn = y∗n/RN . Figure 7 shows the first
derivative of the pressure profileDp from the
fourth-order compact PNS model using Jmax
= 100 with those of the second-order PNS and
TLNS models using Jmax= 200 at station 175
which shows no considerable difference among
these curves. Note that the basic flow based
on the TLNS model [5, 12] for the blunt cone
studied herein are available for Jmax= 200 and
β̄ = 1.01. Figure 8 shows a comparison of the
first derivative of the streamwise velocity pro-

file DU (U = (uξx + vξy)/
√

ξ2
x + ξ2

y) from the

fourth-order compact PNS and IPNS models us-
ing Jmax= 100 with those of the second-order
TLNS model using Jmax= 200 at the desired
station. The deviation of the PNS model is due
to neglecting the explicit part of the streamwise
pressure gradient in Eq. (2) which is not omitted
in the IPNS model, and therefore, this deviation
is completely compensated by the IPNS model.
Although the results of the flowfield based on
the IPNS and TLNS models are nearly the same,
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the IPNS model is computationally more effi-
cient than the TLNS model. Thus, using the
fourth-order compact IPNS scheme, a high-order
accurate and efficient basic flow model can be
provided. Figure 9 compares the first deriva-
tive of the streamwise velocity profileDU from
the IPNS model for the second-order central and
fourth-order compact solutions. It is obvious that
the results of the compact method with Jmax
= 100 is comparable with those of the second-
order method using Jmax= 400.

DU

y n*
/R

N

­0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

Jmax = 100 (2nd­order Central)
Jmax = 400 (2nd­order Central)
Jmax = 100 (4th­order Compact)

Fig. 9 Comparison of first derivative of velocity profile
for the 2nd-order central and 4th-order compact IPNS mod-
els for the blunt cone,M∞ = 8 andRe∞ = 31250 atS = 175.

A sensitivity study is also performed for the
higher derivatives of the flow variables. Fig-
ure 10 demonstrates the effect of grid refinement
in the streamwise direction on the second deriva-
tive of the temperature profile,D2T , computed
by the fourth-order compact PNS model using
Jmax= 200 for different values of the march-
ing stepsize∆ξ at station 175. The figure shows
marching stepsize does not affect on theD2T pro-
file. This is evident from the fact that the evo-
lution of the flow in the streamwise direction at
the afterbody region (S ≥ 75) is very slow. To
examine the improvement in the second deriva-
tives of the flow variables, the profiles ofD2T for

D2T

y n*
/R

N
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0

0.5

1

1.5

∆ξ = 0.1
∆ξ = 0.05
∆ξ = 0.025

Fig. 10 Effect of grid refinement in the streamwise direc-
tion for second derivative of temperature profile in the 4th-
order compact PNS solution for the blunt-cone,M∞ = 8
andRe∞ = 31250 atS = 175.
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Fig. 11 Comparison of second derivative of tempera-
ture profile for the 2nd-order central and 4th-order compact
IPNS models for the blunt cone,M∞ = 8 andRe∞ = 31250
atS = 175.

the second-order central and fourth-order com-
pact IPNS models are shown in Fig. 11. The re-
sults of Jmax= 100 for the compact method and

12



Implementation of High-Order Compact schemes to the Iterative Parabolized Navier-Stokes Equations

those of Jmax= 200 for the second-order method
are nearly the same except in an oscillation near
yn ≈ 0.7 which is close to high gradient region of
the profile (the critical layer region). This oscil-
lation is caused by the 6th-order dissipation term
used. Figure 12 shows the values of the fourth el-
ement of dissipation vector which correspond to
the energy equation. As the grid becomes finer
or a smaller dissipation value is used, the amount
of dissipation becomes closer to zero. Figure 13
presents the effect of numerical dissipation on the
second derivative of the temperature profileD2T
from the fourth-order compact IPNS model for
different grids and different values of dissipation
coefficient. It is clear that the oscillation in the
second derivative of temperature profile can be
eliminated by using a finer grid, i.e. Jmax= 140
or by choosing a smaller amount of dissipation
value, i.e. in the range ofεe = 0.0002−0.0005
instead of 0.001. For fine grids the value ofεe

can be in the range ofεe = 0.0001−0.001 with-
out any considerable effect in the results, how-
ever, for smaller values of dissipation, very small
oscillations can be seen in the boundary layer re-
gion. It was found that in general for coarse grids,
the dissipation term can influence higher deriva-
tives of the flow variables. Therefore, special at-
tention should be paid in using the artificial dissi-
pation for stabilizing the numerical instability of
high-order compact finite-difference schemes to
obtain accurate basic flow models.

In Fig. 14 the second derivative of the temper-
ature profileD2T is obtained by differencing the
temperature values of the solution of the fourth-
order compact IPNS model in two ways: 2nd-
order central differencing and 4th-order com-
pact differencing. It shows the maximum value
of D2T in the critical region is predicted better
with compact differencing, especially for a lower
number of grid points i.e., Jmax= 100. As the
number of grid points increases, the accuracy of
the higher derivatives of the basic flow profiles
becomes independent of the way of computing
the derivatives.

Finally, the CPU-time comparison of the var-
ious solutions for the same case is performed
to show the efficiency of using the high-order

εe (∆η)6 D6U4
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Fig. 12 Distribution of 6th-order dissipation term for dif-
ferent numerical dissipation and grid spacing in the 4th-
order compact PNS solution for the blunt cone,M∞ = 8
andRe∞ = 31250 atS = 175.
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Fig. 13 Effect of numerical dissipation value and grid
size on second derivative of temperature profile in the 4th-
order compact IPNS solution for the blunt cone,M∞ = 8
andRe∞ = 31250 atS = 175.

compact PNS schemes. The present calcula-
tions using the PNS and IPNS schemes are per-
formed on a 3.2-GHz Pentium IV computer. Fig-
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Fig. 14 Comparison of second derivative of tempera-
ture profile for the 2nd-order and 4th-order compact dif-
ferencing of the compact IPNS solution for the blunt cone,
M∞ = 8 andRe∞ = 31250 atS = 175.
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Fig. 15 Convergence history of the 2nd-order central and
4th-order compact IPNS models using∆ξ/∆t = 0.4 and
Ω = 0.7 for the blunt cone,M∞ = 8 andRe∞ = 31250.

ure 15 shows the convergence history of both
the second-order central and fourth-order com-
pact IPNS models using∆t/∆ξ = 2.5 andΩ = 0.7
for the blunt cone studied herein. These solutions

are obtained with Jmax= 200 for the global re-
gion 4≤ S ≤ 250 which includes approximately
5000 marching steps for each global iteration.
The computations are considered to be converged
when the root mean square (RMS) of the relative
change in pressure is less than 1×106. The num-
bers of global iterations for convergence of the
second-order central and fourth-order compact
IPNS models are about 81 and 92, respectively.
The computation times are about 9 and 190 min-
utes for the second-order central and fourth-order
compact IPNS models (6 and 120 seconds for
those of the PNS models), respectively. The CPU
time of the second-order TLNS solution for the
regionS ≤ 250 using Jmax=200 grid points was
about 260h on a Cray Y-MP [5, 12]. It is clear
that both the fourth-order compact PNS and IPNS
schemes are suitable for accurate and efficient
computation of basic flow models in comparison
with the TLNS scheme.

5 Conclusions

The numerical solution of the parabolized
Navier-Stokes schemes for computing super-
sonic/hypersonic axisymmetric flowfields is ob-
tained by using the fourth-order compact finite-
difference method. Both the PNS and IPNS mod-
els are considered. Some significant conclusions
regarding the present calculations based on the
high-order compact PNS schemes are summa-
rized as follows:

1. The present results indicate that surface
variables are accurately computed by the
compact method whereas the second order
method shows considerable different re-
sults with different grid spacing. The com-
pact method is capable of computing the
flowfield variables especially their deriva-
tives more accurately than the second-
order method.

2. In addition to the global accuracy, the
main benefit of using the present high-
order compact formulation for the solu-
tion of the flowfield is that the derivatives
of the flow variables, required for stability
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computations, are automatically calculated
with the same accuracy of the flow vari-
ables and no intermediate computation of
the derivatives, which usually produces os-
cillations in these profiles, is needed. Note
that treating the Von-Neumann boundary
condition is much simpler with the com-
pact method without loss of accuracy and
tridiagonality.

3. It is demonstrated that the derivatives of
the flowfield variables computed based on
high-order compact methods are sensitive
to the number of grid points and espe-
cially the numerical dissipation. Using
the compact method no further clustering
is needed near the wall and special atten-
tion should be focused on the critical layer.
To obtain more accurate solution especially
in the derivatives near the critical layer,
high-order dissipation term with a reason-
able coefficient must be added. The study
indicates that any practical development
in high-order compact methods requires a
more sophisticated numerical dissipation.

4. Although the results of the flowfield based
on the IPNS and TLNS models are almost
identical, the IPNS model is computation-
ally more efficient than the TLNS model.
Therefore, using the fourth-order compact
IPNS model, a high-order accurate and ef-
ficient basic flow model can be provided.

5. The present study introduces the high-
order compact solutions of the PNS
schemes for providing accurate and effi-
cient basic flow models to be used for the
stability analysis and transition prediction
of hypersonic axisymmetric flows.
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A Linear Stability of 6th-Order Dissipation
Term

To obtain the stability bound forεe we consider
the one-dimensional linear wave equation and the
6th-order dissipation term:

ut + cux = εe
(∆x)6

(∆t)
uxxxxxx

Now using the compact differencing for the space
discretization and Euler implicit method for the
time-marching scheme and also using the opera-
tor notation for the 6th-order dissipation, we have

un+1−un + rQ−1Dun+1 = εe(∇∆ )3un

r =
c∆t
∆x

Qui =
ui+1 +4ui +ui−1

6

Dui =
ui+1−ui−1

2
(∇∆ )ui = ui+1−2ui +ui−1

and implementing the Von-Neumann stability
analysis, the amplification factor will be

g =
ûn+1

ûn =
(εe(∇∆ )3 +1)e jikmx

(1+ rQ−1D)e jikmx

=
Q(εe(∇∆ )3 +1)e jikmx

(Q+ rD)e jikmx

=
(cosβ+2)(εe(2cosβ−2)3 +1)

(cosβ+2)+3 jrsinβ
un

i = ∑ ûn
i e jikmx

j =
√
−1, 0 < β = km∆x < π

For the stability we require|g| < 1 and the maxi-
mum of the above function occurs atβ= π, there-
fore the stability bound is

0≤ εe ≤
1
32

= 0.03125
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