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 Abstract

Supersonic travel over land would be a reality, if
new aircraft are designed such that they produce
quieter ground sonic booms, no louder than 0.3 psf
according to FAA requirement.  To accomplish this
challenging goal, research  has to be focused on
three phases of research work, which are addressed
in this paper. The first phase is focused on
development of advanced prediction tools for shock
waves emanating from aircraft and propagating to
the ground, 6-8 miles away from the aircraft. This
phase is completed and two applications are
demonstrated, which cover the F-5E aircraft and a
double cone configuration. The second phase is
focused on development of prediction tools for
sonic boom focusing (superboom), which develops
during aircraft accelerations during climbing,
turning and maneuvering. Several schemes, which
use the numerical solution of the nonlinear Tricomi
equation, have been developed and their results are
demonstrated through several computational
applications. The third phase is focused on the
development of mitigation techniques of sonic boom
strength to reduce the ground boom signature. A
few applications; which use the wing dihedral angle
and addition of a boom piece to the aircraft nose,
are presented.

1. Introduction

In this paper, we address each of these three areas
of research work; prediction, focusing and
mitigation, and present current computational
applications and current and future progress as well.
In the following sections, each area of research
work is presented and the results are discussed.
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2. Sonic Boom Prediction

2.1 Background

For sonic boom computation and prediction, the
near-field domain around the aircraft is computed
using an Euler-equations solver which is a modified
CFL3D code. In the far-field domain the full-
potential equation is numerically solved. The reason
behind choosing the full-potential equation versus
using the Euler equations or the multi-pole linear
equation for the far-field computations is
computational efficiency (versus the substantial
computational time needed for the Euler equations
marching several miles [6-8 miles]), and carrying
the nonlinear effects of the propagating waves
(versus the multi-pole linear equation).  At the
interface plane between the Euler near-field
solution and the full-potential solution,  velocity
components of the Euler-equations solver are
transformed into a velocity potential that is used as
the initial condition of the full potential solver.
Starting with this interface solution, the
conservative form of the steady full-potential
equation is used with a space-marching, upwind
scheme [1], [3-4]. This scheme is "augmented" by a
main block/sub-block technique which
accommodates the treatment of the varying speed of
sound with altitude. Grid adaptation and physical-
geometrical shock fitting (SFGA) schemes have
been developed and applied to the Euler equations
near-field solver and the main blocks and sub-
blocks of the far-field full-potential equation solver.

2.2 Computational Applications

The capability of the newly-developed full-potential
propagation code is demonstrated for predicting the
sonic-boom ground signature of the



Fig. 1: Schlieren photo of the near-field solution
of the F5-E modified aircraft

modified F-5E aircraft used in the F-5 “Shaped
Sonic Boom Experiment” (SSBE) Program. The
computational application is that of a modified F-
5E flight 15, which was conducted by Northrop-
Grumman Company on January 13, 2004. Figure 1
shows  the Schlieren density contours at h/L = 1.82
(91ft) below the aircraft, which are computed by the
modified CFL3D Euler code using the Northrop-
Grumman structured grid (23 multi-blocks with a
total of 17 mil grid points) and flow conditions.
Here, the modified F-5E aircraft is at a 32,686ft
altitude, 1.92o angle of attack and 1.414 Mach
number. Figure 2 shows a good comparison of the
computed ground overpressure using the present
full-potential (FP) code with the measured field
data provided by Northrop- Grumman.

Next, the structured-grid CFL3D code is modified
and applied to a double-cone configuration, Ref.
[5](see Fig. 3). The flow Mach numbers are 1.26
and 1.41 and the angle of attack is zero. The
CFL3D code is modified using a new, highly
accurate grid-adaptation and physical and
geometrical shock-fitting (SFGA) schemes for
supersonic near-field domain prediction. Physical
shock fitting is accomplished using the gradient of
density and Mach on the coordinate lines crossing
the shock. One of these coordinate lines is

                                         Kandil, Ozcer, Khasdeo

designated to be 2ξ .Gradient of density is evaluated
as ρ∇  whereas gradient of Mach is evaluated as

Fig. 2: Comparison of the FP predicted results
with the measured SSBE ground overpressure
for the modified F-5E at ground (h = 2.372ft)

the derivative of Mach with respect to 2ξ
, 2ξ∂∂M . Both of these gradients peak at the
shocks, and stay mostly leveled in the remaining
regions.  Thus, they form sets of data that can be
used to locate shocks in the solution.  Theoretically,
this data should be a smooth curve with peaks
occurring only at shocks. Since the idea is to
eventually obtain each shock on a single grid line,
Rankine-Hugoniot (R H) equations are to be used
across a single grid line. Depending on the
magnitude of the errors in mass, momentum and
energy, one can cease to continue with the next
iteration. If the errors are large enough, a grid
generation process for the captured shock points
begins.  The captured shock points are fitted with
5th order polynomials to come up with an algebraic
equation that can be used in the grid generation
process. The polynomial coefficients are input to
the grid generation scheme and the grid is
generated. The polynomials for the shocks are used
to create foundation gridlines for the grid block.
Grid adaptation is also based on the density
gradients.  This scheme is called new shock-fitting
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grid adaptation (SFGA) scheme. This scheme is
also used with the far-field full-potential equation
solver.

Fig. 3: Side-view of the dimensionless double-
cone configuration (Ref. 5).

Figs. 4 and 5, show the converged results of the
modified CFL3D near-field solver for the sequence
of SF2-GA1-SF1-GA1-SF5, where SF stands for
shock fitting and GA stands for grid adaptation. The
new SFGA scheme is obviously producing sharper
accurate shocks without over shootings or under
shootings at the captured-fitted shocks.

Figure 4: Converged grid after SF2-GA1-SF1-
GA1-SF5 for a double cone, M = 1.26.

 
Fig. 5: Density contours after SF2-GA1-SF1-
GA1-SF5 for a double cone M = 1.26.

Unstructured grid technology promises easier initial
grid generation for novel complex three-
dimensional (3D) configurations as compared to the
structured grid techniques. The use of unstructured
grid technology for CFD simulations allows more
freedom in adapting the discretization of the meshes
to improve the fidelity of the simulation. Many
previous efforts attempted to tailor the
discretizations of unstructured meshes to increase
solution accuracy while reducing computational
cost, Ref. [6]. The FUN3D Code accuracy has been
evaluated for the near-field computations for
capturing shocks and adapting the unstructured
grid. The adjoint variable approach (solution of the
dual problem) is an efficient method for computing
derivatives of a function of interest for gradient-
based design methods. Some examples of discrete
adjoint design methods are given in Anderson.7 and
Nielsen 8.

In the present paper, the unstructured FUN3D near-
field code is applied to the double-cone
configuration at a Mach number of 1.26. The
CFL3D code is modified by using the new SFGA
scheme and is applied also to the same double-cone
configuration with Mach number of 1.26. The
results of the two codes are compared with the
experimental data of Ref. [5]. Next, an interface-
plane interpolation scheme   has been developed
between the FUN3D code and the efficient FP Far-
field code at an altitude to configuration length of
h/L= 2. The interpolation errors have been
computed. The same matching is done with the
modified CFL3D. Next, the FP code is modified
using the new SFGA scheme, and   used to
propagate the interface results to h/L = 6, 10, 18



and very high far-field locations as well. The results
of the FUN3D-FP coupled code and the modified
CFL3D-FP coupled code are compared with the
experimental data.
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Fig. 6:  Adjusted pressure signatures at h/L =10,
comparing both FP matched solutions with
FUN3D and CFL3D with the experimental data.

The FP matched interface solutions obtained from
FUN3D and CFL3d are marched to h/L = 6 and
then to h/L =10, 18, 40 and 70. Figure 6 shows a
comparison of the adjusted pressure versus the
adjusted x distance at h/L = 10 of the FP matched
with FUN3D and the FP matched with CFL3D. The
comparison shows excellent agreement. These
results are compared with the experimental data in
Fig.6, which again shows excellent agreement.
Figure 7 shows similar comparisons as those of the
previous case but at h/L = 18. It is conclusively
clear that the FP matching with FUN3D is highly
accurate and efficient.

3. Sonic Boom Focusing

3.1 Background

The most intense sonic boom is the focused sonic
boom due to aircraft transonic acceleration from
Mach 1 to cruise speed. Sonic boom focusing
develops also due to aircraft turns and

maneuverings. It leads to amplification of ground
pressures up to two or three times the carpet boom
shock strength. Therefore, accurate prediction of
focused sonic booms at the caustic near ground
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Fig. 7:  Adjusted pressure signatures at h/L =18,
comparing both FP matched solutions with
FUN3D and CFL3D with the experimental data
and CFL3D marching.

level is very important. Sonic boom focusing has
been also known as “sonic superboom”.

Focusing of shock waves occurs at surfaces called
caustics. Caustics are regions of wave amplification
and geometrical ones. Shock wave focusing is
fundamentally a nonlinear process. Here the
emphasis is directed to the smooth caustic surface
case. Analysis of weak shock focusing at a smooth
caustic surface has been introduced in 1965 by
Guiraud [9].  He developed a theory, which
includes both diffraction and nonlinear effects up to
first order, which leads to the nonlinear Tricomi
equation. This result was confirmed by Hayes [10],
Hunter and Keller [11], and Rosales and Tabak
[12], [13]. Augar and Coulouvrat [14] have
presented a FD algorithm to solve the nonlinear
Tricomi equation, which was expressed in terms of
the dimensionless acoustic pressure. Recently,
Marchiano and Coulouvrat [15] have solved the
nonlinear Tricomi equation in terms of the potential
field instead of the pressure field using the FD



scheme. The nonlinear effects were treated using an
“exact” solver. Kandil and Zheng [16], [17] have
solved the nonlinear non-conservative Tricomi
equation using the frequency-domain     scheme
(FFT),    a  time-domain (TD) scheme and a TD
with overlapping grid (OLG) scheme. A
conservative form of the nonlinear Tricomi
equation has been developed and solved using a
time-domain scheme (CTD). The four schemes
have been applied to several incoming waves which
include an N wave, a Concorde aircraft wave and
symmetric and asymmetric flat-top and ramp-top
waves.

In Ref. [18] a parametric study has been carried
out to investigate the effects of several parameters
on the sonic-boom focusing computational results
obtained from the nonlinear Tricomi equation. The
CTD scheme is used in this study.

3.2 Computational Applications

The steady nonlinear Tricomi equation is modified
[15] as an unsteady equation by adding a pseudo
unsteady term t∂∂∂ τφ /2 , which will tend to
zero when the pseudo time marching scheme
reaches the steady solution of ),,( zt τφ ∞→ . The
modified equation is given by
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      Where

    =φ acoustical potential

     t       =  pseudo time variable

    =τ  dimensionless phase variable = [t – x
                (1-z / R sec ) / c0] / T ac
The boundary conditions 15 to be satisfied are:

1. no   disturbance  before or  after  acoustic
waved has passed

     0),( =±∞→τφ z                                (2)

or for a periodic signal with period T

           ),(),( τφτφ zTz =+

2. away  from   the  caustic   surface  in   the
shadow   zone    the    acoustic    pressure
decreases exponentially:

0),( →−∞→ τφ z                              (3)

3. a radiation  condition  is   imposed  (away
from the  caustic on the  illuminated side the field
matches the geometrical acoustic  approximation)
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The unsteady nonlinear equation is split into two
simpler equations. The first one includes the linear
diffraction effects and the second one includes the
nonlinear effects. Thus, the equation is split into the
following two equations
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. Equation (5) can be solved in time-domain
integration or in frequency-domain integration.
Equation (6) can be solved using a shock-capturing
finite-differencing scheme  or by an exact shock
fitting scheme.

We choose a rectangular domain with the ordinate
]0.2,0.2[−∈z and the abscissa ]67.3,67.2[−∈τ

dimensionless units. The number of grid points in
the z direction is 1000. In theτ direction the number
of grid points is 8,192 points when using the TD
scheme, or 1, 024 frequencies when using the FD
scheme. It should be noticed that the higher the grid
points or the frequencies inτ direction are, the
better the solutions are.

On the upper boundary z = 2.0 the incoming  N-
wave extends from τ = -1.386 to τ = – 2.386
(duration of 1) with pmax = 1.0 and p min = -1 (τ & p



are dimensionless).   With these dimensionless
pressure and duration, p = 1 is equivalent to 2.25
psf and τ = 1 is equivalent to 230 ms. The
dimensionless time step for the pseudo time
integration is taken as 0.001. The case has been run
for 20,000 time steps until  total error of the pseudo
unsteady time term was reduced to 10-6.Figure 8
shows the pressure contours of the incoming wave
as it progresses in the domain toward the caustic
surface, which is shown on the figure, and the
outgoing wave as it originates from the caustic
surface. This solution is obtained using the
Frequency Domain scheme. In Fig. 9, it is noticed
that the predicted wave at the caustic surface shows
pressure peaks of 3.1, 1.54 and -1.7 (equivalent to
6.98psf, 3.47 psf and – 3.83 psf, respectively).
These results conclusively show that the superboom
response is predicted. It is also consistent with the
results of Ref. [15]. Figures 10 and 11 show the
interaction of the incoming wave with the outgoing
wave at z = 2.0 and 0. Figures 12-14 show the
corresponding results using the CTD Scheme. The
conservative time domain (CTD) Scheme has been
applied to the solution of the N-wave case. The
computational domain and grid of the FD-Scheme
have been used for this solution case. Figures 12-15
show the CTD results of this case. The captured
caustic line is shown in Fig. 12. It is in excellent
agreement with that of the FD Scheme. The pmax of
Fig. 13 is 3.04 or 6.84psf, which is in excellent
agreement with the previous result of FD solution.
The solutions at z = 2.0, and 0 are in good
agreement with the FD Scheme.

Fig. 8:  Pressure contours for an incoming N-
wave at nt = 20,000 time steps, FD solution.

Fig. 9: Pressure variation for N-wave at z of pmax
= 0.19 and nt = 20,000 steps, FD solution.

Fig. 10: Pressure variation for N-wave at z = 2.0
and nt = 20,000 steps, FD solution.

Fig. 11: Pressure variation for N-wave at z = 0
and nt = 20,000 steps, FD solution.



Fig. 12: Pressure contours for an N-wave at nt =
20,000 steps, CTD solution.

Fig. 13: Pressure variation for an N-wave at z of
pmax = 0.14 and nt = 20,000 steps, CTD solution.

Fig. 14: Pressure variation for N-wave at z = 2.0
and nt = 20,000 steps, CTD solution.

Fig. 15: Pressure variation for N-wave at z = 0
and nt = 20,000 steps, CTD solution.

4. Sonic Boom Mitigation
4.1 Background

Sonic boom noise has been an environmental
concern almost as long as aircraft capable of
supersonic flight have existed.  These “booms” are
the result of shock waves, or abrupt pressure
increases, generated in the flow field of an aircraft
flying at supersonic speeds, being propagated to the
ground.

For most aircraft this signature has the shape of a
capital “N” and consequently is called an N-wave.
The initial rise in pressure, or shock, is due to the
coalescence of various shock waves emanating
from the forward components of the aircraft, while
the aft pressure rise usually stems from shocks
(including recompression shocks) emanating from
the aft regions of the aircraft.  Research aimed at
reducing sonic boom attempts to reduce the
magnitude of both the forward and aft pressure
“jumps.”  In this endeavor the shape of the pressure
wave is modified through the use of optimum
longitudinal area distributions of the aircraft,
including the effective area distribution due to lift
[18]-[32].  Shapes (pressure signatures) that have
been studied include a flattop, ramp, and a
combination of the ramp and flattop called a hybrid
(see Fig. 1) [23],[29]-[30].  A further variation of
the flattop which might be called a “spiked” flattop
ha also been studied and shown to have certain
advantages [27], [28]. Clearly, the goal in
supersonic configuration design, biased toward
sonic boom minimization, should be to distribute



lift and volume in such a way that the longitudinal
and spanwise distribution of pressure propagated to
the ground have the lowest possible pressure
increments due to shocks, thus, minimizing the
boom and associated physical discomfort and
structural damage.  One goal in striving to achieve
this is a spanwise distribution of shock strengths
(pressure jumps), on the ground, that is near
uniform rather than the “normal” one, which has a
pronounced maximum at the symmetry plane. In
order to obtain a more uniform spanwise
distribution it would seem that one must control, in
an optimal way, the spanwise distribution of sweep,
lift and volume.  Dihedral has also been shown to
have a significant beneficial effect on sonic boom
[25], [33].  There are limits, however, in what can
be achieved in making the spanwise distribution
more uniform without increasing the overall boom
level (if sweep is reduced) or aerodynamic drag
(performance).

4.2 Computational Applications

One of the mitigation schemes that has been
recently tried is to investigate  the effects of adding
a boom piece at a wing vertex  on the ground over-
pressure of the sonic boom wave. The study starts
with a 5% maximum thickness, bi-convex delta
wing at 2.24 angle of attack, 50,000 ft altitude and
Mach number of 2.0. The problem is solved without
a vertex boom addition using the CFL3D solver for
the near-field domain and the Full-Potential
equation solver for the far-field domain. Next, a
boom with a diamond section is added at the vertex
of the delta wing with a length of 0.1 of vertex
shock wave and more than 30% of the trailing-edge
shock wave.  the wing root chord. The preliminary
results of this case show more then 10% reduction
of the wing-
A bi-convex (chordwise) delta wing with a chord
length = 60 ft. and a maximum thickness ratio of
5%  is used in the present investigation. The
spanwise section of the wing is of diamond shape.
The free stream Mach number is 2.0 and the wing
altitude is 50,000 ft. The boom piece is made by
taking a cross-section cut of the original Delta wing
at x / L = 0.015625, and extending this cross section
to a singular point at x = -0.10, y = 0, z = 0.  The
cross section is the same as that of the delta wing,

which is a diamond shape in the spanwise direction.
This cross-section decreases uniformly and linearly
to the singular point at x = -0.10.  This boom piece
of 0.1 length of the wing chord is added at the wing
vertex. The flow conditions considered here are:
2.24 deg. Angle of attack, 50000ft altitude and
Mach number of 2.The delta wing flow without the
boom piece has been solved using the CFL3D Euler
equations near-field code and the full-potential
equation far-field code. The interface between the
near-field solver and the far-field solver is taken at
h/L = 2.4. Next, the flow of the delta wing/boom
piece configuration is solved using the same codes
as those of the case above and for the same flow
conditions. The density contours show the effect of
the boom piece shock on the vertex shock of the
delta wing. This interaction is clearly shown in Fig.
16 for the density contours in the plane of
symmetry.

Fig. 16: Density contours for the delta wing/
boom piece configuration

Figure 16 shows a comparison of the overpressure
versus the axial distance, X/L at h/L = 2.0  for the
no-boom delta wing and the delta wing/boom piece
configuration. .  It is noticed that a reduction in
leading (vertex)  shock overpressure of  13.9 % is
generated due to the boom piece, and a reduction  in
trailing shock overpressure of 37.2% is generated.
The footprint of the delta wing/ boom piece
configuration is reduced by 10.8%. These results
(h/L = 2) are computed using the CFL3D



Fig. 17:  Comparison of non-dimensional over
pressures versus X/L at h / L = 2.0 below the
delta wing; decrease in leading shock = 13.9%,
decrease in trailing shock = 37.2%

The results show the remarkable effect of the boom
piece on the reduction of the leading shock strength,
the substantial reduction of the trailing shock
strength, and the reduction of the foot-print width.

Next, we consider another case of sonic boom
mitigation. Here, we consider the effect of the
wing dihedral angle on the overpressure signal on
the ground. The flow conditions are for M = 2 and
altitude of 52,000ft. The wing is a delta wing with a
maximum thickness ratio of 5%.

Figure 18, shows a comparison of the overpressure
with the altitude for a delta wing with dihedral
angles of 15o and 20o and a delta wing without
dihedral angles (straight wing). Reductions of shock
strength at the ground (sonic boom) ranged from 10
to 14 percent for wings with dihedral. Other
techniques of sonic boom mitigation are being
investigated. They include thickness, camber and
nose angle variations. Sensitivity analysis and
design optimization schemes are also being used.

5. Concluding Remarks

In this paper, sonic boom prediction, prediction of
sonic boom focusing and sonic boom mitigation

have been discussed and the state of the art has been
presented. Additional work is still needed in the
prediction area, where work is underway to convert
the currently developed full-potential solver into a
design tool without user interference. The Full-
potential scheme can be coupled with the Ray linear
scheme once the effect of nonlinearity ceases to
affect the solution of the propagating wave at
certain altitude. This approach would also expedite
the currently parallel MPI full-potential solver.
Work is progressing to come up with the optimum
coupled schemes. The mitigation problem still
needs substantial research work for investigating
several techniques and hybrid techniques for
mitigating the ground signature of the sonic boom.
Sensitivity analysis and optimum designs will be
substantially used to come up with these designs..
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Figure 18. Variation of initial shock strength for
straight and dihedral delta wings with altitude.
5% biconvex section, M  = 2, H = 52,000ft. , c =
50ft., CL = 0.077.
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