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Abstract  

Evaluating the benefit of technologies for 
complex system architectures that consist of 
many heterogeneous interoperating assets 
continues to be a challenge. While modeling 
and simulation tools provide a means to 
quantitatively analyze capabilities at the 
“system-of-systems” level, it is difficult to 
execute large-scale discrete event simulations 
such as military campaign codes without 
resorting to human-in-the-loop analysis. The 
proposed methodology for technology 
evaluation incorporates several best-in-class 
practices and identifies a technique that uses 
surrogate models and intelligent agents to 
reduce the burden on human analysts while 
alleviating the confounding effects of 
technologies and tactics. 

1  Introduction  

“Systems-of-systems” are often dominated 
not by the attributes of individual systems, but 
rather, the complex interactions of multiple 
systems that combine to provide a capability. 
Unfortunately, technology development is 
usually system or subsystem-centric and the 
quantitative impact of technology infusion, 
technology refresh, and spiral development is 
difficult to measure at the system-of-systems 
level. A structured methodology that enables 
technology evaluation with respect to top-level 
capabilities is needed to address this issue. 

To quantify the benefit of technologies in 
the presence of variable capability and evolving 

threats, a hierarchical, object-oriented modeling 
and simulation (M&S) environment is proposed. 

 Even with a physics-based M&S 
environment, the impact of technologies is 
difficult to quantify due to the confounding 
effect of tactics on the performance of 
individual systems: tactics should be optimized 
to take advantage of the benefit of new 
technologies.  

A major thrust of this research is the 
development of a technique that uses surrogate 
models to provide intelligent forecasting ability 
to asset-level cognitive processes. Using 
surrogate models, the behavior of intelligent 
agents can be “tuned” to exploit technology 
infusion in a manner that allows quantitative 
technology assessment to occur on a fair playing 
field. 

2   Technology Evaluation 

The 1991 Persian Gulf War was a 42 day 
conflict dominated by the use of advanced 
technologies such as stealth aircraft, precision 
guided munitions, and integrated intelligence, 
surveillance and reconnaissance. The success of 
the U.S. military in this conflict can trace its 
origins to the late 1970’s when Secretary of 
Defense Harold Brown and Under Secretary of 
Defense for Research and Engineering William 
Perry devised the “offset strategy” which sought 
to offset Soviet numerical superiority through 
the development of advanced technology in 
critical areas [1]. As a result of this strategic 
planning, the United States has leveraged its 
advanced technology in several military 
conflicts with great success. 
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Continued technological superiority relies 
on the identification of a technology portfolio 
that will provide maximum effectiveness against 
future threats; however, in the technology-
dominated marketplace, identifying such a 
portfolio can be a daunting proposition. A 
review of existing methods reveals that there is 
no rapid, parametric, capability-focused 
methodology for technology evaluation for 
large-scale systems-of-systems.  

The least elegant (but arguably the most 
effective) method for evaluating technologies is 
physical experimentation. Seen heavily in the 
software and electronics industry, new products 
will incorporate candidate technologies in a 
pilot program. If  accepted by the marketplace, 
their use becomes widespread, typified by the 
ubiquitous camera phone, which began life in 
Japan as the J-Phone in 2000.  

The United States Air Force (USAF) and 
other organizations use a panel of expert 
scientists, engineers, and senior leaders called 
the Scientific Advisory Board (SAB) to 
formulate a long-term plan for technology 
utilization. Originally instituted in 1944 and led 
by Theodore von Karman, the original purpose 
of the SAB was to examine advances in basic 
science and analyze how these discoveries may 
affect the employment of airpower. More recent 
studies have relied less on outside input from 
scientific leaders and have been very tightly 
focused on specific vehicles, qualitative 
information, brainstorming, and anecdotal 
evidence [2]. 

The Technology Development Approach 
(TDA), developed by Dr. Donald Dix, is a 
qualitative method for identifying expected 
technology impacts at the system-of-systems 
level. The TDA examines several technology 
efforts and objectives and proposes point-
estimates for the Key Performance Parameters 
(KPP’s) for each technology. These 
technologies are then rolled up into the subarea 
goals for the proposed system, and extrapolated 
to expected improvements in Measures of 
Effectiveness (MoE’s). The TDA is constructed 
using expert opinion, brainstorming, and 
qualitative analysis [3]. 

In contrast to primarily qualitative 
methods, some quantitative techniques exist. 
Technology Identification, Evaluation, and 
Selection (TIES), developed by Kirby and 
Mavris, is a “comprehensive and structured 
method to allow for the design of complex 
systems which result in high quality and 
competitive cost to meet future, aggressive 
customer requirements” [4]. This technique uses 
physics-based modeling to quantitatively assess 
the impact of technologies by representing the 
KPP’s as “k-factors”. While TIES can be seen 
as a quantitative extension of the TDA 
approach, traditional applications of the method 
have been primarily focused on the evaluation 
of Measures of Performance (MoP’s) for a 
system and have to date not addressed the issue 
technology evaluation for large-scale 
heterogeneous systems [5]. 

The AFRL is actively engaged in a 
research effort to “integrate new methodologies 
and tools with existing ‘industry-standard’ tools 
to effectively test the effects of new 
technologies on air vehicle capability” [6]. An 
AFRL program, Quantitative Technology 
Assessment (QTA), which may be viewed as an 
extension of TIES to the capability level, is 
enabled through constructive simulation1 and 
parametric modeling [7]. This technique, well 
suited for system-of-system studies and 
evaluation of technologies with respect to 
capability-level MoE’s, serves as a model of a 
superior process for technology evaluation.  

The key attributes of the aforementioned 
methodologies are qualitatively ranked relative 
to each other and are illustrated in the radargram 
in Figure 1. In the figure, the largest area is 
analogous to the “best” technique for 
quantitative technology evaluation for systems-
of-systems. The red shaded area indicates that 
QTA is the current best-in-class method for 
technology evaluation for large scale complex 
systems; however, the proposed approach (blue 
line) will identify several modifications are 
needed to address potential issues with the QTA 
process.  

                                                 
1 Constructive simulation involves simulated people 
operating in a simulated world. 
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Fig. 1. Overview of Technology Evaluation 
Approaches. 
 

First, a rapid simulation process is needed 
to explore a large design space. Secondly, in a 
simulation, system effectiveness is a function of 
both the technologies present and the tactics 
employed. The confounding effect between 
these two must be managed. Finally, the 
simulation cannot be slowed by the demands of 
having human decision makers in the loop. The 
proposed methodology must address each of 
these concerns. 

3   Shifting to a Capability-Based Focus 
Throughout the Cold War, military 

acquisition was threat-based: systems were 
procured to counter specific threats posed by a 
known enemy, the Soviet Union. While this 
strategy was effective, the current military 
situation is drastically different from that of the 
past forty years. The Air Force is in the midst of 
a transformational process to address this issue 
[8]. In the 2002 Air Force Posture Statement, 
Air Force Chief of Staff General John P. Jumper 
said, “Our goal is to make warfighting effects 
and the capabilities we need to achieve them, 
the driving factor for everything we do. This 
enables (us to develop the capabilities needed) 
to answer a broad range of challenges posed by 
potential adversaries, while also developing the 
(assets needed) for the future” [9]. To 
understand the motivation for this statement, it 
is necessary to define a capability: 

 
“the ability to achieve an effect to a standard under 
specified conditions through multiple combinations 
of means and ways to perform a set of tasks” [10]. 

 
Key to this definition is the notion of 

effects. “Effects are associated with a desired 
outcome or result” [10]. Capabilities describe 
what must be done to achieve desired effects, 
avoid overlaps and redundancies with other 
means, and identify relationships between 
systems. The most critical aspect of capability-
based planning is that capabilities are not 
solution specific. There may be a near-infinite 
number of ways to achieve a desired effect, all 
with different risk, cost, and degree of difficulty 
for implementation. 

Assessing the degree to which capabilities 
are provided requires the use of scenarios or 
vignettes to provide context for technology 
analysis. A suite of scenarios can be used to 
span the range of potential conflicts in terms of 
geography, political constraints, force mix, and 
enemy capability.  

The desire to perform capability-centric 
analysis drives the need for a modeling and 
simulation environment that can incorporate 
physics-based models of technologies and 
systems while simulating their performance in a 
relevant environment using appropriate 
scenarios. Techniques which use purely 
qualitative methods are inappropriate for 
capability-based analysis because it is difficult 
to quantify the impact of a technology at the 
capability-level due to the complex interactions 
between systems that are not always intuitive to 
subject-matter experts. 

4  Elements of the Methodology 
The realization of a simulation-based, 
capability-focused methodology for technology 
evaluation requires that several technical 
challenges be overcome. Some of these 
technical challenges can be addressed through 
application of best practices from a variety of 
disciplines: 

• Large-scale systems-of-systems are 
comprised of many elements that may 
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need to be modeled. A functional 
decomposition, brainstorming tools 
and the Systems Modeling Language 
(SySML) can be used to scope the 
problem. 

• A Morphological Matrix or Matrix of 
Alternatives is a useful technique to 
reduce the scale of the problem to a 
manageable set of “threads” to be 
analyzed with physics-based models. 

• The desire to use physics-based models 
of systems and technologies is 
counterbalanced by the need for rapid 
simulation. Neural Network surrogate 
models can enable rapid trades while 
retaining the appropriate degree of 
fidelity and capturing the non-linear 
behaviors which are typical of discrete 
event simulations. 

• Creating accurate neural networks relies 
on the use of effective sampling 
techniques. Central Composite designs, 
supplemented by a space-filling Latin 
Hypercube are most appropriate for this 
class of problems. Coupling the two 
explores the extremes of the design 
space and richly samples the interior, as 
demonstrated by Mavris, et. al [11]. 

• Monte Carlo Simulations are an 
effective way to account for noise and 
uncertainty in the simulation process. 
They can also be used to perform 

domain-spanning exploratory studies 
when coupled with surrogate models that 
reduce execution time. 

• Since little research has been conducted 
on optimization techniques for this class 
of problems, the “no-free-lunch-
theorem,” proven by Wolpert and 
Macready in 1995, dictates that a 
Random Search is best suited when 
optimization is required because a 
random search is universally “good” 
across the space of existing problem sets 
[12]. 

• The focus of the methodology should be 
on a technology portfolio that is robust 
across scenarios, not an optimal 
solution to a single point scenario that 
may never occur [13]. 

 
These elements can be synthesized into the 
initial formulations of a structured 
methodology; however, the previous statements 
are assertions: “something declared or stated 
positively, often with no support or attempt at 
proof” [14]. A matrix of alternatives, shown in 
Figure 2, depicts some of the potential options 
available and the choices made (highlighted) for 
each technical challenge. While the synthesis of 
the proposed methodology in this matrix of 
alternatives is primarily the result of qualitative 
judgments based on observations from a 
literature search, highlighting different entries 

Determine Elements of 
Architecture

Provided by 
Customer

Functional 
Decomposition Literature Search Brainstorming 

Tools Other

Reduce Scale of Problem Committee 
Approach SysML Matrix of 

Alternatives Other

Speed Up Processes None Linear 
Approximations

Qualitative 
Mapping Surrogate Models Other

Type of Surrogate Models
Polynomial 
Response 
Surface

Neural Networks Radial Basis 
Functions Kriging Other

Sample from Design Space Random Full Factorial Central Composite Latin Hypercube Other

Account for Uncertainty Monte Carlo Quasi-Monte 
Carlo Petri Nets Markov Chains Other

Gradient-Based Genetic 
Algorithm

Simulated 
Annealing Random Search Random 

Walk
Mixed Integer 
Programming

Coordinate 
Pattern Search Grid Search Other

Methodology Focus Optimization Robustness Other

Optimization Algorithm

Proposed 
Solutions to 
Technical 

Challenges 
(Assertions)

 
Fig. 2. Matrix of Alternatives for Method Synthesis: Assertions Made Based on Observations and 
Literature Search. 
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would result in the synthesis of a methodology 
that differs only slightly from that proposed 
herein. In the case of the aforementioned 
assertions, the identification of a best-in-class 
technique may be problem specific and does not 
significantly impact the overall objective of the 
methodology. 

On the other hand, some technical 
challenges cannot be overcome by assertions 
and further exposition is necessary through 
experimental means. For example, although a 
capability-focused analysis requires a 
simulation-based approach, a major technical 
challenge arises in the desire to use scenarios 
and simulations to evaluate technology 
effectiveness: the assumptions of the scenario 
and the tactics employed usually have a much 
greater influence on the MoE’s than individual 
technologies. 

There are three ways to account for tactics 
in a simulation: 

1. Holds tactics constant. 
2. Allow tactical variables to be 

controlled by the user and varied in the 
simulation. 

3. Optimize the tactics to best exploit 
technologies. 

Since tactics are usually developed after 
technologies have been implemented, holding 
tactics constant will result in suboptimal 
solutions and unfairly penalize some 
technologies [15]. Secondly, allowing the user 
to control all tactical variables will result in so 
many degrees of freedom that the modeling and 
simulation effort will likely be bogged down by 
the “curse of dimensionality.” The best of the 
three proposed alternatives is to optimize tactics 
to maximize the benefits provided by each 
candidate technology or suite of technologies. 
From this decision a new question arises: is it 
possible to “account for the myriad of tactical 
decisions possible without resorting to a man-
in-the-loop style analysis?” [15] 

In the military community, simulations are 
usually executed on a grand scale over periods 
of months and are essentially computerized 
“sand-table” games used to evaluate force level 
effectiveness. Driven by experienced generals, 
decisions are guided primarily by a human-in-

the-loop assessment of the state of the scenario 
and an experience-guided (gut-feeling) decision 
on how to proceed. It is proposed that this 
decision-making process be approximated using 
machine learning, agent-based modeling, and 
surrogate models. 

Machine learning is an overarching 
discipline concerned with the development of 
algorithms that enable computers to emulate 
intelligent behavior, primarily through the 
identification of patterns. 

The field of agent-based modeling and 
simulation (ABM/S) relies on creating relatively 
simple “agents” and defining the interactions 
between agents in such a way to generate 
realistic system level behavior with relatively 
unsophisticated subsystem elements. Through 
the appropriate establishment of rules, 
objectives, and rewards for a group of agents, 
some decisions can be made automatically 
without human interaction. “The major strength 
of ABM/S comes from the fact that it is a 
simple, versatile, and flexible method that is 
well suited for studies of complex non-linear 
systems” [16]. 

While a surrogate model is literally “a 
replacement model,” the term refers to highly 
accurate approximations of physics-based 
phenomenon using a parametric equation. A 
popular approach is the use of Response Surface 
Equations (RSE’s), a polynomial equation based 
on a Taylor series expansion that aims to 
address the variability of a response around a 
baseline value that encapsulates a majority of 
the behavior of a more complicated physical 
model. The coefficients of the model are usually 
determined using a least-squares regression. A 
valid surrogate model has an error term that is 
normally distributed with a mean of zero and a 
standard deviation of 1. While polynomial 
surrogate models have been demonstrated for a 
wide range of engineering problems, 
discontinuous behaviors cannot be readily 
modeled with polynomial surrogates. An 
alternative technique, artificial neural networks, 
are used to address this issue. Based on 
connectionist theories about the structure of the 
human brain, a typical arrangement for a 
feedforward neural network has three layers, the 
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input layer, the hidden layer and the output 
layer. This structure is shown below in Figure 3. 

 

Input Layer Hidden Layer Output Layer

# of Hidden Nodes
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…
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Fig. 3. Structure of a feedforward neural 
network.   

 
This surrogate modeling technique 

calculates the value of the kth response, Rk, using 
the formula: 
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Where the coefficients a, b, c, d, and e are 
determined for each of the i design variables, Xi, 
and j hidden nodes through an iterative 
minimization of the error between the actual and 
predicted response. A sigmoid function of the 
form: 

( ) ze
zS −+
=

1
1  

 

is used to scale the coefficients between the 
input layer and the hidden layer while a linear 
relationship calculates the link between the 
hidden layer and the response. The sigmoid 
function allows the neural network model to 
approximate highly discontinuous or nonlinear 
functions with a high degree of accuracy. 

Both polynomial and neural network 
surrogate modeling techniques will be leveraged 
in the proposed approach where appropriate. 

 
 

5 Creating an Intelligent Battle 
Manager 

Experience is “active participation in events or 
activities, leading to the accumulation of 
knowledge or skill” [14]. While man-in-the-
loop battle management is traditionally 
performed by an experienced general, the 
central tenets of machine learning support a 
hypothesis that an intelligent battle manager or 
“Meta-General” can be provided with enough 
“experience” to make realistic human-like 
decisions. Such an approach was famously 
depicted in the climax of the 1983 film 
WarGames [17] (Figure 4).  
 

 
Fig. 4. The War Operations Plan Response 
(WOPR) Computer Testing Scenarios at 
“NORAD” in the 1983 film WarGames [17].  
 

While one paradigm for machine learning 
has the computer test multiple approaches and 
learn in real-time, this approach is not 
appropriate for technology evaluation since the 
learning rate would be confounded with 
technology effectiveness. For example, if a 
“smart” battle manager with a substandard 
technology may be more effective at the 
campaign level than a less intelligent battle 
manager with a “good” technology. To avoid 
this effect, technologies must be compared 
using a Meta-General with uniform intelligence. 
To address this issue, one approach would be to 
use the simulation in two modes: training and 
analysis. 

In the training mode, an algorithm would 
generate a large number of engagements at 
random. Strategy and supporting tactics would 
also be created stochastically and the outcome 
of the choices made against the threats provided 



 

7  

A METHODOLOGY FOR TECHNOLOGY EVALUATION AND CAPABILITY TRADEOFF FOR 
COMPLEX SYSTEM ARCHITECTURES

would be assessed against relevant MoE’s 
across a range of technology options. The 
trained battle manager would be used in analysis 
mode to recognize patterns from its “prior 
experience” and recommend the strategy that 
was most effective based on an assessment of 
the battlefield and a comparison to the 
experience base. While this action is essentially 
a multi-dimensional table lookup, such 
operations are computationally expensive. A 
popular approach in computer science is the use 
of neural networks for pattern matching [18]. It 
is hypothesized that a neural network model 
could be used to capture the essence of this table 
in an equation that can be rapidly evaluated with 
a random search to interpolate between 
“known” situations. 

To test this hypothesis, a simple 
engagement scenario was created in Microsoft 
Excel® for a strike aircraft. Friendly input 
parameters include the use of stealthy (F-22) or 
non-stealthy aircraft (F-15), the type of bomb 
carried, the type of missile carried, and the ratio 
of ground to air weapons loaded onto the strike 
aircraft. Parameters defining the threat include 
the density of Time Critical Targets (TCT’s), 
Surface-to-Air Missiles (SAM’s), and enemy 
fighters. The range to the target is also a 

parameter used in the simulation.  
Four measures of effectiveness were 

calculated by a conditional probability-based 
simulation and approximated by neural network 
surrogate models: the number of aircraft lost, 
the percentage of TCT’s killed, the percentage 
of SAM’s killed, and the percentage of fighters 
killed. The neural network models can be 
exercised using the JMP® software package 
graphical interface called the prediction profiler 
(Figure 5). 

The prediction profiler is an interactive 
environment that serves as a “calculator” for the 
neural network but also allows multiple trends 
to be viewed simultaneously. In Figure 5, the 
four responses are depicted on the y-axis while 
the requisite input variables are shown on the x-
axis. Each of the trendlines can be interpreted as 
a partial derivative of each MoE with respect to 
the scenario/design parameter on the x-axis. The 
overall range of the y-axis for each MoE can be 
interpreted as a total derivative, that is, how the 
MoE’s change as all scenario/design parameters 
are varied over their entire ranges. For example, 
while Fighters Killed and Aircraft Lost range 
from [0,1], the maximum attainable value for 
TCT’s Killed is approximately 85% while for 
SAM’s Killed this value is only about 60%. 
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Fig. 5. Prediction Profiler Demonstrating the Use of Neural Network Surrogate Models for Battle 
Management. 
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Increasing the total derivative requires that the 
relationships (trendlines) be changed or that the 
ranges on the scenario/design parameters be 
increased.  

The prediction profiler can be used to draw 
conclusions about the scenario based on the 
relationship between MoEs and the 
scenario/design parameters. For example, the 
upper left box shows the trend for aircraft type: 
stealthy airframes tend to fare better overall than 
non-stealthy airframes. Also, TCT’s and SAM’s 
can only be killed at very small ranges due to 
the limited range of bombs. Aircraft are lost at 
all ranges, but predominantly at shorter range. 
Finally, the ground to air weapon ratio has a 
strong influence on targets killed: when no 
ground weapons are carried, the number of 
ground targets killed goes to zero. 

It is also important to note that while the 
trends indicated by the partial derivatives are 
generally valid across the design space for 
polynomial surrogate models, changing the 
values of the input variables can result in 
drastically different partial derivatives across 
the discontinuous regions captured by the neural 
network surrogate models. The specific 
examples above have been experimentally 
determined to be valid for both the physical 
model and the surrogate across the design space. 

After a verification and validation process 
has been conducted, these surrogate models 
serve as a record of what is effective in certain 
situations. During the simulation, the Meta-
General gathers information about the world 
around itself through external sensors. For 
example, if certain airborne sensors are used, 
the number and type of hostile ground targets 
can be determined. From these external sensors, 
the Meta-General can determine the fighter 
density, TCT density, and SAM density. Then, 
knowing the range to a desired target, a random 
search can be used to query the surrogate 
models to determine what type of aircraft and 
weapons should be used as well as a preferred 
ground/air weapon ratio for the hostile region. 
The battle manager will be driven to make the 
best possible decisions taking into account asset 
availability and predetermined rules of 
engagement. As the simulation progresses, both 

the status of friendly aircraft availability and the 
density of the enemy will change, which can 
drive the intelligent battle manager to make 
different decisions. This simple example is used 
to demonstrate the viability of the neural 
network surrogate modeling approach to 
intelligent battle management. Future efforts 
will involve more degrees of freedom and 
constraints and a more realistic scenario 
dominated by complex interactions between 
systems. 

6   Enabling Intelligence at the Asset Level 
As military organizations move toward 

more network centric operations, the 
capabilities provided by computers and 
communications offer the possibility of 
consolidating complete battlespace control 
under a single commander. This approach is 
inconsistent with Air Force doctrine which 
states: “Centralized control and decentralized 
execution of air and space power are critical to 
effective employment of air and space power” 
[19]. Therefore, the Meta-General approach 
detailed in the previous section should be 
confined to strategy determination and 
campaign planning, avoiding micromanagement 
of tactics.  

However, as previously mentioned, 
improper selection of tactics will lead to 
suboptimal technology choices. A means must 
exist to allow individual agents at the system 
level to determine their tactics to best exploit 
the benefits provided by a new technology. To 
address this issue, an approach that uses 
intelligent agents at the asset level is proposed. 

While the simulation is governed by the 
laws of physics, agent behavior within these 
constraints is defined by cognition models: rule 
sets that define what an agent should do under 
various operating conditions. Through the 
identification of a canonical set of actions, 
goals, and constraints, a computerized agent can 
be tuned with “artificial intelligence” to imitate 
what a human would do under similar 
circumstances. Different behaviors can be 
triggered by changing the agent’s goals or 
altering its perception of the world.  
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One such perception is the agent’s beliefs 
about its own abilities, defined by the properties 
of a vehicle such as top speed, turn rate, takeoff 
field length required, fuel weight, and excess 
power to name a few. If an agent has a means to 
calculate each of these performance parameters 
in real-time, it can forecast potential responses 
to enemy actions. For example, if an agent 
knows that its top speed is very high, the 
likelihood of the “escape” operation is 
significantly increased. If one of the agent’s 
goals is its own survivability, it would prefer to 
escape rather than engage if it was possible to 
predict that the escape operation would be 
successful.  

Unfortunately, the evaluation of these 
parameters can be a computationally expensive 
procedure that sometimes involves iteration or 
the solution of systems of equations. For a 
single agent, this is a trivial computational 
burden; however, for complex system 
architectures dominated by large numbers of 
heterogeneous, interacting agents with different 
operating conditions, the computational effort to 
evaluate these parameters for all agents at each 
time step is extreme. Realistic and detailed 
asset-level intelligence cannot be enabled 
without a means to speed up this computation 
process. Surrogate models are proposed as a 
means to provide intelligence to individual 
agents without causing an unrealistic 
computational burden. 

A proof-of-concept example of this 
technique is given for an air superiority fighter. 

A critical parameter in air-to-air combat is the 
specific excess power, which is related to the 
ability of an aircraft to instantaneously change 
potential energy into kinetic energy (and vice 
versa). Different physical characteristics of an 
aircraft may contribute to its specific excess 
power in terms of top speed, turn performance, 
climb performance, horizontal acceleration, and 
the like. Technologies impact the physical 
characteristics and hence contribute to the 
production of excess power. A “performance 
vector of attributes” (PVA) that summarizes the 
ability of an aircraft to perform various 
maneuvers can therefore be written as: 

 
( ) ( ) ( )...AccelTurnSpeedPVA Δ+Δ+Δ= δβα  

 
Where ΔSpeed, ΔTurn, and ΔAccel represent the 
amount of excess power in each type of 
maneuver and α, β, and δ are scale factors on 
the importance of each maneuver for the 
mission being performed. For example, in a 
high-speed penetration mission, speed may be 
more important than turn performance whereas 
the opposite may be true for a high-altitude 
dogfight. For a given mission, the numerical 
value of the PVA can be used as the trigger for 
the cognition model to decide whether to fight 
or to flee: if the PVA is sufficiently high, the 
aircraft is predicted to win an engagement 
against a notional adversary. 

In Figure 6, three dimensional contours for 
excess power are shown across the flight 

 
Fig. 6. Illustration of How Excess Power Changes Across the Flight Envelope as Technologies are 
Infused on the Discipline-Level Metrics (Improvement Shown in Bright Green). 
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envelope (altitude vs. speed). Shaded regions 
indicate portions of the flight envelope where 
specific excess power is greater than zero. A 
PVA that takes excess power into account 
would therefore favor engagement in cases with 
larger shaded areas. In addition to the baseline 
case, two examples are shown, one for 
improved lapse rate indicating a better 
propulsion system and another for reduced zero 
lift drag which could represent better 
aerodynamic design or internal weapon bays. 

An intelligent agent would use the 
surrogate model to calculate its PVA before 
deciding whether or not to engage an adversary. 
Many of the inputs to the surrogate model are 
attributes of the agent at a given instant in time 
that can be determined through sensors of the 
external environment (including the speed and 
altitude). Other inputs to the surrogate model 
are given as “k-factors” which are scaling 
parameters on other discipline-level metrics to 
represent the infusion of technology. 

As new technologies are given to the agent 
in the form of these k-factors, it can utilize the 
surrogate model to rapidly recalculate potential 
maneuvers, which will enable or disable certain 
cognitive paths depending on user defined 
thresholds that represent the allowable risk on a 
given mission. The formulation of cognition 
models and PVA’s for different missions is an 
area of ongoing research. 

7   Conclusions and Future Work 

A shift in military acquisition to a 
capability-based focus requires that resources be 
allocated with respect to the effects achieved. 
Identifying a suite of technologies to provide 
capabilities against future threats requires the 
use of a modeling and simulation environment 
to quantitatively calculate the effectiveness of 
proposed solutions. Although some elements of 
a structured methodology can be determined 
through a literature search of best-in-class 
techniques (see Figure 2), a critical issue that 
arises in simulation-based technology 
evaluation is the confounding issue of 
technologies and tactics. 

A proposed solution at the campaign level 
is the use of machine learning algorithms and an 
intelligent super-agent or Meta-General to 
simulate human cognition processes and 
identify appropriate strategies. As a proof-of-
concept, this technique was validated for a 
simple probability-based mathematical example. 
The doctrine of decentralized execution negates 
micro-management of tactics by the Meta-
General and requires an alternate approach at 
the system level. A proposed approach uses 
surrogate models to provide an intelligent 
forecasting ability to individual agents. This 
technique was validated using an energy-based 
formulation for excess power calculation. 

While each of these techniques was 
demonstrated in turn using a mathematical 
experiment representative of those seen in a real 
problem, future research will synthesize these 
elements into the holistic process and 
demonstrate the ability of the proposed 
methodology to evaluate the effectiveness of 
technologies at the “system-of-systems” level 
without the confounding impact of tactics. An 
example problem of significance to the military 
acquisition community will be selected and an 
appropriate experimental environment for 
modeling and simulation will be constructed. 

Of interest is the ability of the proposed 
methodology to function outside the realm of 
mathematical curiosity and on a challenging 
problem of interest dominated by complex 
interactions, multiple heterogeneous systems, 
and unpredictable emergent behavior resulting 
from the synthesis of systems within a 
campaign-level modeling and simulation 
environment. 
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