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Abstract 
 
Artificial Neural networks offer viable solution 
to identification and modeling of aerospace 
dynamic systems. This paper proposes a new 
approach to the nonlinear modeling of agile 
aircraft which is applicable to develop flight 
simulators. In contrary to classical methods, 
neural-network-based modeling of aircraft 
dynamics does not require any aerodynamic or 
propulsion model and a few flight test measured 
data suffice. The obtained model is shown valid 
for arbitrary pilot inputs within a region of 
mach-altitude around the pre-specified flight 
condition. 
 
 
1  Introduction 
 
In the last decade, many researches have been 
carried out in the field of neural-network-based 
identification of aircraft dynamics. In most of 
which, the neural network is applied to 
approximate inversed or forward dynamics of 
aircraft by adaptively canceling inversion or 
modeling error through online learning [1-4]. 
However, due to general approximation and 
generalization capabilities, neural networks are 
potentially applicable to nonlinear modeling of 
aircraft dynamics for simulation applications.  

Nonlinear aircraft simulations are used in 
pilot training, dynamic analysis, guidance and 
trajectory studies and many other tasks. The 

classical methods of modeling aircraft flight 
dynamics are very much dependent on and 
limited to aerodynamic data. This kind of data 
are often not enough accurate, costly to 
determine or even, in some cases, not available.  

Recurrent neural networks are proved to be 
effective for the task of nonlinear dynamic 
system identification without needing any a 
priori knowledge about the plant. Hence, a 
neural network trained with experimental data is 
expected to be eligible to substitute the 
conventional Newton's-law-based aircraft 
dynamic model.  

For this purpose, the neural network must be 
able to work completely offline without the 
presence of error feedback signal and generalize 
well for any pilot inputs. No aerodynamic, 
propulsion or configuration data would be 
needed to develop such a neural model and a 
few flight test data obtained by IMU (Inertial 
Measurement Unit) suffice. An IMU is a device 
composed of three accelerometers measuring 
three translational accelerations and three rate 
gyros measuring three rotational rates   

In a few recent researches, neural networks 
are applied to estimate the aerodynamic forces 
and moments acting on aircraft [5] and for the 
modeling of linearized lateral dynamic response 
of aircraft [6,7]. In this paper, a new neural 
approach is proposed for modeling of fully 
coupled nonlinear six-degree-of-freedom 
dynamics of highly maneuverable aircraft.  

To validate the approach, a highly 
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maneuverable fighter, the F-16 Fighting Falcon, 
was chosen. Since, if the method is proven for 
an agile aircraft with highly coupled nonlinear 
dynamics, it will be expected to work well for 
the aircraft with less complicated dynamic 
behaviour like transport airplane. 
 
 
2  Nomenclature   
 

1a ,
2a : Output vector of hidden and output layers 

P : Input vector of neural network 
IW , LW , 1CW , 2CW , 1b , 2b : Weight matrix of input to 
hidden layer, hidden to output layer, context layer, self-
feedback and bias vectors of hidden and output layers 

sigtan , purlin : Tangent sigmoid and pure linear transfer 
functions 

Eδ , Aδ , Rδ : Elevator, aileron and rudder deflections 
rqp ,, : Pitch, roll and yaw rates 
wvu &&& ,, : Translational accelerations in body axes 

α , β , q : Angle of attack, side slip angle, dynamic 
pressure 

cbS ,, : wing area, wing span and mean aerodynamic 
chord  

zqpzyx CCCCCC ,,,,, : Dimensionless aerodynamic 

coeffs. 
rpqqrpqrpq CnCnCmCzClClCzCyCyCx ,,,,,,,,, :  Damping 

derivatives 

RARA CnCnClCl δδδδ ,,, :  Control derivatives 

1333211 ,,, IIII : Elements of moments of inertia matrix 
B

paf ][ 1, , B
Bm ][ : Total aerodynamic and propulsion force 

and moment vectors in body axes 
Rl : Engine angular momentum  

 
 
3  Data Generation   

 
In order to design a neural-network-based 
simulator, it is necessary to apply real flight test 
data as training and validating data; however, to 
prove the concept, the data extracted from a 
conventional aircraft simulator is enough for the 
study of the general idea. The differences 
between simulator and real data are mostly 
caused by modeling simplifications, noise and 
measurement errors. Once the neural network is 
able to predict an aircraft simulator dynamic 
behavior, it is most likely to achieve the same 

results for a real aircraft dynamics. Therefore, in 
this work, the training and validating data is 
generated by a conventional simulator. 

The simulator is a full nonlinear six-degree-
of-freedom model of the F-16 dynamics. To 
improve the accuracy, gravitational acceleration 
is calculated with respect to altitude and 
standard model atmosphere is applied. Pilot 
inputs are elevator, rudder and aileron 
deflections while throttle setting is not included. 

The aerodynamic is modelled by calculating 
the non-dimensional forces and moment 
coefficients which , as presented in the 
following formula, vary nonlinearly with angle 
of attack and side slip (α , β ), angular velocities 
(p,q,r) and control surface deflections ( Eδ , Rδ  
and Aδ ). In these equations, any of damping and 
control derivatives is found by interpolating 
through tabular aerodynamic data [8]. 
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(2) 
Applying Euler and Newton laws leads to the 
six following first order coupled nonlinear 
ordinary differential equations  [9] which are 
numerically solved for p,q,r and wvu ,,  by 4th 
order Runge-kutta method.  
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As is implied in the previous equations, 
quaternions are used to calculate the aircraft 
attitudes. Differential equations of quaternions 
are as follows [9]. 
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4  Neural Network Architecture 

 
Elman network is a kind of recurrent neural 

network that is suitable for the modeling of time 
varying systems. In its original architecture, the 
context units consist of internal state history and 
the hidden layer units have the task of mapping 
both an external input and also the previous 
internal state to the output target. This makes 
Elman network capable in identifying the 
temporal outputs of dynamic systems [10]. 
Although, Elman network with enough context 
layer units can represent an arbitrary nth order 
system, its dynamic memory capacity will 
increase if it is modified by introducing 
additional self-feedback connections to the 
context units [11]. The modified Elman neural 
network architecture used in this work is shown 
in Fig. 1. 

 

 
 

Fig. 1. Modified Elman Network Architecture 
 

All feedback and feedforward connections are 

weighted and determined in the training 
process. Self-feedback connections in the 
context units strengthen the role played by 
internal states history in the modeling process. 
This makes the neural model capable to more 
accurately predict the target dynamics 
especially when inputs are constant for a period 
of time and the output behaviour is dominated 
by previous states. All these, makes the 
modified Elman network ideal for aircraft 
neural network modeling [7]. Governing 
equations for this network structure is as 
follows. 
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Six individual modified Elman neural networks 
are designed and trained to predict the six 
aircraft states: roll, pitch and yaw rates and 
three translational accelerations (Fig. 2). These 
states can be directly measured by rate gyros 
and accelerometers in a flight test.  

Genetic algorithm is applied in the training 
process to find the global optimum set of 
weights and biases that minimizes the mean 
squared error between neural network output 
and the target data obtained by the flight 
simulator. In comparison with gradient-based 
techniques (like error-backpropagation), 
Genetic algorithm offers superior solution in 
complex optimization problems like training 
neural networks. This is due to the fact that 
gradient searches may be trapped in one of the 
local minima, hence obtaining the global 
optimum is not guaranteed, while genetic 
algorithm performs a universal random search 
which leads to the global optimum solution with 
the cost of longer computation time [12]. 
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Fig. 2. MISO System of Neural Networks 

 
 
5  Training and Validating Inputs 
 
Training inputs are three 3211 elevator, rudder 
and aileron deflections, all started at trimmed 
flight condition in Mach 0.5 and 20'000 feet 
altitude. 3211 is a conventional input for aircraft 
parameter estimation and has been shown to be 
very effective in exciting aircraft dynamical 
modes [13]. Any of the three inputs (shown in 
Fig. 3) is fed to the network while the other two 
are constant at their trim values and the mean 
squared error between the network output and 
the expected ones is calculated. The cost 
function that is to be minimized by genetic 
algorithm is as follows. 

 
AileronRudderElevator MSEMSEMSEJ ++=  

 

 
Fig. 3. Training Input Signals (3211) 

 
When the training is accomplished and J 
reaches to an acceptable value, validating tests 
are performed to show that the trained network 
is able to generalize for new and combined pilot 
inputs generating various manoeuvres. 

Both training and validating inputs must be 
selected in such a way that flight condition does 
not leave the design point Mach-altitude region 
and also must prevent generating unrealistic 
data by the simulator in the conditions in which 

its mathematical model is not valid. 
 

6  Results 
 

Training results for all six states are shown in 
figure 4; where, target - the data generated by 
the conventional simulator - is compared to the 
neural network output. Training squared error 
for each state is shown below the corresponding 
state. This figure indicates that the proposed 
network is able to learn the dynamic behavior of 
the F-16 aircraft for in-sample (training) data. 

Fig. 5 shows the validating results obtained 
by exciting the neural networks with new 
inputs; with which the aircraft does various 
maneuvers (climb, descent and turn) in forty 
seconds. To make a comparison, conventional 
simulator results is also included in the same 
figure (marked as the real data). As figure 5 
demonstrates, the trained networks with 3211 
input signals generalize well for arbitrary 
inputs. Mean squared error of validating and 
training results for all six neural networks are 
summarized in Table 1. 

 
Table 1. Training and Validating Mean Squared Errors 

 

States
Training 

Mean Squared Error 
Validating 

Mean Squared Error 

p 41082.4 −×  ( )2sec
rad 41040.9 −× ( )2sec

rad 

q 61007.2 −× ( )2sec
rad 51021.4 −× ( )2sec

rad 

r 41059.1 −× ( )2sec
rad 31031.0 −× ( )2sec

rad 

u& 287.0  ( )2sec2
Ft 54.7  ( )2sec2

Ft 

v&  ( )2sec2
Ft  14.1  ( )2sec2

Ft  36.14  

w&  ( )2sec2
Ft  343.0  ( )2sec2

Ft  26.8 

 
Since aircraft dynamic responses to pilot 
commands are influenced by altitude and Mach 
number, the neural network model is expected 
to be valid for a Mach-altitude region around 
the designed point (Mach 0.5 and 20'000 feet 
altitude). The error caused by Mach-altitude 
effect on trained neural network is shown in 
figures 6-8. In figure 6, neural network yaw rate 
response is compared to real data generated by 
the conventional flight simulator in different 
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speeds and altitudes. Figures 7 and 8 show the 
mean squared errors of yaw rate and v&  networks 
versus a range of 2000 to 47'000 feet altitude 
and 0.4 to 0.9 Mach number. It is found that the 

proposed neural dynamic model is valid for a 
range of 5000 ft altitude and 0.1 Mach number 
in which the error remains acceptable. 

 

 
 

Fig. 4. Training Results 
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Figure 5: Validating Results 

 
 
 
 
 
 

 
Fig. 6. Mach and Altitude Effect on Yaw Rate Response 

 
 
 
 

Fig. 7. Mean Squared Error of Yaw Rate Network versus 
Mach and Altitude 
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Fig. 8. Mean Squared Error of Lateral Acceleration ( v& ) 

Network versus Mach and Altitude 
 
 
6  Conclusions 

 
It is shown that neural networks are able to 

well predict the dynamic behaviour of highly 
manoeuvre aircraft which is helpful in 
developing flight simulators. Six modified 
Elman networks were trained to model the F-16 
dynamics for a pre-specified Mach and altitude. 
The obtained network generalization for new 
inputs and different manoeuvres was found 
quite acceptable. Further investigation is 
performed to find out the valid region around 
the design point (Mach 0.5 and 20'000 feet 
altitude). Developing the neural network to 
model aircraft dynamic for the entire flight 
envelope (Mach-altitude) is currently carried 
out and some satisfactory results have been 
obtained which will be published in the near 
future. 
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