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Abstract

A Fault Detection and Identification (FDI)
scheme for aircraft systems based on the
modelling of relationships among flight vari-
ables is introduced. The modelling is per-
formed by means of Time-dependent Func-
tionally Pooled Nonlinear AutoRegressive with
eXogenous (TFP-NARX) excitation representa-
tions. These are generalized NARX representa-
tions with (a) their parameters being functions of
time-dependent flight variables and (b) the capa-
bility of describing a system under various oper-
ating conditions due to their pooled form. Dur-
ing the system’s operation in healthy mode, these
relationships are valid. Hence a scheme using
statistical hypothesis testing is designed to de-
tect changes in the relationships due to poten-
tial fault occurrence. The FDI scheme’s perfor-
mance and robustness are assessed with flights
conducted under various flight conditions.

1 Introduction

The critical requirements of reliability and se-
curity in modern aircraft systems should be ob-
tained at the lowest possible cost. The replication
of existing critical hardware (the “hardware re-
dundancy” principle) coupled to a voting scheme
to perform Fault Detection and Identification
(FDI) implies added weight and cost, while its

reliability is often criticized [1]. Hence, a new
family of FDI schemes based upon the intelligent
use of the existing hardware has emerged.

Examples may be found in [2], [3], [4] and
[5]. The schemes in [2], [3] and [4] are based
upon the Interactive Multiple Model (IMM) prin-
ciple: Kalman filters provide linear “healthy”
and “faulty” models for the sensors and actuators
considered, and the one corresponding to the cur-
rent aircraft state is selected by means of a prob-
abilistic principle. The work in [5] relies on the
Multiple Model Switching and Tuning (MMST)
concept to provide linear adaptive models, each
one covering an area of the aircraft dynamics un-
der specific failure scenarios. All model outputs
are used to find the model closest to the current
plant dynamics, switch to that one and adapt from
there. Although complicated (many filters per
component, adaptive design), the application of
these schemes is reportedly successful.

In [1] (and the references therein), FDI fil-
ters are designed using the H∞ principle for open
loop, linear time invariant models of the aircraft
(Boeing 747 100/200, on which validation is also
carried out) to detect and isolate faults in the ele-
vator actuator and pitch rate sensors. The H∞ ap-
proach minimizes the influence of noise, distur-
bances and so on, while maximizing the effects of
faults. However, it relies on knowledge of the ap-
propriate transfer functions of the aircraft under
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consideration. To avoid using detailed aircraft
models for FDI, a weak model-based approach is
introduced in [6]. A single sensor signal (Angle-
of-Attack) is processed by non-stationarity re-
moval and by whitening via a suitably estimated
filter (weak model approach). Then, using statis-
tical decision making on the resulting signal al-
lows for the detection of abrupt sensor faults. The
method is successfully validated with real data.

Other FDI designs taking into account the
highly nonlinear nature of the aircraft dynam-
ics are Neural Network (NN) based methods
[7], [8], [9]. The detection of a failed sen-
sor is based upon monitoring the difference be-
tween the (sensor-obtained) signal and its esti-
mated counterpart (obtained from the identified
NN models). The NN models capture the non-
linear aircraft dynamics with good precision, but
with a high level of complexity and time con-
suming training. Alternative FDI approaches are
based upon the existence of specific relationships
among physical system variables. In [10], for
instance, FDI on an Unmanned Aerial Vehicle
(UAV) fuel (sub)system is based upon such re-
lationships provided by physics based modelling.
Since these relationships are valid as long as the
system is in its healthy state, any changes are in-
dicative of fault occurrence.

The aim of this study is the design and fea-
sibility assessment of a statistical FDI scheme
based upon the processing of available flight
quantities (accelerations, pitch rate and so on).
The scheme relies on the structural dependen-
cies among these quantities, for which (unlike
the applications in [10] or [11]) a physical model
may not be available or may be very com-
plex. These dependencies are valid as long as
the aircraft operates in healthy state. They are
modelled by means of Time-dependent Func-
tionally Pooled Nonlinear AutoRegressive with
eXogenous (TFP-NARX) excitation representa-
tions (see [12] on pooled models). These may
be thought of as generalizations of conventional
NARX representations, with two extra features:
(a) Their parameters are functions of specific
time-dependent flight variables. (b) They are ca-
pable of describing a system under various oper-
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Fig. 1 : The fault detection and identification
scheme and aircraft simulator detail.

ating conditions using multiple data records, due
to their pooled form.

The use of pooling techniques (presented in
section 3.1) means that all recorded data corre-
sponding to different flight conditions (that is,
flights conducted under various turbulence levels,
altitude, Mach numbers and so on) are taken into
account during the representation building phase.
Furthermore, linking the parameters to specific
flight variables leads to a more “flexible” (and
accurate) representation of the modelled relation-
ships throughout the considered flight regime.
When the aircraft is affected by faults, the identi-
fied model provides useful fault-related informa-
tion, which is subsequently evaluated by means
of statistical hypothesis testing. The proposed
scheme is tested with a large number of flights
obtained by a nonlinear aircraft simulator, under
various environmental conditions (turbulence).

2 The Aircraft and The Faults

The aircraft system considered is a 6 Degree-Of-
Freedom (DOF) nonlinear aircraft simulator. In-
puts are the pilot commands (stick, wheel and
pedal), and outputs are the attitudes, the accelera-
tions and the angular rates (see Fig. 1). The wind
and turbulence effects are considered as system
disturbances.

This study concentrates on faults of various
magnitudes affecting the elevator and the aileron
subsystems. The faults are injected into the sys-
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Fig. 2 : Generic representation of the eleva-
tor/aileron primary and secondary circuits.

Table 1. The faults considered.
Type Description Magnitude

FA
k Elevator LOE k ∈ [0.03,0.44]

FB
k Noise in Aileron k = 0.1,0.25,0.5

FC
k1,k2

2× Elevator LOE k1 = 0.001, k2 = 0.03

FD
k1,k2

Elevator k1 = 0.001

& Aileron LOE k2 ∈ [0.03,0.44]

tem by modifying the corresponding component
blocks in the aircraft simulator and are summa-
rized in Table 1. In the following paragraphs,
each fault type is presented in detail.

Elevator Faults: These LOE (Loss of Effec-
tiveness) faults describe equipment deterioration
(for instance, a non properly functioning actuator
circuit). A generic representation of an actuator
circuit (applicable to both the elevator and aileron
circuits) is presented in Fig. 2. Each such fault
is designated as FA

k with A indicating the eleva-
tor subsystem and k the specific fault magnitude.
The elevator faults are created in the aircraft sim-
ulator by reducing the position feedback gain P1

(see Fig. 2) of the left elevator, from 1 in the
healthy case to the values shown in Table 1. In
Fig. 3(a) the aircraft pitch rate response is com-
pared for a healthy and a faulty (affected by a FA

0.3
fault) elevator, for a pilot stick input of 15 lbs step
at t = 5 sec, with wheel and pedal inputs equal to
zero in the landing flight regime. The overall re-
duction of the elevator effectiveness is small and
the aircraft can still fly safely.

Aileron Faults: These correspond to a small
vibration of the aileron surface that may result
from a slightly deteriorating actuator. They are
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Fig. 3 : Aircraft pitch rate responses for a stick
input of 15 lbs at 5 sec: (a) Healthy versus FA

0.3 af-
fected ; (b) healthy versus FB

0.5 affected; (c) healthy
versus FC

0.001,0.03 affected and (d) healthy versus
FD

0.001,0.03 affected (low turbulence, landing flight
regime).

created by means of a small additive white noise
applied on the left aileron deflection (shown as
the disturbance d in Fig. 2). Each individual
fault is designated as FB

k with B being the aileron
subsystem and k the specific fault magnitude (ad-
ditive noise variance σ2 = k in Table 1). Such
added noise leads to slightly noisy evolution of
the “faulty” aircraft pitch rate after 6 sec [Fig.
3(b)].

Sequential Faults: Two types of LOE sequen-
tial faults affecting the elevator and aileron actu-
ators are considered. The first one affects the ele-
vator (referred to as FC

k1,k2
) and corresponds to se-

quential reductions of the position feedback gains
P1 and P2 in the left elevator: The gain P1 is re-
duced from 1 to k1 at t = t1, whereas P2 reduces
from 1 to k2 at t = t2 (with t2 > t1), as in Table 1.
The aircraft’s pitch rate step response, when both
reductions are present, is shown in Fig. 3(c).

The second sequential fault corresponds to
decreases of the closed loop position feedback
gain on both the left elevator and the left aileron
circuits. The same reduction of P2 as in the pre-
vious case in the left elevator (from 1 to k1) is
followed by a reduction (from 1 to k2, see Ta-
ble 1) of the position feedback gain P1 in the
left aileron. This fault, referred to as FD

k1,k2
, also

corresponds to equipment deterioration. The air-
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craft’s pitch rate step response, when both reduc-
tions are present, is shown in Fig. 3(d).

Remark: Both FC
k1,k2

and FD
k1,k2

may be seen as
multiple faults caused by one specific malfunc-
tion (defective software, for instance), which is
a similar idea to Common Mode Failures (CMF)
([13], ch.28 p.4). Such faults are rather unlikely
to be accounted for during the initial design stage
of the FDI algorithm. Hence, they may be re-
ferred to as unmodelled, as opposed to modelled
faults which are accounted for during the FDI
scheme’s initial design. Thus, modelled faults
may be both detected and identified, whereas un-
modelled faults may, at best, be detected but not
identified.

3 The Fault Detection and Identification
Method

Aircrafts are highly nonlinear systems whose be-
havior varies with the flight regime (take off,
clean flight or landing), the weight (and its dis-
tribution), environmental conditions (turbulence,
weather) and other factors. The proposed FDI
scheme (see Fig. 1) is centered around the non-
linear modelling of the relationships among mea-
surable flight signals. A Multi-Input Single-
Output (MISO) TFP-NARX representation (a
Time- dependent Functionally Pooled NARX
representation, that is with parameters being
functions of time-dependent flight variables) de-
scribes the dependency among four signals: three
taken as “inputs” (lateral and vertical accelera-
tions and the angle-of-attack) and one as “output”
(pitch rate). The TFP-NARX representation is
identified from past flights, during an initial tun-
ing phase referred to as the baseline modelling
phase in the sequel (presented in section 3.1).

Once a TFP-NARX representation is identi-
fied, it is used on-line in any ongoing flight, dur-
ing the operational (or diagnostic) phase (pre-
sented in section 3.2), to assess the current health
state of the aircraft. If the actual system is in
healthy state, the TFP-NARX model provides a
one-step-ahead prediction of the output similar to
the signal obtained from the simulator. The dif-
ference between the TFP-NARX model predic-

tion and the actual signal (the residual e[t] in Fig.
1) will however change if a fault affects the air-
craft (simulator). Then, the fault related informa-
tion is extracted from e[t] by means of a statistical
decision-making strategy.

3.1 Baseline Modelling Phase

For a healthy aircraft, the dependency among the
considered input-output signals is described by
means of the following representation:

y j[t] = ∑L
i=0θi[t] · pi, j[t]+ e j[t] ∀ j

E{e j[t] · ei[t − τ]} = γe[ j, i]δ[τ] ∀i, j

e j[t] ∼ NID (0,σ2
e( j)) ∀ j

(1)

with t designating the normalized discrete time,
y j[t] and e j[t] the model’s output and one-step-
ahead prediction error [or residual, assumed to be
a zero-mean uncorrelated sequence with variance
σ2

e( j)] signals for the j-th flight, respectively.
E{·} designates statistical expectation, NID(., .)
Normally Independently Distributed (with the in-
dicated mean and variance), δ[τ] the Kronecker
delta (δ[τ] = 1 when τ = 0 and δ[τ] = 0 when
τ �= 0) and γe[ j, i] the cross covariance ([14] pp.
409-411). The terms pi, j[t] are referred to as
regressors and involve both the output y j[t] and
the inputs(s) signals um, j[t] (with m denoting the
corresponding input). Each regressor term pi, j[t]
may include polynomial functions of the output
and/or the input signals, whereas by definition

p0, j[t]
Δ= 1. In each term, signal values of dif-

ferent lags may be admitted. The maximum lags
of the signals y j[t], um, j[t] in (1) (model orders)
are ny and num , respectively. The i-th regressor
coefficient (model parameter) is noted θi[t] and is
considered as function of relevant flight variables
(hence it is time-varying).

The parameters θi[t] are considered as func-
tions of relevant flight quantities �1, j[t], �2, j[t],
. . ., �q, j[t] (�i, j[t] being the value of the quantity
�i at time t for the j-th flight) as follows:

θi(�1, j[t], �2, j[t], . . . , �q, j[t]) =
= ai0 +ai1 · �1, j[t]+ai2 · �2, j[t]+ . . .+aiq · �q, j[t]

(2)
The flight quantities �1, j[t], �2, j[t], . . . , �q, j[t], also
referred to as basis functions, may be polynomial
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functions of flight variables (such as the Mach,
Alt and so on). The terms ai0 , . . . ,aiq denote
the projection coefficients (assumed constant and
common to all flights) of the i-th model parame-
ter .

Discussion: The TFP-NARX representation
(1) takes explicitly into account the multiple air-
craft operating conditions (the M flights con-
ducted under different conditions) during the sys-
tem modelling phase: Data from multiple flights
are treated as one entity (as shown in the se-
quel for the identification of a single represen-
tation). Thus, the pooled form of TFP-NARX
representations is ideally suited to the (condition-
dependent) aircraft dynamics. Naturally, if a
single flight is considered, the TFP-NARX cor-
responds to a simple NARX model with time-
dependent coefficients. The parameters θi[t]
functionally depend upon important variables, as
shown in (2). Hence, the resulting extra “flexibil-
ity” renders the TFP-NARX representation con-
siderably “richer” than its conventional counter-
part (that is, a Pooled NARX representation with
Constant Coefficients or CCP-NARX, see [15]).
Finally, the statistical dependencies among the
different data records (flights) are easily accom-
modated into the model building (identification)
phase: The second line of (1) points out that the
residuals corresponding to two different flights j
and i are potentially cross-correlated.

Identification: During the baseline phase the
objective is: (a) To choose the regressors pi, j and
the quantities �i, j that most accurately describe
the system dynamics; (b) To estimate the associ-
ated parameters θi[t] or, equivalently, the coeffi-
cients of projection ai0, . . . ,aiq . For this purpose,
the top equation in (1) may be rewritten as1:

y j[t] = φT
j
[t] ·θ[t]+ e j[t] (3)

with φ
j
[t] =

[
p0, j[t] . . . pL, j[t]

]T
and θ[t] = [θ0...

θL[t]]T the parameter vector, respectively. The
j-th flight data (N samples) may then be repre-
sented by a matrix equation similar in form to (3):

1Underlined lower case/capital symbols designate col-
umn vector/matrix quantities, respectively.

y
j
= Φ j ·θ[t]+ e j (4)

with y
j
Δ= [y j[1] · · ·y j[N]]T ∈ R [N×1], e j

Δ= [e j[1]

· · ·e j[N]]T ∈ R [N×1] and Φ j = [φ
j
[1] ...φ

j
[N]]T ∈

R N×(L+1). Let M be the number of flights (each
of N recorded data samples) available for the tun-
ing phase. For each of these flights, a matrix
equation (4) may be defined. Pooling all M sets
together (that is, stacking one on top each other)
and using (4), yields the following matrix equa-
tion:

ȳ = Φ̄ ·θ[t]+ ē (5)

where ȳ
Δ= [yT

1
...yT

M
]T ∈ R [NM×1] and ē

Δ= [eT
1 ...

eT
M]T ∈ R [NM×1]. The matrix Φ̄ Δ= [ΦT

1 · · ·
ΦT

M]T ∈R [NM×(L+1)] involves the terms pi, j[t] for
all M flights and all N time instants. Using (2)
and (5), a matrix equation similar to (5) is ob-
tained:

ȳ = Ω · ᾱ+ ē (6)

with ȳ, ē as in (5) and ᾱ = [a10 , . . . ,a1q, ...,aL0,

...,aLq] ∈ R L(q+1)×1. If ł j[t] = [1, �1, j[t], ...
, �q, j[t]]T , the matrix Ω is obtained as:

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φT
1
[1]⊗ łT1 [1]

...
φT

1
[N]⊗ łT1 [N]

...
φT

M
[1]⊗ łTM[1]

...
φT

M
[N]⊗ łTM[N]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

with ⊗ designating the right Kronecker product.
The selection of pi, j and �i, j terms is per-

formed in two stages. During the first stage, an
auxiliary CCP-NARX representation of the sys-
tem (see [15]) is considered, for the sole purpose
of selecting the terms pi, j (using the data set of M
flights) by means of a forward orthogonal search
algorithm [16]. This auxiliary representation has
a similar form to (5) but with a constant vector θ.
The procedure is iterative and starts by searching
the most significant regressor term. Once a term
is selected, it is stored and the second most sig-
nificant one is sought until a user-defined number
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of regressors is selected. Each term’s significance
is evaluated by its contribution to the reduction
of the Residual Sum of Squares to Signal Sum
of Squares (RSS/SSS) ratio. The term leading to
the most significant RSS/SSS reduction is chosen
at each iteration. During the second stage, the
selected terms pi, j are utilized together with the
previous data to select the �i, j functions (also us-
ing a forward search algorithm [17]) which best
describe the system dynamics. The iterative pro-
cedure is the same as the one described above.
Note, that selecting one set of quantities (pi, j or
�i, j) at a time means that, for a given system, an
existing CCP-NARX structure may be converted
to a (more effective) TFP-NARX one without re-
sorting to a total system remodelling.

Finally, once both the pi, j and �i, j terms have
been selected, the vector ᾱ is estimated by us-
ing the form (6) and an Ordinary Least Squares
(OLS) or a Weighted Least Squares (WLS) algo-
rithm. For the given application, the selected pi, j,
�i, j and ᾱ are presented in detail in section 4.1.

3.2 Operational (Diagnostic) Phase

The statistical tests used for FDI utilize the uncor-
relatedness property of the healthy residual se-
quence e[t]. An l-sample long vector [e[t − (l −
1)]...e[t]] (moving window) is considered at each
time instant t, and the following hypothesis test-
ing problem is constructed:

H0 : ρi = 0 i = 1, ...,r (healthy system)
H1 : ρi �= 0 for some i (faulty system)

(8)

with H0 and H1 designating the null and alterna-
tive hypothesis. The term ρi designates the i-th
correlation coefficient of the sequence e[t] ([18]
p. 55). Under the null hypothesis the following
statistic follows χ2 (chi-square) distribution with
(r − s + 1) degrees of freedom ([18], pp. 423-
426):

Q = l
r

∑
i=s

ρ̂2
i ∼ χ2(r− s+1) (9)

with ρ̂i designating the estimated ρi and l the
window length. The variable s is usually chosen
equal to 1 ([18] p. 425). The hypothesis testing at
the risk level α (that is the probability of rejecting

H0 given that H0 is true), is then formulated as:

Q < χ2
(1−α)(r− s+1) =⇒ H0 is accepted

Else =⇒ H1 is accepted
(10)

with χ2
(1−α) the chi-square distribution’s (1−α)

critical point. Clearly, the test (10) (referred to as
detection test A) involves (r− s+ 1) coefficients
of the statistical function (correlation) of e[t].

An alternative test based upon the Partial
Auto-Correlation Function (PACF), estimated for
the residuals e[t], is also constructed. The PACF
Φii, is the correlation between e[t] and e[t + i] af-
ter their mutual linear dependency on the inter-
vening variables e[t + 1], e[t + 2], . . . ,e[t + i−1]
has been removed (see [14], pp. 67-68). To set
up the test, the variable δΦ̂ii = Φ̂ii −Φ0

ii is con-
sidered, with Φ̂ii being the partial correlation co-
efficient estimated at lag k for a data sequence
(that is a l-long moving window of e[t]) and Φ0

ii
an estimate of its mean value when the system is
in healthy state. This estimate is obtained from a
number of flights (other than those used for test-
ing) conducted with an aircraft in healthy state.
In general, due to disturbances, modelling errors
and so on, a “small” (in magnitude) Φ0

ii (around
0.1) is an acceptable value. The following com-
posite hypothesis testing problem for the true (but
unknown) partial correlation coefficient is con-
structed:

H0 : δΦii = 0 (healthy system)
H1 : δΦii �= 0 (faulty system)

(11)

In practice, the PACF is estimated by fitting suc-
cessive AutoRegressive (AR) models of orders
1,2,... by OLS and retaining the last coefficient of
each regression [14]. Then Φ̂ii is equal to the last
coefficient of the estimated i-th order AR model.
Furthermore, its variance is given by the (i, i)-
th element of the parameter covariance matrix of
the estimated AR model. It may be shown that
the AR model parameter estimates follow normal
distribution ([18] pp. 205-207). Hence, treating
the estimated variance of Φ̂ii as a fixed quantity,

the following function Z = δΦ̂ii√
δσ2

follows normal

N (0,1) distribution. Then, a test (referred to as
detection test B) characterized by risk level α is
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Fig. 4 : Statistical hypothesis test for δΦii (the
shaded area corresponds to accepting H0 at a risk
level α).

formed:

Zα
2
≤ Z ≤ Z1−α

2
=⇒ H0 is accepted

Else =⇒ H1 is accepted
(12)

with δσ2 designating the variance of δΦ̂ii (which
is equal to that of Φ̂ii) and Zα the standard normal
distribution’s α critical point (see Fig. 4). Note,
that both tests A and B can be used either for fault
detection or fault identification.

4 Aircraft System FDI Results

4.1 Baseline Modelling Phase Results

Data are collected from M = 99 flights (other
than those used for FDI testing) of 50 sec each,
conducted inside the landing flight regime (data
sampling rate 25 Hz) for a given aircraft configu-
ration (no faults, constant weight-distribution and
weather conditions). The auxiliary representation
(see section 3.1) obtained is a CCP-NARX(10,[8
8 8]) model [that is, ny = 10, num = 8 for m =
1,2,3], with L = 70. As stated in section 3.1, the
choice of the regressors relies on the orthogonal
algorithm in [16] and has been derived in [15]
(where a simple CCP-NARX representation was
used). The number of regressor terms and ny, num

are chosen on the basis of obtaining accurate pre-
diction and approximate uncorrelatedness of the
residual sequence e[t], as well as satisfying some
standard cross correlation tests between the input
signals and the residuals [16].

Table 2 . The TFP-NARX(10,[8 8 8]) model
structure (healthy system, landing flight regime,
W=31,850 lbs, light turbulence).

p0 = 1 p35 = u2[t −2]y[t −4]
p1 = y[t−1] p36 = u1[t −6]y[t −9]
p2 = y[t−2] p37 = u1[t −1]y[t −10]
p3 = y[t−3] p38 = u2[t −3]u2[t −3]
p4 = y[t−4] p39 = u2[t −1]u2[t −5]
p5 = y[t−5] p40 = u2[t −2]u2[t −4]
p6 = y[t−6] p41 = u2[t −2]u2[t −6]
p7 = y[t−7] p42 = u2[t −5]u2[t −8]
p8 = y[t−9] p43 = u1[t −1]u1[t −5]
p9 = u2[t −5] p44 = u1[t −1]u1[t −7]
p10 = u3[t −5] p45 = u1[t −1]u1[t −6]
p11 = u2[t −1]y[t −9] p46 = u1[t −1]u1[t −3]
p12 = u2[t −2]y[t −9] p47 = u2[t −6]u3[t −1]
p13 = u3[t −3]y[t −7] p48 = u2[t −5]u3[t −2]
p14 = u2[t −1]y[t −10] p49 = u2[t −1]u2[t −4]
p15 = u2[t −2]y[t −8] p50 = u2[t −6]u3[t −2]
p16 = u2[t −2]y[t −10] p51 = u2[t −2]u3[t −3]
p17 = u2[t −1]y[t −5] p52 = u2[t −1]u3[t −5]
p18 = u2[t −2]y[t −3] p53 = u2[t −1]u3[t −2]
p19 = u2[t −1]y[t −2] p54 = u2[t −3]u3[t −3]
p20 = u3[t −7]y[t −1] p55 = u2[t −3]u3[t −8]
p21 = u2[t −2]y[t −6] p56 = u2[t −4]u2[t −8]
p22 = u2[t −1]y[t −6] p57 = u1[t −4]u3[t −8]
p23 = u2[t −2]y[t −2] p58 = u1[t −4]u2[t −7]
p24 = u1[t −3]y[t −1] p59 = u2[t −1]u3[t −8]
p25 = u1[t −3]y[t −5] p60 = u2[t −2]u3[t −2]
p26 = u1[t −2]y[t −7] p61 = u2[t −3]u3[t −5]
p27 = u1[t −7]y[t −1] p62 = u2[t −5]u3[t −3]
p28 = u1[t −6]y[t −3] p63 = u2[t −3]u3[t −1]
p29 = u1[t −6]y[t −5] p64 = u2[t −5]u3[t −1]
p30 = u1[t −2]y[t −9] p65 = u2[t −1]u2[t −6]
p31 = u1[t −1]y[t −4] p66 = u1[t −4]u2[t −3]
p32 = u2[t −2]y[t −1] p67 = u2[t −4]u3[t −1]
p33 = u2[t −1]y[t −7] p68 = y[t−5]y[t −10]
p34 = u2[t −1]y[t −3] p69 = y[t−1]y[t −1]
�1, j = Mach4, �2, j = Alt ·Mach3, �3, j = Mach,
�4, j = Alt ·Mach4, �5, j = Mach2, �6, j = Alt ·Mach3

u1[t] : y-axis acceler. Ay, u2[t] : z-axis acceler. Az

u3[t] : angle-of-attack AoA, y[t] : pitch rate q
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Table 3. Fault detection and identification results
with tests A and B (low turbulence flights: 360; in-
creased turbulence flights: 300).

Fault detection with test A (success rates %)
Turb. Healthy FA

k FB
k FC

k1,k2
FD

k1,k2

low 89 93 100 100 100
increased 65 81 100 − −

Fault detection with test B (success rates %)
Turb. Healthy FA

k FB
k FC

k1,k2
FD

k1,k2

low 95 94 99 100 100
increased 89 83 96 − −
Fault identification with test B (success rates %)

Turb. Healthy FA
k FB

k FC
k1,k2

FD
k1,k2

low n/a 100 100 −
increased n/a 100 100 n/a n/a
n/a: not applicable

Using the auxiliary CCP-NARX(10,[8 8 8])
representation, a TFP-NARX model is derived,
as described in section 3.1. The functional space
is assumed to be spanned by polynomial func-
tions of the aircraft altitude (Alt) and the Mach
number. The polynomial functions are subse-
quently inserted in a forward search algorithm
[17] in order to select the most significant terms,
shown at the bottom of Table 2. The selected
model satisfies the majority of the standard val-
idation tests, while obtaining accurate prediction
[see Fig. 5(a), (b)].

4.2 Operational (Diagnostic) Phase Results

The testing procedure involves a total number of
360 flights (80 healthy, 80 with FA

k , 140 with FB
k ,

30 with the FC
k1,k2

, 30 with FD
k1,k2

), all different
from those employed in the TFP-NARX model
building phase. Another 300 flights conducted
under increased turbulence are studied in order
to verify the scheme’s robustness. The duration
of each flight is equal to 100 seconds with a sam-
pling rate of 25 Hz. The FA

k and FB
k faults enter

the system right after t = 20 sec, whereas for the
FC

k1,k2
and FD

k1,k2
the first fault is injected at t1 = 5

sec and the second at t2 = 10 sec (see section 2).
A 400 sample long moving window is used
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Fig. 5 : The identified TFP-NARX representation:
(a) actual pitch rate versus one-step-ahead predic-
tion, (b) one-step-ahead prediction errors (low tur-
bulence, landing flight regime).

for FDI. Thus, the scheme is inoperative during
the first 400 samples (≈ 16 sec). The detection
and identification tasks are presented hereafter:

Fault Detection: The detection test A (10) is
applied, with α = 10−5, r = 35 and s = 2 [see
(9)]. The detection test B (12) is also employed
on the same test flights, using the 2nd lag of the
PACF (that is Φ22). The results in Table 3 sug-
gest that test A can be an adequate solution even
for sequential (unmodelled) faults, but it is char-
acterized by significant false alarm rates (11%).
However, this comment is valid only for low tur-
bulence conditions (see typical examples in Fig.
6). This is expected since the TFP-NARX repre-
sentation is identified using low turbulence data.

In comparison, test B, also shown in Ta-
ble 3, is notably better in terms of false alarms
(5% versus 11% for test A) and missed detec-
tions. Most importantly, test B is more robust
in increased turbulence conditions (FA

k faults ex-
cepted). It should be noted that a small number
(less than 20) of increased turbulence flights with
sequential faults were conducted. The detection
and false alarm performance remained almost un-
changed, which is reasonable since these faults
do not involve added noise (as in the FB

k case).
However, due to the small number of flights, the
corresponding rates are not presented.

Hence, the most effective test (in a global
sense) is test B. Note that the pooling proce-
dure allows for including flights conducted un-
der increased turbulence during the identification

8
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Fig. 6: Fault detection results: Test A (left column)
and test B (right column) for typical flights un-
der low turbulence (the shaded area corresponds
to H0; α = 10−5).

phase, leading to improved FDI performance.
Nevertheless, this was not done as the aim is
to test the FDI scheme’s robustness under harsh
conditions.

Fault Identification: As noted in the previous
paragraph, the statistical test offering the best
global performance is the one based upon the
PACF. It is thus chosen to perform fault iden-
tification, relying on the interesting observation
that Φ22 > 0 for flights affected by FA

k faults, and
Φ22 < 0 for flights affected by FB

k faults. Hence,
the two fault types can be clearly distinguished.
This leads to setting up a statistical test similar
to (12). The main difference is that Φ0

22 ≡ Φ∗
is an empirical mean value when the system is
affected by the considered fault. As in the de-
tection phase, the Φ∗ value is computed from a
number of flights not used in the testing phase.
Then, for each of the FA

k and FB
k faults, two hy-

potheses are formulated: {H0: system affected
by a specific fault} and {H1: system affected by
another fault}. Furthermore, δΦ∗

ii =Φii−Φ∗ and

the quantity Z∗ = δΦ̂∗
ii√

δσ2
[similar to Z in (12)] are

readily defined, so that the following statistical
test is performed:

Zα
2
≤ Z∗ ≤ Z1−α

2
=⇒ H0 is accepted

Else =⇒ H1 is accepted
(13)

Fig. 7: Fault identification results with Test B for
flights with low turbulence: (a) FA

k faults; (b) FB
k

faults; (c) FC
k1,k2

fault; (d) FD
k1,k2

fault (the shaded
area corresponds to identification of FA

k , FB
k , FA

k

and FA
k faults, respectively; α = 0.025).

The results in Table 3 show that the identification
rates are also good for the modelled faults, even
under increased turbulence conditions. Further-
more (as the typical examples in Fig. 7 show),
no unmodelled faults are mistaken for modelled
ones, and no FA

k fault is identified as a FB
k one.

Note that the fault identification rates are based
upon the number of flights detected as faulty dur-
ing the detection phase. The robustness tests
show that the FDI scheme gives decent results
even for external conditions for which it has not
been designed for (increased turbulence).

5 Conclusions

A scheme for the detection and identification
of faults in aircraft systems has been presented.
The scheme is based on a minimum of input-
output data, and circumvents the need for hard-
ware replication. This makes it suitable for sys-
tems requiring the optimal use of the on-board
computing resources (like the future autonomous
pilot-less aircraft). The MISO relation among
specific flight signals (presently the vertical and
horizontal acceleration, angle of attack and pitch
rate) is modelled by means of TFP-NARX rep-
resentations, with parameters being functions of

9
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the Alt and Mach variables. FDI is then based
upon the monitoring of the residuals produced
from the identified model. The fault-related in-
formation is statistically evaluated via two tests
(A and B).

Given the variety of magnitudes of the faults
considered, the results are very promising: Faults
were correctly detected and identified even under
harsh external conditions (increased turbulence),
which the scheme had not been designed for.
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