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Abstract

This paper presents a newly developed hybrid
simulation technique for interior coupled vibro-
acoustic analysis, which applies a wave based
model for the acoustic cavity and a finite ele-
ment model for the structure. The resulting hy-
brid model benefits from the computational effi-
ciency of the wave based method, while retaining
the finite element method’s ability to model the
structural part of the problem in great detail. Ap-
plication of this approach to the study of the inte-
rior noise inside a section of an aircraft shows an
improved computational efficiency over classical
finite element procedures and illustrates the po-
tential of the hybrid method as a powerful tool for
the analysis of coupled vibro-acoustic systems.

1 Introduction

The use of numerical models for functional per-
formance evaluation has become common prac-
tice in industry. The most popular techniques
to perform interior coupled vibro-acoustic analy-
ses are the Finite Element Method [1] (FEM) and
the Boundary Element Method [2] (BEM). These
deterministic simulation techniques discretise the
considered problem or its boundary into a finite
number of elements. Within these elements, the
dynamic response variables are described by an
expansion of simple (polynomial) shape func-

tions, which are no exact solutions of the gov-
erning differential equations. As a result, as fre-
quency increases, the prediction accuracy of the
element based models decreases, mainly due to
two types of errors: interpolation and pollution
errors [3]. Keeping these errors within accept-
able bounds requires the use of extremely dense
problem discretisations, especially at higher fre-
quencies. This results in prohibitively large nu-
merical models for real-life vibro-acoustic prob-
lems. As a result, the applicability of the element
based techniques is limited to problems in the
low-frequency range. One of the major advan-
tages of the element based methods is their ability
to model any problem, regardless of its geomet-
rical complexity.

The Wave Based Method (WBM) [4] belongs
to the family of so-called Trefftz methods [5]
and has shown to be applicable for vibro-acoustic
problems in the mid-frequency range [6]. This
deterministic technique applies globally defined
wave functions, which are exact solutions of the
governing differential equations, instead of ap-
proximating shape functions, to describe the dy-
namic response variables. As a result, the use
of very dense domain discretisations at higher
frequencies is no longer required. The size of
the numerical models and the required computa-
tional resources are substantially lower as com-
pared with element based methods. Because of
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the enhanced convergence properties, the WBM
can be applied to low- and mid-frequency appli-
cations. A sufficient condition for convergence
of the applied wave function expansions, is the
convexity of the considered problem domains.
Non-convex domains have to be partitioned into
a number of (convex) subdomains. As a result,
in order to fully benefit from the method’s effi-
ciency, only problems of moderate geometrical
complexity are considered.

In recent years, combination of the geomet-
rical flexibility of the FEM with the enhanced
convergence properties of the WBM in a hy-
brid modelling technique has been successfully
explored for uncoupled acoustic [7] and uncou-
pled structural problems [8]. This paper presents
a newly developed hybrid simulation technique,
in which a direct coupling is realised between a
structural FE model and an acoustic WB model.
The novel technique can be applied to vibro-
acoustic problems in which a complex structure
is in contact with acoustic cavity of moderate ge-
ometrical complexity. The first section of the pa-
per describes the mathematical formulation of the
novel hybrid FE-WB method. Section 3 illus-
trates the improved computational efficiency of
the method as compared to classical FE proce-
dures through an application study of interior air-
craft noise, which has been a topic of interest in
the past decades.

2 A hybrid FE-WB method for coupled
vibro-acoustic problems

2.1 Problem definition

Fig. 1 A 3D coupled vibro-acoustic problem

The steady-state dynamic behaviour of a gen-
eral coupled vibro-acoustic system, as shown in

figure 1, is described by two physical variables:
the acoustic pressurep(r) at a positionr(x,y,z) in
the internal acoustic cavity and the combined dy-
namic in-plane (wx′(r ′), wy′(r ′)) and out-of-plane
deformations (wz′(r ′), θx′(r ′), θy′(r ′)) at a posi-
tion r ′(x′,y′) in the structural domainΩs. The
z′-axis of the local coordinate frame(x′,y′,z′) is
normal to the structure and points away from the
acoustic cavity.

The acoustic cavityV is filled with air, with
ambient fluid densityρa and speed of sound
c. An acoustic point sourceq at position
rq(xq,yq,zq) within the cavity excites the fluid
at circular frequencyω. Under the assumption
that the fluid in the cavity behaves linear, invis-
cid and adiabatic, the Helmholtz equation gov-
erns the steady-state acoustic pressurep(r) inside
the cavity [9]:

4p(r)+k2 · p(r) =− jρaωq·δ(r , rq) (1)

with 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 the Laplacian operator,

k = ω
c the acoustic wave number,j =

√−1 the
imaginary unit andδ a Dirac delta function.

Since the Helmholtz equation (1) is a second
order differential equation, one boundary condi-
tion needs to be specified at each point of the
boundary in order to obtain a well-posed prob-
lem. The boundaryΩa of the acoustic domain
consists of four non-overlapping parts, (Ωa =
Ωp
S

Ωv
S

ΩZ
S

Ωs). On each of the first three
parts of the boundary,Ωp, Ωv and ΩZ, acous-
tic pressure, acoustic normal velocity and normal
impedance boundary conditions are specified re-
spectively:

Rp(r) = p(r)− p̄(r) = 0, r ∈Ωp

Rv(r) = j
ρaω

∂pr
∂n − v̄n(r) = 0, (r) ∈Ωv

RZ(r) = j
ρaω

∂p(r)
∂n − p(r)

Z̄n(r)
= 0, r ∈ΩZ

(2)

with ∂
∂n the normal derivative and̄p(r), v̄n(r) and

Z̄n(r) predefined values for the acoustic pressure,
normal velocity and normal impedance, respec-
tively.

The partΩs of the boundary consists of a flex-
ible plate assembly, made of a material with den-
sity ρs, Young’s modulusE and Poisson ratioν.
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The structure is excited harmonically by a point
forceF at positionr ′F(x′F ,y′F). The dynamic de-
formations within the plates consists of two su-
perimposed deformation fields, which are mutu-
ally coupled: the in-plane deformationswx′(r ′)
and wy′(r ′) on the one hand and the out-of-
plane displacements and rotationswz′(r ′), θx′(r ′)
and θy′(r ′), on the other hand. The dynamic
in-plane deformations are governed by the cou-
pled Navier-equations [10]. Since the Helmholtz
equation (1) assumes the acoustic medium to be
inviscid, the acoustic pressure only directly influ-
ences the out-of-plane dynamic deformations of
the structure. Therefore the in-plane equations
are not considered further. To describe the dy-
namic out-of-plane behaviour a various types of
plate bending theories are available. The Kirch-
hoff thin plate bending theory [10] is the most
widely known, but the hybrid methodology ap-
plies equally well to other available plate bend-
ing theories, such as for example the more gen-
eral Reissner-Mindlin theory [11]. Without loss
of generality, the plate bending differential equa-
tions can be written as:

(
Lb−ω2Mb

)




wz′(r ′)
θx′(r ′)
θy′(r ′)



 =





fz′(r ′)
mx′(r ′)
my′(r ′)



 (3)

In this expression,Lb is a(3x3) matrix of differ-
ential operators, governing the elastic and damp-
ing forces in the plate structure. The elements of
the(3x3) matrixMb represent the inertial param-
eters of the structure. The term on the right hand
side of (3) represents the distribution of the me-
chanically applied forces and moments (per unit
area) on the structure.

The structural partial differential equation
(3) needs to be complemented with appropriate
boundary conditions at each point on the edge
Γs of the structural domain. Two of the possible
types of boundary conditions (BCs) are:

Kinematic BCs on Γd: d(r ′) = d̄(r ′)
Dynamic BCson Γt : T(r ′) = T̄(r ′) (4)

with d(r ′) andT(r ′), respectively, the vector of
out of plane deformations and boundary forces.

Variables of the form•̄ represent prescribed
boundary values.

In a coupled vibro-acoustic system, the
acoustic pressure field and the structural dis-
placements mutually influence each other along
the vibro-acoustic interaction surfaceΩs as fol-
lows:
• The vibrations of the plate act as a normal ve-

locity excitation for the fluid in the cavity:

Rva(r) = jωw(r ′)− j
ρaω

∂p(r)
∂n

= 0 (5)

• The acoustic pressure acts as a supplementary
load on the structure. Since this load only af-
fects the out-of-plane bending deformation of
the plates, the vibro-acoustic interaction trans-
lates into an additional load-term in the bend-
ing differential equations (3) which is propor-
tional to the acoustic pressure on the ’wetted’
surface:

(
Lb−ω2Mb

)




wz′(r ′)
θx′(r ′)
θy′(r ′)



 =





fz′(r ′)+ p(r ′)
mx′(r ′)
my′(r ′)




(6)

2.2 FEM for uncoupled structural problems

The hybrid FE-WB method combines a FE model
of the structural part of the problem with an
acoustic WB model of the interior cavity. This
section describes the basic concepts of the FEM
for uncoupled structural problems. The FEM
is a well-known simulation technique to model
the steady-state dynamic behaviour of complex
structures. The technique determines an ap-
proximate solution to the problem described by
the plate bending equations (3) and the imposed
structural boundary conditions (4) by applying
the following strategy:
• The entire problem domainΩs is discretised

into a large, but finite, number of small, non-
overlapping elements.

• The FEM approximates the exact solution by
a weighted sum of simple (polynomial) shape
functionsNi(r ′). For each nodei in the FE dis-
cretisation there is an associated shape func-
tion Ni(r ′), which has a non-zero value in each
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element domain to which nodal degree of free-
dom (dof)i belongs, while it is zero in all other
element domains. For the out of plane dis-
placementswz′(r ′), the approximation is writ-
ten as:

wz′(r ′)≈ ŵz′(r ′) =
nk

∑
n=1

Nn,wz′(r ′)an,wz′

= Nwz′ ·wz′

(7)

with nk the number of nodal dofs in the
FE model,wz′ the (nkx1) vector of unknown
weighting coefficientsan,wz′ and Nwz′ the
(1xnk) vector of shape functionsNn,wz′(r ′). For
the other field variables, similar expansions
are applied. In general, the weighting factors
an,i in these expansions represent the unknown
nodal deformations.

• The polynomial shape functions are no exact
solutions of the governing differential equa-
tions and may violate the imposed bound-
ary conditions. The approximation errors are
forced to zero in an integral sense by applica-
tion of a Galerkin weighted residual formula-
tion [1].

• This results in a set of algebraic equations of
the form:

(K + jωC−ω2M) ·d = Z ·d = fs (8)

with K , C and M the structural stiffness,
damping and mass matrices,Z the structural
dynamic stiffness matrix,d the vector contain-
ing the unknown nodal structural deformations
andfs the structural loading vector, which con-
tains contributions from the structural excita-
tions and the dynamic boundary conditions.
Solution of (8) yields the deformations in the
nodes of the FE discretisation.

The dynamic stiffness matrixZ is large, sym-
metric and sparsely populated and can be de-
composed into frequency independent submatri-
ces (K , C, M ). These properties allow the use
of very efficient solution algorithms to compute
the unknown nodal displacementsd. The use
of simple polynomial shape functions to describe
the complex dynamic behaviour within the ele-
ments, limits the application range of the FEM.

A large number of elements is required to con-
trol interpolation and pollution errors. A rule of
thumb states that between6 and10 (linear) finite
elements are needed to accurately interpolate a
single wavelength of a bending wave [3]. Since
physical wavelengths shorten with increasing fre-
quency, a growing number of elements (and dofs)
is required, resulting in a rapid increase of the
model size. However, a major advantage of the
FEM is its versatility regarding geometrical com-
plexity of the problem domain.

2.3 WBM for uncoupled acoustic problems

The hybrid FE-WB method applies the WBM to
model the dynamic behaviour of the fluid in the
cavity. This section describes the basic concepts
of the WBM. The WBM, which is based on an
indirect Trefftz approach [5], partitions the entire
problem domainV into a small number of large,
convex subdomains. Within these subdomains,
the dynamic acoustic pressurep(r) is written as
a weighted sum of wave functions, which exactly
satisfy the Helmholtz equation (1), but which
may violate the imposed boundary conditions. A
weighted residual formulation is used to force
the errors at the boundaries to zero in an inte-
gral sense. Solution of the resulting system of al-
gebraic equations yields the contributions of the
wave functions in the solution expansion.

2.3.1 Field variable approximation

The acoustic pressure fieldp(r) within a convex
cavity is approximated by a finite solution expan-
sion p̂(r):

p(r)≈ p̂(r) =
na

∑
a=1

Φa(r) · pa + p̂q(r)

= Φ ·pa + p̂q(r)
(9)

with pa a (nax1) vector of unknown wave func-
tion contributions pa, Φ a (1xna) vector col-
lecting the wave functionsΦa(r). p̂q(r) =
jρωq
4π

e− jkd(r ,rq)

d(r ,rq) is a particular solution of the
inhomogeneous Helmholtz equation (1), with
d(r , rq) =

√
(x−xq)2 +(y−yq)2 +(z−zq)2 the
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distance between a point at coordinatesr(x,y,z)
inside the cavity and the acoustic sourceq.

Desmet [4] proposes the use of the following
set of wave functions:





Φr(r) = cos(kxrx).cos(kyry).e− jkzrz

Φs(r) = cos(kxsx).e− jkysy.cos(kzsz)
Φt(r) = e− jkxtx.cos(kyty).cos(kztz)

(10)

In order for the wave functions to be exact so-
lutions of the homogeneous Helmholtz equation,
the wave number components in (10) need to sat-
isfy:

k2
xi +k2

yi +k2
zi = k2 (11)

Desmet [4] proves that a convergent set of wave
functions is obtained if the following limited set
is selected from the infinite number of possible
wave number sets which satisfy (11):

(kxr,kyr,kzr) =
(

a1π
Lx

, a2π
Ly

,±
√

k2− (a1π
Lx

)2− (a2π
Ly

)2
)

a1 = 0,1,2, . . . , a2 = 0,1,2, . . .

(kxs,kys,kzs) =
(

a3π
Lx

,±
√

k2− (a3π
Lx

)2− (a4π
Lz

)2, a4π
Lz

)

a3 = 0,1,2, . . . , a4 = 0,1,2, . . .

(kxt,kyt,kzt) =
(
±

√
k2− (a5π

Ly
)2− (a6π

Lz
)2, a5π

Ly
, a6π

Lz

)

a5 = 0,1,2, . . . , a6 = 0,1,2, . . .
(12)

The lengthsLx, Ly and Lz are the dimensions of
the (smallest) rectangular bounding box, enclosing the
considered subdomain.

A numerical model with a finite number of dofs is
constructed by defining an upper bound on parameters
a1 . . .a6 in Eq.(12) through application of a frequency
dependent truncation rule:

na1

Lx
≈ na2

Ly
≈ na3

Lx
≈ na4

Lz
≈ na5

Ly
≈ na6

Lz
≥ N · k

π
(13)

Applying this truncation rule results in the use of all
wave functions with wavelength larger than or equal
to 1/N times the physical wavelength at each fre-
quency of interest.

2.3.2 Wave based model

Since the pressure expansion (9) exactly satisfies the
governing equation (1), the only error consists of the
violation of the imposed boundary conditions. In
order to obtain a numerical model for thena wave
function contributions, this error is minimised in a
weighted residual sense, by taking into account the

three different types of acoustic boundary error resid-
uals in (2):

−RΩp

j
ρaω

∂p̃(r)
∂n ·Rp(r)dΩ+

R
Ωv

p̃(r) ·Rv(r)dΩ+R
ΩZ

p̃(r) ·RZ(r)dΩ = 0
(14)

with p̃(r) arbitrary weighting functions. Applying a
Galerkin approach, the latter functions are written in
terms of the same basis functions that are used in the
field variable expansion (9). Introduction of the field
variable expansion (9) and the weighting functions
into the residual formulation (14) yields a system of
na equations in thena unknown wave function contri-
butionspa:

Aaa ·pa = fa (15)

Solution of this system for the unknown wave func-
tion contributionspa and substitution of these results
in (9) yields an approximation̂p(r) for the acoustic
pressure response. The acoustic system matrixAaa

is fully populated with complex elements. Moreover,
since the wave functions (10) explicitly depend on the
excitation frequencyω, the matrix coefficients need
to be recalculated for every excitation frequency. The
system matrix cannot be decomposed into frequency-
independent submatrices. The major advantage of the
WBM is the substantially smaller number of dofs re-
quired in comparison to the FEM. This property, com-
bined with the enhanced convergence properties of the
method, make the WBM a computationally more ef-
ficient simulation technique than the FEM and allow
the WBM to be used for vibro-acoustic analysis in the
mid-frequency range. The requirement of convexity
of the wave based subdomains imposes, however, a
limitation to the practical applicability of the method
for complex geometries.

2.4 A direct hybrid FE-WB method for coupled
vibro-acoustic problems

FEM WBM

model size large small
solution time medium/high low
convergence rate medium high
frequency range low low, mid
geometrical high moderate

complexity

Table 1Model properties of the FEM and the WBM
Table 1 summarises of the characteristic proper-

ties of the FEM and the WBM. This table shows that
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both techniques are complementary. This forms the
basis for the development of a hybrid modelling tech-
nique. Section 3 focuses on the vibro-acoustic analy-
sis of an aircraft fuselage. This is a typical application
in which the structure itself is composed of thin shells
and beam-like frame and longeron components (see
figure 3(b)). Even though the WBM could be used to
predict structural responses, a wave based model of
the fuselage structure would consist of a large num-
ber of structural subdomains. As a result, the WBM’s
computational efficiency is not fully exploited. A FE
model is far more suited for this kind of structural
problems. The acoustic cavity, on the other hand, is
geometrically simple and can be modelled as a single
WB subdomain. A FE discretisation of the acoustic
domain is possible but needs to be rather fine in the
vicinity of the wetted surface, in order to obtain an ac-
curate vibro-acoustic coupling. This results in a large
number of acoustic FE dofs.

Fig. 2 Direct hybrid FE-WB coupling approach

The velocity continuity conditions (5) and in-
troduction of the pressure loading term in the cou-
pled structural equations describe the mutual interac-
tion between the structural vibrations and the acoustic
pressure field. The hybrid FE-WB method uses the
same field variable expansions (7) and (9) as the un-
coupled techniques to approximate the structural dis-
placements and acoustic pressure. Introduction of the
expansions in the coupled equations yields a set of al-
gebraic expressions which directly relate the dofs of
both physical domains to each other. Figure 2 rep-
resents the direct coupling between the two physi-
cal domains. The weighted residual formulation for
the FE domain is expanded to take into account the
supplementary acoustic pressure loading on the struc-
ture. The velocity continuity along the structural-
acoustic interfaceΩs is taken into account in the
WBM weighted residual formulation (14) by adding
the following term:

Z

Ωs

p̃(r) ·Rva(r)dΩ (16)

Combination of the residual formulations for both do-
mains and application of a Galerkin approach yields
the following matrix equation for the coupled vibro-
acoustic system:

[
Aaa+Caa jωCT

as
Cas Z

]
·
{

p
d

}
=

{
fa + fsa

fs+ fas

}

(17)
With Z, Aaa, fs andfa the system matrices and loading
vectors from the uncoupled structural (8) and acoustic
(15) models. The acoustic-structural and structural-
acoustic coupling matricesCas and jωCT

as describe
the mutual vibro-acoustic interaction andCaa is the
acoustic back-coupling matrix. The supplementary
loading termsfas andfsa result from the acoustic point
sourceq in V.

3 Validation example: Vibro-acoustic modelling
of a DC8 fuselage section

3.1 Problem definition

The performance of the hybrid FE-WB methodology
is validated through a study of the interior noise in-
side a section of an aircraft fuselage, as shown in fig-
ure 3(a). A two-frame quarter section of the fuse-
lage of a DC8 airplane and the interior acoustic cavity
are modelled using the FEM and the hybrid method.
The structure is composed of thin skin panels attached
to circumferential frames and longitudinal longerons.
Figure 3(b) gives an overview of the stiffeners used
in the fuselage of a DC8 aircraft. The entire struc-
ture is made of aluminium (E = 70GPa, ν = 0.3,
ρs = 2790kg/m3). The geometrical details of the fuse-
lage components are described in [12]. The structure
is excited using an excentric point loadF (see figure
3(a)). The connection between the excitation point
and the fuselage is made through two rigid beams.
The imposed structural boundary conditions on the
fuselage are shown in figure 3(c). Along the axial
edges of the section the axial rotation and the circum-
ferential displacement are zero. At the nodes along
the circumferential edge of the fuselage a zero axial
displacement is applied. The internal acoustic cavity
has the shape of a quarter of a cylinder and is filled
with air (ρa = 1.225kg/m3, c = 340m/s). Along the
acoustic boundaries which are not in contact with the
structure, rigid wall BCs are imposed, describing the
symmetry of the cavity with respect to these planes.
The structural components inside the cavity (floors,
seats, internal cabin wall...) are not considered.
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(a) (b) (c)

Fig. 3 Vibro-acoustic DC8 fuselage model, (a) Hybrid model, (b) Stiffener-configuration, (c) Structural
boundary conditions

do f sstructure do f sacoustic hmax f6,s f10,s f6,a f10,a

(= #nodesx 6) (= #nodes) [m] [Hz] [Hz] [Hz] [Hz]
FE Model 1 586x6 = 3516 11987 0.127 20.5 7.38 446.2 267.7
FE Model 2 1106x6 = 6636 22643 0.0635 82 29.5 892.4 535.4
FE Model 3 3226x6 = 19356 75824 0.0423 184.8 66.7 1341 804.7
FE Model 4 4258x6 = 25548 100089 0.03175 328 118.1 1619 971

FE Reference model6322x6 = 37932 148617 0.0225 653.2 235.2 2518 1511

Table 2Properties of the various FE models

3.2 Coupled models

3.2.1 FE models

The structural FE models are built using 4-noded bi-
linear shell elements attached to cubic 2-noded beam
elements, used to model the longerons and frames.
Table 2 gives an overview of the different structural
models used in the comparison.hmax is the length
of the longest side of a finite element in the discreti-
sation andf6,s and f10,s indicate the upper frequen-
cies for which the FE models include at least6 or 10
structural elements per wavelength. The results of the
finest discretisation are used as the reference solution.
The interior acoustic cavity is represented by a mesh
of 8-noded trilinear fluid elements. The details of the
acoustic FE models of the cavity are listed in table 2.
f6,a and f10,a indicate the maximum frequency up to
which the acoustic models are expected to yield accu-
rate results using6 and10 elements per wavelength,
respectively. MSC.Nastran2004 is used as FE solver.

3.2.2 Hybrid models

The hybrid models use the same structural parts as the
pure FE descriptions. The acoustic cavity is modelled
by a single acoustic WB domain. By varying the trun-
cation parameterN in (13), each of the structural FE
models can be used to create a number of hybrid mod-
els with a different number of acoustic WB dofs. The
values of the truncation parametersN, used in this val-
idation are given in table 3. The routines to build and
solve the hybrid and the associated WB models are
implemented in Matlab 6.5. All calculations are per-
formed on a 3GHz Intel-based Linux-system with 1
gigabyte of RAM.

Hybrid model 1 2 3 4 5 6 7

N 0.5 1 1.5 2 2.5 3 4

Table 3 Truncation parameterN for the hybrid
models
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Fig. 5 Acoustic pressure response spectrum, top: structural model 2 (coarse), bottom: structural model 5 (fine)

3.3 Numerical results

To illustrate that the hybrid method accurately de-
scribes the vibro-acoustic coupling effects between
the fuselage and the internal acoustic cavity, figure 4
shows a color map of the acoustic pressure amplitude
at 169Hz obtained with a hybrid (right figure) and a
FE model (left figure). Both models use the same FE
model for the structure (model 3). The number of
acoustic dofs in the FE model is 75824, while only
168 acoustic wave functions are used in the hybrid
model. The results show a good agreement between
both methods.

Fig. 4 Pressure amplitude color map at169Hz

Figure 5 gives the pressure amplitude spectrum
at a point inside the cavity, calculated with FE and
hybrid FE-WB models. The computational loads

for the full response calculations are comparable for
both models. The top figure shows the pressure re-
sponse for a relatively coarse structural model (struc-
tural model 2). The bottom figure is obtained with
a model with a much finer structural discretisation
(structural model 3). The results are compared with
the FE reference solution (black line). All the mod-
els yield the same predictions at low frequencies (up
to 175Hz). At higher frequencies, the models with
a coarser structural part (both pure FE and hybrid FE-
WB) exhibit a shift in some of the predicted resonance
frequencies. Due to the too coarse structural mesh
used in the structural models, the predicted structural
wavelengths in the numerical model differ from the
real physical bending wavelengths. The errors in the
predicted resonance frequencies are a direct result of
these so-called numerical dispersion errors [3]. Since
both predictions suffer equally from dispersion it is
concluded that the structural part of the model deter-
mines the dispersion error in this example. At very
high frequencies (above300Hz), the coarse models
are no longer valid, resulting in incorrect predictions.
The models with a fine structural part suffer less from
numerical dispersion. Even at higher frequencies both
the pure FE and the hybrid model accurately pre-
dict the resonance frequencies of the coupled vibro-
acoustic system.
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In order to compare the computational efficiency
of the hybrid method and the FEM, a convergence
analysis is performed. The acoustic pressure at169Hz
in 20 response points, uniformly distributed inside the
acoustic cavity is calculated for all the models de-
scribed in section 3.2. The average relative prediction
errorεav for the acoustic pressure, as defined in (18),
and calculation time for each analysis are compared
in order to determine the convergence rate for both
methods.

εav =
1
20

20

∑
j=1

ε j =
1
20

20

∑
j=1

∣∣∣∣
p̂(r j )− pre f(r j )

pre f(r j )

∣∣∣∣ (18)

with p̂(r j ) the calculated pressure response and
pre f(r j ) a reference acoustic pressure at each of the
response locationsr j . In the convergence analysis pre-
sented here, the finest FE model is used to obtain the
reference solution. Only frequency dependent oper-
ations are taken into account in the calculation time.
For the FEM only the time needed to solve the sys-
tem of equations is given. For the hybrid method the
time needed to build the WB system matrix and the
hybrid coupling matrices as well as the time needed
to solve the system of equations are considered. The
time to build the FE matrices is not taken into account
for the hybrid method, nor for the FEM, since this ef-
fort is frequency independent and negligible when a
large number of frequencies are considered.
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Fig. 6 Individual pressure convergence curves
at 169Hz: relative pressure prediction error as a
function of CPU time

Figure 6 compares the convergence rate of the dif-
ferent hybrid models with that of the FE models. The
figure contains the global convergence curve for the
FEM (o marker) and individual convergence curves

for various hybrid models (∇ marker). The global
curve for the FEM is obtained by simultaneously re-
fining the structural and acoustic meshes in the model.
The numbers along the curve for the FEM indicate
which FE model in table 2 was used to calculate the
different points. The individual convergence curves
for the hybrid models are calculated by combining
a fixed structural part with an increasing number of
wave functions (using the truncation parameters in ta-
ble 3). The numbers above each of the curves indi-
cate which structural FE model is used to obtain the
hybrid convergence curve. The convergence curves
show that, as the number of wave functions increases,
the prediction accuracy of the hybrid models increases
steadily until some saturation is reached where the
error remains constant. All the hybrid convergence
curves have an elbow shape. The saturation level is
determined by the density of the structural FE mesh
and it is similar to the error for a pure FE model
with the same structural part. The prediction accuracy
increases for both the FEM and the hybrid FE-WB
method when the structural FE model is refined.
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Fig. 7 Global pressure convergence curves at169Hz

The individual curves for the hybrid models in
figure 6 can be combined to obtain a global conver-
gence curve for the hybrid method by interconnect-
ing the elbow points for each of the curves. Figure 7
shows the global convergence curves for the FEM (o
marker) and hybrid method (∇ marker). The FEM re-
sults are identical to the ones given in figure 6 and give
the increase in the pressure prediction accuracy with
respect to the increase in calculation time when the
structural and acoustic FE models are refined simulta-
neously. The blue triangle curve gives the results for
four hybrid models. Each triangle represents a hybrid
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model with a different structural FE part. The number
of wave functions used in the hybrid models is equal
to the minimal number needed to obtain convergence
of the models (elbow points in figure 6). The figure
shows that the global convergence curve for the hybrid
method is steeper than that of the FE models (a unit in-
crease in calculation time due to a model refinement
results in a higher gain in the average prediction accu-
racy for the hybrid FE-WB method than for the FEM).
This shows the enhanced convergence properties of
the hybrid method. For denser structural meshes a
higher accuracy is obtained in less time. This allows
for faster prediction calculations or further refinement
of the model to obtain a higher prediction accuracy
within the same calculation time.

4 Conclusions

This paper describes a newly developed hybrid
FE-WB modelling technique for steady-state vibro-
acoustic problems. In many coupled problems a com-
plex structure interacts with a geometrically simple
acoustic cavity. The motivation for the hybrid ap-
proach is the combination of the advantages of both
techniques in a ’best of two worlds’-methodology.
The complex structural part is described in great detail
by the geometrically versatile FEM. The application
of the WBM for the acoustic part results in favourable
convergence properties of the method. The hybrid
method presented in this paper couples the structural
FE and acoustic WB models by directly enforcing the
velocity continuity on the WB part and by directly im-
posing the acoustic pressure loading on the structural
FE part.

A comparison between the FEM and the hybrid
FE-WB method is made based on a vibro-acoustic
study of a DC8 fuselage section. The results illus-
trate that the prediction accuracy of the hybrid models
increases as the number of wave functions increases,
until saturation is reached and the prediction error re-
mains constant at a level similar to that of the pure FE
predictions. The density of the structural FE model
determines the maximum prediction accuracy. Espe-
cially for denser structural meshes, the hybrid method
leads to a higher accuracy in less computation time.
These results illustrate the potential of the hybrid FE-
WB method as a powerful tool for the prediction of
the dynamic behaviour of coupled vibro-acoustic sys-
tems.

Future research includes a further enhancement

of the computational efficiency of the technique.
Furthermore, the possibility of enforcing the vibro-
acoustic coupling in an indirect manner and the use of
modally reduced structural FE models for the struc-
tural part of the problem will be explored.
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