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Abstract  

The safety of separation of aircraft can be 
assessed by calculating the probability of 
collision is the worst possible case, which for 
certain scenarios can be related to the 
probability of coincidence, as an alternative 
safety metric. Examples of safety metrics in  the 
case of two aircraft flying always at minimum 
separation distance, are: (i) the maximum 
probability of coincidence 0P , at the one point; 
(ii) the one-dimensional cumulative probability 
of coincidence 1P  along the line joining the two 
aircraft; (iii) the three-dimensional probability 
of coincidence 3P  over all space; (iv) a two 
dimensional probability of coincidence 2P . The 
latter two are defined in the present paper. It is 
shown that the general formula for nP  which 
holds for 0,1,3n =  also holds for 2n = . The 
ICAO Target Level of Safety of probability of 
collision is comparable to 1P . Since 2P  has no 
dimensions, it can lead to an absolute safety 
standard, which is independent of time or 
distance flown. A value of this absolute safety 
standard is proposed, which is consistent with 
the ICAO TLS standard for the usual flight 
separation rules. 

1  Introduction  

The safety of air traffic is based on separation 
rules [1], and when they fail to be observed, on 
conflict resolution measures [2] to avoid a 
collision. The chosen separation can be reduced 
to increase air traffic capacity [3] if the risk of 

collision remains below the threshold set by 
ICAO Target Level of Safety of 95 10−×  per 
hour, which is an example of safety metric [4]. 
The pioneering work on the calculation of 
collision probabilities [5] is based on the 
penetration of a safety volume around an 
aircraft, by another aircraft. It can be shown that 
in the particular but important case of air 
corridors, i.e. aircraft flying at the same speed 
on parallel tracks, the probability of coincidence 
is an upper bound for the probability of collision 
[6], and thus is a safety metric which is 
easier to calculate. 

The value of the probabilities of 
collision depends on the statistical distribution 
of aircraft position errors [7]. It can be argued 
that the Gaussian [8] is suited to frequent events 
[9] like small flight path deviations; collisions 
are due to large deviations [5,7], which are rare 
events [10] modeled by Laplacian or 
generalized error distributions [11]. A combined 
gamma and generalized error distribution can be 
used [12] to model the probability of flight path 
deviations over the whole range from small to 
large. The distributions of probabilities of flight 
path deviations may be different for dissimilar 
aircraft, e.g. in the Gaussian case the r.m.s. 
position errors could be different [13]. 

In the present paper two simple but 
important cases are considered, both with 
aircraft flying at the same speed, on: (case I) the 
same flight path at a given distance (Figure 1); 
(case II) on parallel flight paths at given 
distance (Figure 2). Using six assumptions (Sec. 
2), including that Gaussian statistics, with 
dissimilar r.m.s. position errors for each aircraft, 
are calculated (Sec. 3) the: (Sec. 3.1) probability 
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of coincidence (zero-dimensional) and the 
cumulative probability of overlap in one- or 
three-dimensions; (Sec. 3.2) these are compared 
with a two-dimensional probability of overlap, 
leading to a general formula (Sec. 3.3) 
applicable to all four safety metrics (Sec. 4). 
Comparison with the ICAO TLS (Sec. 4.1) 
shows that one of the metrics is dimensionless, 
and hence universal (Sec. 4.2). A correction 
factor between the Gaussian and the generalized 
error distribution is introduced (Sec. 4.3), before 
the discussion (Sec. 5) on the merits of the 
alternative safety metrics. 

2  Assumptions  

The simplified model of collision probability 
used, makes six assumptions. The first 
assumption is that the three dimensional 
position error is decomposed into horizontal 
along track and across track errors and vertical 
error: these three are considered statistically 
independent, and thus treated separately. For 
example, applications can be made to rather 
different separation distances e.g., lateral 
separation in transoceanic ( 60L nm= ) or 
controlled ( 5L nm= ) air space, and normal 
( 2000L ft= ) or reduced ( 1000L ft= ) vertical 
separation minima; in this way only a one-
dimensional collision problem needs to be 
considered at a time. 

The second assumption is that the 
aircraft are treated as a mass points located at 
centers of mass. One approach to account for 
finite aircraft sizes 1L  and 2L , is to associate a 
volume to each aircraft. Since a "collision" 
occurs when the distance between the centers of 
mass is less than 1 2L L+ , an alternative is to 
reduce the separation distance from L  to 

1 2L L L− − . Another alternative is to incorporate 
aircraft sizes 1L  and 2L  into the r.m.s. position 
errors 1σ  and 2σ . It can be shown [6] that the 
aircraft size affects collision probability if it is 
comparable to the r.m.s. position error. 
Generally the aircraft size multiplies the 
probability of coincidence. 
 

The third assumption is that the aircraft 
are assumed to move in unbounded space, 
which is valid only if far from altitude 
limitations, e.g. the ground or the service 
ceiling. The space is also assumed to be 
unbounded horizontally, which will not be true 
 close the boundaries of restricted airspace or 
geographical obstacles. 

The fourth assumption is that  the 
position errors are specified by a Gaussian 
probability distribution. This appears justified 
on the basis of the central limit theorem of the 
theory of statistics [8], using the Lindeberg [9] 
necessary and sufficient condition, viz.: (i) 
consider a long sequence of N  deviations, 
spaced in time by at least a time τ , so that they 
are statistically independent; (ii) assume that the 
large deviations are improbable, in the sense 
that they make a small contribution to the total 
variance. Then a Gaussian probability 
distribution is satisfied with an error ( )1/ NΟ ; 

this reasoning can be flawed, in that collisions 
are very rare events, and thus a law of large 
numbers is not applicable. The Lindeberg 
condition assumes that events with large 
deviations from the mean make a small 
contribution to the variance; since collisions are 
rare events corresponding to large deviations 
from the mean, the Lindeberg condition is not 
met either. It is known from flight data records 
and radar tracks that the Gaussian 
underestimates the probability of large flight 
path deviations and collision [3], and whereas 
the Laplace distribution is an improvement [5]; 
a more accurate representation is provided by 
the generalized error distribution [11], in 
unimodal [6] or bi-modal [7] forms. These 
probability distributions can be extended to a 
combined Gamma and generalized error 
distribution [12] to model the whole range of 
flight path deviations from small to large. These 
distributions can be introduced [15] as a 
correction [13] to the Gaussian (§4.3). 
 
  The fifth assumption, is the geometry 
considered, of two aircraft flying at constant 
distance, along the same or parallel tracks, is 
one of the cases in which the probabilities of 
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collision can be related to probabilities of 
overlap [6], and the latter can serve as 
alternative safety metrics. 

The sixth assumption, allows the 
calculation of the probabilities of collision as a 
 function of position if aircraft dynamics do not 
appear explicitly; since aircraft dynamics would 
limit the possible displacements, the 
probabilities of collision calculated in this way 
are upper bounds. 

It should be noted that the calculation of 
probabilities of collision between aircraft 
involves more than one kind of probability 
density function, e.g. Gaussian with one or two 
variables, conditional or joint probabilities, and 
various possible integrations over space, leading 
to different dimensions. The conversion 
between probabilities per unit distance flown 
and per unit time can be made using the 
constant flight speed, in the present case. The 
comparison with ICAO Target Level of Safety 
of  95 10−×  per flight hour depends on how the 
probabilities are defined, and thus are affected 
by the assumptions of the model. 
 

 
 
Fig. 1- For two aircraft flying along the same 
flight path at a minimum separation distance, 
the two-dimensional cumulative probability of 
collision, which is absolute, i.e. has no 
dimensions, is calculated by integrating over 
any plane passing through the flight path. 

 

3  Compararison of probabilities of 
coincidence  

3.1 One and three-dimensional probabilities 
of overlap  

The calculation of maximum coincidence 
probabilities is made for the case of two aircraft 
flying on the same straight flight path at a 
distance L . A coincidence occurs if the first 
aircraft deviates by 1r  and the second by 2r  such 
that 2 1 xL= +r r e  in Figure 1. The coincidence 
occurs on a plane through the flight path, and 
thus it is possible to introduce polar coordinates 
in this plane, with origin at aircraft one, and axis 
along the flight path: 

( ) ( )1 2cos , sin , cos , sin .r r L r rθ θ θ θ= − = −r r
                                (1a,b) 
The probability distributions are initially 
assumed to be Gaussian for both aircraft: 
( ) ( ) ( )

( ) ( )

2
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1/ 2 exp / / 2

1/ 2 exp / / 2
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r

σ π σ

σ π σ

⎡ ⎤⎡ ⎤= − =⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−⎣ ⎦⎣ ⎦

r r
,      

 

( ) ( ) ( )

( ) ( )

( ) ( ){ }

2

2 2 2 2

2

2 2

22
2

1/ 2 exp / / 2

1/ 2 exp / / 2

exp 2 cos / 2

P

L

r rL

σ π σ

σ π σ

θ σ

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦

⎡ ⎤× − + ⎣ ⎦

r r

,(2a,b) 

with r.m.s. position errors respectively 1σ  and 

2σ , which may or may not be equal (other 
probability distributions will be considered in 
Sec. 4.3). Exactly the same formulas (1a,b; 
2a,b) will apply (case II) for two aircraft on 
parallel flight paths at a distance L , using polar 
coordinates with origin on the first aircraft and 
axis perpendicular to the flight paths as shown 
in Figure 2. Assuming that the position errors 
are statically independent for the two aircraft, 
the probability of coincidence is the product of 
(2a,b); 
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( ) ( ) ( )
( ) ( )

( )( )

1 2

2

1 2 2

2 2 2 2
1 2 2

,

1/ 2 exp / / 2

exp / 2 cos

P r P P

L

r rL

θ

πσ σ σ

σ σ σ θ− − −

=

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦
⎡ ⎤− + +⎣ ⎦

r r

, (3) 

and depends only on ( ),r θ  in both cases I and 
II. 

From (3) can be defined a one-
dimensional cumulative probability of 
coincidence, by integrating over r−∞ < < +∞  
along the polar axis 0θ = : 

( ) 1,0P P r dr P
+∞

−∞

≡ ≡∫  ,           (4a) 

viz. : (case I) the integration is along the flight 
path; (case II) the integration is along a line 
perpendicular to the flight paths passing through 
the aircraft. Substitution of (3) into (4a) leads 
[13] to the one-dimensional probability of 
collision: 

( ) ( ){ }2

1 1/ 2 exp / 2P Lσ π σ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦  ,        (4b) 

which involves the r.m.s. position error σ  
corresponding to the arithmetic mean of the 
variances of the position errors of the two 
aircraft: 

( ) ( )2 2

1 2 / 2σ σ σ⎡ ⎤≡ +⎣ ⎦  .         (4c) 

The three-dimensional cumulative 
probability of coincidence involves an 
integration over all space in spherical 
coordinates: 

( )
2

2
3

0 0 0

d d sin d ,P rr P r P
π π

ϕ θ θ θ
+∞

≡ ≡∫ ∫ ∫   ,    (5a) 

 
 and leads via a broadly similar integration to: 

( )( ) ( ){ }22
3 / 2 / exp / 2P f Lπ σ σ⎡ ⎤= − ⎣ ⎦  ,  (5b) 

 
 involving σ  in (4c) and the aircraft 
dissimilarity function: 

( )1 2 2 1/ / / 2f σ σ σ σ≡ + .  (5c) 
 
The extremum of the cumulative probabilities of 
coincidence (3) occurs for: 

( )( )
0

2

0 2 1

/ 0 / : 0,

/ 1 /   

P P r

r L

θ θ

σ σ

∂ ∂ = = ∂ ∂ =

= +
,  (6a) 

and it corresponds to a maximum because: 

( )( ) ( )
0 0

22 2 2 2 2 2 2

, :

/ 0 / / /

r r

P P P r P r

θ θ

θ θ θ

= =

∂ ∂ > > ∂ ∂ ∂ ∂ − ∂ ∂ ∂

                                                             (6b) 
The value of the probability of collision at the 
maximum is: 

( ) ( ) ( ) ( ){ }22
0 0 0, 1/ 2 / exp / 2P r f L Pθ π σ σ⎡ ⎤ ⎡ ⎤= − ≡⎣ ⎦ ⎣ ⎦

                           (6c) 
and this may be considered as a zero-
dimensional probability, since it applies at a 
point (i.e. the maximum), which is a domain of 
dimension zero. 

3.2 General formula and two-dimensional 
case 

The collision probabilities  nP  of dimensions 
0n =  or zero in (6c), 1n =  or one in (4b) and 
3n =  or three in (5b), all satisfy a common 

formula: 

( ) ( ){ }2/ 2 1 1 2

0,1,3 :

1/ 2 exp / 2n n n
n

n

P f Lπ σ σ− − −

=

⎡ ⎤= − ⎣ ⎦
 ,(7) 

 the simplest formula is for dimension n=1, and 
in terms of this the others can be expressed: 

( )1 / 2 1 1
1  n n n

nP P fπ σ− − −=   .  (8) 
This formula is an identity for 1n = , and is non-
trivial for 0,3n = . The one-dimensional 
probability of coincidence 1P  per unit distance 

1
1P σ −∼  has the dimensions of inverse distance 

can be compared to the ICAO TLS standard 
95 10−×  per hour after multiplication by the 

velocity. The others have different dimensions, 
e.g. 2 n

nP σ −∼  has the dimensions of distance to 
the power 2n −  and can be compared to the 
ICAO TLS standard in a less straightforward 
way (Sec. 4). Thus the only case of 
dimensionless probability of coincidence is the 
two-dimensional case 2n = . In order to find out 
whether the formulas (7,8) apply to 2n =  as 
well as to 0,1,3n = , it is necessary to evaluate 
the two-dimensional cumulative probability of 
coincidence: 
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( )
2

2
0 0

d d ,P rrP r
π

θ θ
+∞

≡ ∫ ∫     (9) 

 which may be interpreted as the collision 
probability integrated over: (case I) a plane 
passing through the trajectory (figure 1); (case 
II) a plane perpendicular to the trajectories 
passing through both aircraft (figure 2). 
 

 
Figure 2 - In the case of two-aircraft flying along parallel 
flight paths at the minimum separation distance the 
integration is over a plane perpendicular to the two flight 
paths and passing through both aircraft. 
 
 

It may be expected that the two-
dimensional cumulative probability of 
coincidence can be put into the form (7) for 

2n = : 

( )( ) ( ){ }2

2 1/ 2 / exp / 2P g f L σ⎡ ⎤= − ⎣ ⎦ ,      (10) 

or (8) in terms of 1P  viz.: 

( )2 1  /P P g fπ σ= ,   (11) 
 by inserting a correction function g , which 
would be unity 1g =  if (7,8) hold for 2n = . In 
order to find out whether this is or not the case, 
the value of g will be calculated by comparing 
(10) with the result of evaluating the two-
dimensional probability integral (9,3), viz.: 

( ) ( )

( )( ) ( )

2

2 1 2 2

2 2 2
1 2

0

1/ 2 exp / / 2

exp / 2

P L

dr r I r r

πσ σ σ

σ σ
∞

− −

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤− +⎣ ⎦∫
,  (12a) 

where the dr integration is performed after 

( ) ( )
2

2
2

0

exp cos  dI r rL
π

σ θ θ−= ∫ ,  (12b) 

 the dθ  integration in (12b). 

3.3 Calculation of the two-dimensional  

Starting with the dθ  integration (12b), use of 
the power series for exponential yields: 

( ) ( )
2

2
2

0 0

: / ! cos  n n

n

a rL I r a n d
π

σ θ θ
∞

−

=

≡ =∑ ∫ .   (13a) 

It is clear that the integrals in (13a) vanish 
unless n  is an even integer 
 

( ) ( ) ( )
2

2 2

0 0

2 :   / 2 ! cos  p p

n

n p I r a p d
π

θ θ
∞

=

⎡ ⎤= = ⎣ ⎦∑ ∫ . (13b) 

The definition of cosine is used in the last 
integral: 
 

( )

( )

2 2
22 2

0 0

2
22

0 0

cos  2 e e  

2
2 e  

pp p i i

i p qp

q

d d

p
d

q

π π
θ θ

π
θ

θ θ θ

θ

− −

∞
−−

=

= +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∫ ∫

∑ ∫
,    (14a) 

 
 together with the binomial expansion; it is clear 
that the last integral in (14a) vanishes unless 
q p= , in which case it equals 2π  . Thus the 
whole sum reduces to one term: 

( ) ( )
2

22 2 1 2

0

2
cos  2 2 2 2 !/ !p p pp

d p p
q

π

θ θ π π− −⎛ ⎞ ⎡ ⎤= =⎜ ⎟ ⎣ ⎦⎝ ⎠
∫ (14b) 

 
 Substitution of (14b) into (13a,b) yields: 
 

( ) ( ) ( )2 22
2

0

2 / 2 !
p

p

I r rL pπ σ
∞

−−

=

= ∑ ,   (15a) 

which completes the dθ -integration in the 2-D 
probability (12a): 

( ) ( )

( ) ( ) ( )( )

2

2 1 2 2

2 24 2 1 2 2 2
2 1 2

0 0

1/ exp / / 2

/ 2 ! exp / 2p p p

p

P L

L p r r dr

σ σ σ

σ σ σ
∞∞

−− + − −

=

⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤× − +⎣ ⎦∑ ∫
,

                                         (15b) 
leaving only the dr-integration. 

Concerning the dr-integration, it is 
convenient to make the change of variable: 

( ) ( ) ( )1/ 2 1/ 22 2 2 2
1 2 1 2/ 2 ,d 2 dr rζ σ σ σ σ ζ

−− − − −≡ + ≡ +  

(16a,b) 
which simplifies (15b) to: 

( ) ( ) ( )

( ) ( ) ( )

1 22 2
2 1 2 1 2 2

22 4 2 2
2 1 2

0

2 / exp / / 2

/ 2 !
p pp

p
p

P L

L p I

σ σ σ σ σ

σ σ σ

−− −

∞
−−− − −

=

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦⎣ ⎦

+∑
(17a) 
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 where the integrals 

( )

( ) ( )

2 2 1 2

0

0

:          exp d

1/ 2 e d ! / 2

p
p

p

I

pξ

ξ ζ ζ ζ ζ

ξ ξ

+∞
+

+∞
−

≡ ≡ −

= =

∫

∫
 (17b) 

 are evaluated in terms of the Gamma function: 

( )
0

e d 1 !p p pξξ ξ
+∞

− = Γ + =∫    (18) 

This completes the evaluation of the 2-D 
probability of collision. Substitution of (17b) 
into (17a) specifies the two-dimensional 
cumulative probability of coincidence: 

( ) ( )

( )( ) ( ) ( ){ }

2

2 1 2 2 1 2

2 2 22
1 2 1 2

0

1/ / / exp / / 2

/ 2 / / / !
p

p

P L

L p

σ σ σ σ σ

σ σ σ σ
∞

=

⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦∑
  (19) 

 
 where the last factor is the series for the 
exponential 

( )( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

2 2 2

1 2 1 2
0

2 2 2

1 2 1 2

/ 2 / / / !

exp / 2 / /

p

p

L p

L

σ σ σ σ

σ σ σ σ

∞

=

⎡ ⎤⎡ ⎤ +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦

∑  .  (20) 

 
Substitution of (20) into (19) yields: 
( ) ( ) ( ) ( )( )2 22

2 1 2 2 1 1 21/ / / exp / 2 /P Lσ σ σ σ σ σ⎡ ⎤⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦
                  (21) 
 
 Introducing σ  from (4c) and the dissimilarity 
function f from (5c) yields: 

( ) ( ){ }2

2 2 / exp / 2P f L σ⎡ ⎤= −⎣ ⎦      (22) 

 
 which coincides with (10) without need for a 
correction factor 1g = . It follows that (7) holds 
not only for 0,1,3n =  but also for 2n = ; also, (8) 
applies as well for 0,1, 2,3n = . 

4  Compararison with the ICAO TLS 
standard 

4.1 The original and alternative ICAO TLS 
standards  
The coincidence probabilities have been 
considered, in the two cases of aircraft flying 

with minimum separation L : (I) along the same 
trajectory (Figure 1); (II) along parallel 
trajectories (Figure 2).The coincidence 
probabilities have been considered in four 
'dimensions': ( 0n = ) the dimension zero is the 
maximum probability of coincidence 

0P  at a 
point between the two aircraft (on the flight path 
in case I, and between the flight paths in case 
II), and has the dimensions of inverse of 
distance squared; ( 1n = ) the dimension one 
corresponds to the cumulative probability of 
coincidence 1P  along a line (the trajectory in 
case I and a line perpendicular to the trajectories 
and passing through the aircraft in case II), and 
has the dimensions of inverse of distance; 
( 2n = ) the two-dimensional case corresponds to 
the cumulative probability of coincidence on a 
plane 2P   (any plane passing through the 
trajectory in case I, and the plane perpendicular 
to the trajectories and passing through both 
aircraft in case II) and has no dimensions; 
( 3n = ) the three-dimensional case corresponds 
to the cumulative probability of coincidence in 
all space (both in cases I and II), and has the 
dimensions of distance. 
 

The ICAO target level of safety (TLS) 
specifies a probability of collision 95 10−×  per 
hour flown, which can be converted in 
probability of collision per nautical mile 1 /S V  
by dividing by the speed V in knots. Thus the 
ICAO TLS standard is directly comparable to 
the one-dimensional cumulative probability of 
coincidence 1 1PV S≤ . In order to use the 
maximum probability of coincidence , it would 
be necessary to use as safety metric a modified 
ICAO TLS standard  2

0 0PV S≤ , with the 
dimensions of inverse of square of hour flown. 
To apply the three-dimensional cumulative 
probability of coincidence 3 3/P V S≤  would need 
the introduction of another safety metric or 
modified ICAO TLS standard with the 
dimensions of hour flown. The general formula 

20,1, 2,3 : n
n nn PV S−= ≤ ,          (23) 
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 shows that the modified ICAO TLS standard 
would be absolute i.e. independent of velocity, 
only in the case 2n = , because the two-
dimensional cumulative probability of collision 
is independent of distance, i.e. the 'safety 
relation' 

2 22 :n P S= ≤                          (24) 
 is dimensionless. The possibility of introducing 
an absolute, dimensionless ICAO TLS standard 
is discussed next. 
 

4.2 The original and alternative ICAO TLS 
standards  
Taking as reference case aircraft with identical 
r.m.s. position errors, the ratio to the minimum 
separation distance which typically meets [13] 
the current ICAO TLS standard: 
 
 
Table I- Two-dimensional probability of 
coincidence for similar and dissimilar aircraft, 
and three ratios of separation L to r.m.s. position 
error, using Gaussian statistics. 

 
 
(25) 
 
 is 

indicated in the first line, together with: (i) the 
two-dimensional probability of coincidence   
calculated from (22) for identical aircraft, i.e. 
with the same r.m.s. position errors: 

( ) ( )2

1 2 2: 1/ 2 exp / / 4P Lσ σ σ σ σ⎡ ⎤= = ≡ = −⎣ ⎦
; (26) 

(ii) the aircraft dissimilarity factor (5c) has the 
upper bound 

( )2 1 210 : 10 1 / 2 5.5fσ σ σ≤ ≤ ≤ + = ,  (27) 
 
 for dissimilar aircraft with r.m.s. position errors 
in a ratio of not more than one order of 
magnitude. Taking in (25) the geometric mean 
of: (i) the  least strict condition for dissimilar 
aircraft ( 121.26 10−× ) and the intermediate 
condition for similar aircraft ( 143.64 10−× ) leads 
to 12 14 131.26 10 3.64 10 2.14 10− − −× × × = × , which 
suggests: 

13
2 2 2 10P S −≤ = × ,    (28) 

as the alternative absolute ICAO TLS standard, 
which will be checked next. 
 

In order to asses the implications of this 
choice of absolute safety standard, it is applied 
to the following four typical ATM cases: (i) 
lateral separation in transoceanic airspace 

1 60L nm= ; (ii) lateral separation in controlled 
airspace

2 5L nm= ; (iii) reduced vertical 
separation minima (RVSM) 

3 1000L ft=  in 
controlled airspace at lower flight levels (above 
FL 290); (iv) vertical separation 4 2000L ft=  
elsewhere. For these four values mL  with 

1, 2,3, 4m = , the proposed absolute target level of 
safety (28) corresponds by (26) to  / 10.7m mL σ =  
and thus to a r.m.s. position error mσ  indicated 
in 
 
 
Table II- One-dimensional probability of 
coincidence based in Gaussian statistics, and 
maximum velocity for which the ICAO TLS 
standard is met. 
 

m 1 2 3 4 

Lm 60 nm 5 nm 1000 ft 2000 ft 

mσ  5.61 nm 0.468 nm 93.6 ft 187 ft 

P1m 
(per nm) 

2.01 1410−×  
 

2.41 1210−×  
 

7.33 1210−×  
 

3.66 1210−×  
 

1 1/m nV S P≤

 

52.48 10 kt×  42.07 10 kt×
 

26.82 10×  31.36 10 kt×  

 
          (29) 
 
together with the one-dimensional probability of 
coincidence (4b)  per nautical mile, which 
satisfies the ICAO TLS standard: 

9
1 5 10S −= ×  per hour,    (30) 

 
 for airspeeds up to mV . Since mV  exceeds the 
speed capability of all current subsonic airliners, 
the absolute alternative ICAO TLS standard 
(28) is safe in all these conditions. The values of 

/L σ  10 11 12 

P 2  6.95 1210−×  3.64 1410−×  1.16 1610−×  

P f/2  1.26 1210−×  6.62 1510−×  2.11 1710−×  
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mV  suggest that the absolute ICAO TLS standard 
(28) is stricter than the original ICAO TLS 
standard (30) in the four cases considered. This 
is the price to be paid for having an ICAO TLS 
standard which is absolute, i.e. applies to all 
separation conditions, not just the four examples 
given. 

4.3 Correction factor  

The suggested alternative TLS standard is 
dimensionless for all probability distribution of 
aircraft deviations. The preceding examples 
using the Gaussian distribution can be extended 
to other distributions, e.g. using a correction 
factor. This is illustrated by the generalized 
error distribution, which is appropriate to 
describe large flight path deviations [7,12] 
relevant to potential collisions. The preceding 
calculations were based on the Gaussian 
probability distribution 
( ) ( ) ( )2 2;2 1/ 2 exp / 2P x xσ π σ⎡ ⎤= −⎣ ⎦ (31) 

 
which is the particular case k=2 of [11] the 
generalized error distribution 

( ) ( ); exp /
k

P x k A a x σ⎡ ⎤= −⎣ ⎦  (32) 

 
where [6]: 

( )( ) ( ) ( )1/ 2 1 1/ 3/ / 1/A k k kσ≡ Γ + Γ Γ ,(33a) 

( ) ( ) / 2
3 / / 1/

k
a k k⎡ ⎤≡ Γ Γ⎣ ⎦        (33b) 
 
 
where Γ  denotes the Gamma function. For 

2k = , it follows from (33b) that 
( ) ( )3/ 2 / 1/ 2 1/ 2a ⎡ ⎤≡ Γ Γ =⎣ ⎦  and 

( ) ( )1/ 2 2 3/ 2 2 1/ 2 2A σ σ σ π= Γ = Γ = , in 
agreement with (31). The Gaussian is well-
know to underestimate probabilities of collision 
[5,15], and a better fit to flight records and radar 
tracks of aircraft deviations in flight is provided 
by the generalized error distribution [7,12]. 
 

A simple, unimodal approximation is 
provided by the generalized error distribution 

for 1/ 2k = , for which (33b) specifies 

( ) ( ) 1/ 4 4 46 / 2 5! 120a ⎡ ⎤= Γ Γ = =⎣ ⎦  and (33a) 

gives ( )4 5! / 2 3A σ⎡ ⎤= Γ⎣ ⎦ ; leading to: 

( ) ( ) 4;1/ 2 15 / 2 / exp 120 /P x xσ σ⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦
                                             (34) 
 
 Substituting the generalized error distribution 
(34) for the Gaussian (31) implies a correction 
factor 

( ) ( )

( ){ } ( )

2

2 4

;1/ 2 / ;2

15 exp / 2 120 /

C P x P x

x x G xπ σ σ

≥

= − ≡
,(35) 

for the probabilities of coincidence, which are 
all quadratic in the probabilities of deviation. As 
a simple estimate, the correction factor (35) will 
be calculated at the mid-position between the 
aircraft: 
( ) ( )

( ) ( ){ }2 4

/ / 2

15 exp / 2 120 / 2

C L G x L

L L

σ

π σ σ

= = =

⎡ ⎤ −⎣ ⎦
.(36) 

 
which is the position of highest probability of 
coincidence for aircraft with identical r.m.s. 
position errors. 
 
   Applying the correction factor (36) leads 
to much higher n-dimensional probabilities of 
coincidence (7), viz.. 
 

 
( )

{ }
/ 2 1 2

4

15 / 2

exp 2 120 /

n n n
mCP f

x

π σ

σ

− −=

× −
.  (37) 

 
 This can be illustrated by re-calculating the 
two-dimensional probabilities of coincidence in 
Table I: 
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Table III- Correction factor for 

generalized error distribution, relative to the 
Gaussian used in Table I to calculate two-
dimensional coincidence probabilities for 
similar and dissimilar aircraft. 

 
L/ σ  10 11 12 

C 1.27x106 1.17x108 1.84x101

0 
CP2 8.80x10-6 4.26x10-6 3.98x10-6

CP2/f 1.60x10-6 7.75x10-7 3.89x10-7

      
                                             (38) 
 
using the correction factor (36); the generalized 
error distribution gives higher coincidence 
probabilities (38) than the Gaussian (25). A 
similar conclusion can be reached re-calculating 
Table II with a constant correction factor  

72.85 10C = ×  for / 10.7L σ = , viz.: 
 
 
Table IV- Maximum probability of coincidence 
using the generalized error distribution, for the 
same ATM scenarios as for the Gaussian 
distribution in Table II. 
 
n 1 2 3 4 

CPm 5.72x10-7 6.86x10-6 2.09x10-4 1.04x10-4 

 
          (39) 
 
 The suggested absolute ICAO TLS standard 
(28) need not be changed, because in (39) 
appears a different value. Rather (39) shows that 
since the generalized error distribution gives a 
higher probability of coincidence than the 
Gaussian, a smaller r.m.s. position error is 
needed to achieve the same low probability of 
collision. 
 
 

4  Discussion 

In conclusion the ICAO TLS of safety 
9

1 5 10S −= ×  per hour is comparable to the one-
dimensional probability coincidence 

1 1PV S≤ . 
For the maximum probability of coincidence  

2
0 0PV S≤ a modified TLS standard 9

0 5 10S −= ×  
per hour squared is needed, if the same value is 
chosen. For the three-dimensional probability of 
coincidence 3 /P V another modified TLS 
standard 9

3 5 10S −= × times hour would be 
needed. Of course, the value of 0S  and 3S  need 
not be numerically equal to 1S . Since the two-
dimensional probability of coincidence 2 2P S≤ is 
dimensionless, the modified TLS standard 

9
2 5 10S −= ×  would also be dimensionless. The 

numerical value of 2S  need not equal 0S  or 1S  or 

3S . The procedure indicated in (Sec. 4) has lead 
to a value (28) of 2S  consistent with 1S , 
justifying the following reasoning: (i) the 
original ICAO TLS standard (30) has been 
applied to three of the most common ATM 
traffic situations; (ii) for these situations it is 
comparable to the absolute level of safety (28). 
The latter is preferable to the former, because it 
is dimensionless, and thus independent of flight 
time or speed. Thus the absolute level of safety 
(TLS) in (28) can be proposed as a more general 
dimensionless substitute to the original ICAO 
TLS in (30 
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