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Abstract  

Reducing maintenance cost in today’s aviation 
industry is a necessary step to participate in a 
market under excessive cost pressure. Airlines 
as well as maintenance, repair and overhaul 
companies have to cut costs wherever possible. 
 
An improved MH planning for unscheduled 
maintenance events could help avoiding 
expensive overcapacities in certain time slots. 
A statistical model expressing the occurrence 
of failures as a stochastic process is developed.  
Unscheduled maintenance events of a 
homogeneous modern fleet are analysed to 
determine representative failure rates for each 
aircraft system.  
The model allows daily MH demand estimates 
for small aircraft fleets of 15 or 20 aicraft with 
accuracy of around 75 %.  

1  Introduction 
With an ever increasing cost pressure in today’s 
aviation industry maintenance, repair and 
overhaul (MRO) companies have to react on 
the demand for less expensive services. 
In past years, airlines (operators) as well as 
MRO companies outsourced parts of their 
business. The big legacy carriers concentrate on 
their core business of flight operation. Former 
in-house MRO departments were spinned off 
and started offering services to other operators 
as well. 

MRO companies themselves began outsourcing 
work packages that can be conducted anywhere 
in the world. This includes aircraft overhaul 
and other heavy maintenance items which are 
performed in countries with lower labour costs. 
Therefore maintenance costs are reduced even 
when ferry flights to the related MRO stations 
are necessary. 
 
Work induced by unscheduled maintenance 
events during operation can not be outsourced. 
Those line maintenace events, which consist of 
failures or pilot reports, occur during operation 
and must be fixed prior to the next departure. 
Here, the only way to reduce costs can be 
achieved through an advanced man hour (MH) 
planning which focuses on providing enough 
MH for necessary work without producing 
overcapacities in a certain time slot. 
Thus MH planning of tomorrow’s MRO 
companies has to be more demand-orientated. 
That leads to the necessity of means to estimate 
MH demand in advance. As MH are produced 
by unscheduled maintenance events (in the 
following failures) the occurrence of those 
failures has to be examined. 
With onboard monitoring systems like Airman 
from Airbus Industries exact treatment of 
failure messages is already possible today. 
Thus MH or spare part planning can be adapted 
even before the aircraft arrives at a certain 
station. 
One step beyond this, MRO providers are 
interested in an estimate of next day’s MH 

ESTIMATION OF DAILY UNSCHEDULED LINE 
MAINTENANCE EVENTS IN CIVIL AVIATION 

 
M. Wagner*, M. Fricke*  

*Berlin University of Technology 
Institute of Aeronautics and Astronautics 

Sekretariat F3, Marchstrasse 12 
10587 Berlin 

Germany  
 

Keywords: unscheduled maintenance, man hour demand, ROCOF  



M. WAGNER, M. FRICKE 

2 

demand. Here onboard monitoring systems are 
less helpful. 
On the other hand, it is obvious that MH 
demand planning with the purpose described 
above, can never be as exact as monitoring 
systems. Demand planning will not be used to 
predict a certain system failure or a certain part 
to be replaced (in contrast to condition 
monitoring). 
Therefore the intended kind of planning model 
will be of great advantage as a rough estimate 
for MH demand. 
 
This study introduces an approach to estimate 
the MH demand necessary to handle 
unscheduled maintenance events on a certain 
fleet during line maintenance. A modern short 
and medium-range aircraft type is selected for 
this study. 

2  Literature Review  
Severval approaches dealing with MH planning 
have been presented in the past. [1], [2] and 
others concentrate on planning of scheduled 
maintenance events making the problem a 
scheduling problem. One major assumption in 
these works is the negligence of stochastically 
occuring maintenance events. 
Focusing on unscheduled events rather than 
optimizing MH planning can be found in [3],  
[4], [5] as well as [6]. 
The background of [3], [4] and [5] are Service 
Difficulty Reports (SDRs) collected by the 
Federal Aviation Administration (FAA) which 
document severe occurrences of events leading 
to unplanned flight interruptions. [3] and [4] try 
to estimate the amount of those events in 
certain time intervals like one year or three 
months. As this should be used to support fleet 
supervision by the FAA instead of MH 
planning this approach is less helpful for short-
term MH demand estimation. 
[5] do not concentrate on the quantitative 
estimation of SDRs but qualitatively investigate 
the influence of aircraft age on the technical 
performance expressed through SDR 
occurrences. 

[6] treat the problem of  condition monitoring-
based predictions of engine system failures. 
Using monitoring data, classification 
algorithms allow pro-active prediction of most 
likely engine failures. Thus enabling 
maintenance personal to replace expensive 
parts prior to destructive failure occurrence.  
The first and today still often cited work on 
aircraft failures is [7] investigating  air 
conditoning systems. Qualitative results on the 
degradation status of  investigated Boeing 720 
are concluded. The usage of aircraft failure 
rates to estimate the amount of  failures in a 
certain period of time is not regarded. 
 
Other works like [8] investigate the reliability 
of certain aircraft systems or parts. [8] build a 
reliability model for Boeing 737 aircraft brakes 
which purpose is to enhance the planning of 
preventive maintenance work. The basic idea is 
very helpful for this study although the work 
focuses on a certain aircraft system only. 
 
Other similar approaches can be found in the 
literature. Although some studys have similar 
intention or methodical background, a short-
term estimation of MH demand like intended in 
the present study could not be identified by the 
authors. 

3 Methodology and Model 

3.1 Deduction of the Applied Methodology 
[3] apply the basic statistic methodology of 
regression analysis to forecast amounts of 
SDRs. Regression analysis is a widely used 
modeling method to determine a dependend 
metric variable through multiple metric 
independent variables. Thus weights for each 
independent variable are calculated to assure 
the best explanation of variance. 
To estimate annual demand of unscheduled 
MH throughout a range of different aircraft 
types [9] use a multiple regression model with 
promising results. Reducing the estimation 
interval from one year down to a week or even 
less, soon reveals bad results in MH demand 
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estimation caused by too much noise within the 
data. For the purpose intended, a regression 
approach estimating the amount of MH in a 
certain short-time interval is not feasible. 
 
Coping with noisy data leads to the formulation 
of a representative aircraft of a certain type.  
 
Reliability theory introduces posibilities to 
model system failures of repairable systems as 
well as non-repairable systems [10]. Repairable 
systems or subsystems are those which can be 
put back into operation after the occurrence of 
a failure and its repair. In comparison to this, 
non-repairable systems (often parts or 
components) cannot be repaired and by this 
cannot be put back into operation after failure. 
 
With repairable systems one major point of 
interest is the rate of occurrence of failure 
(ROCOF). This represents the amount of 
failure per time unit (e.g. Flight Hours FH, 
Flight Cycles FC, km or calender time). In 
reliability theory ROCOF is measured relative 
to the system age representing the behaviour of 
the system performance over time. The most 
known diagram in reliabilty theory is the 
bathtub curve as can be found in almost every 
book on reliability like [10] illustrating burn-in 
failures as well as a constant failure rate and 
finally a wear-out state. Thus especially 
mechanical systems’ ROCOF tend to change 
with age. 
 
Repairable system often fail due to single 
elements failure. As a consequence the certain 
failure is fixed and the complete system is 
repaired. Repairs that do not renew the 
complete system are called mimimal repair, 
bringing the system back in a bad-as-old state 
[10]. 
 
The sequence of those events can be modeled 
as a stochastic point process which has an 
expected value representing the amount of 
failures in a certain time interval [10]. This 
expected value can be expressed as follows. 

( )
2

1

t

12 2 1
t

N E(x ) E(x ) x dx= − = λ∫  
  
(1) 

With N12 the amount of failures between the 
two arbitrary time points t1 and t2 (t2>t1) and 
( )xλ  the related ROCOF of the process. 

 
Identifiying the ROCOF is the most important 
step in modeling the whole process. [11] as 
well as [10] and others introduce a ROCOF that 
is a feasible model for technical systems which 
show deterioration as well as systems that 
improve or have constant failure rates. This 
ROCOF, based on the Weibull distribution, is 
known as the  Power Law Model [11]. 

( ) 1t tβ−λ = αβ   (2) 

The flexibility to model the three different 
behaviours is possible through identification of 
the scale parameter α and shape parameter β. 
[12] underlines the wide range of  applications 
and its positive results. [12] further emphasises 
that only systems that are equivalent can be 
modeled together enabling the identification of 
a representative ROCOF of the related systems.  
 
The parameter identification is conducted with 
a maximum likelihood estimation for censored 
data [10][11]. 

3.2 System Model 
Failures occuring during operation of an 
aircraft can be divided into two classes. The 
first one consists of failures that have to be 
fixed prior to the next departure. This can be 
caused by their importance on airworthiness as 
well as airline related levels of safety or 
passenger comfort. 
The second class of failures can be deferred 
and thus do not have to be fixed prior to the 
next departure. 
For the intended estimation model of the MH 
demand only the first kind of failures are taken 
into account.  
Failures can have multiple causes and each 
individual cause may occur less frequently. For 
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this reason failures affecting one certain aircraft 
system will be treated as one failure type. For 
example the real failure “right hand main 
landing gear” and “nose wheel steering” are 
grouped together into the failure group 
“Landing Gear”. Aircraft systems are 
categorised according to Air Transport 
Associaiton Specification ATA. With systems 
that are very similar and show only little 
occurrences, failures are further grouped. Thus 
“Structures” (“ATA 51”) consist of ATA 
chapters for structures (ATA 51), fuselage 
(ATA 53), nacelles (ATA54), stabilizer (ATA 
55) and wing (ATA 57). Engine systems are 
grouped together and called “ATA 71”. 
 
Each failure is a single stochastic process with 
its own ROCOF. In this study the following 
aircraft system are modeled. 
 
Tab. 1. Failure categories according to ATA 

ATA System 
21 Air Conditioning 
23 Communications 
24 Electrical Power 
25 Equipment & Furnishing 
27 Flight Controls 
28 Fuel 
29 Hydraulic Power 
32 Landing Gear 
33 Lights 
36 Pneumatic 
38 Water & Waste 
49 Auxilliary Power Unit 

“51” -
51,53,54,55,57 

“Structures”  

“71” - 71 to 80 “Engines”  
 
As an appropriate assumption to cope with 
individual exact repair times each failure has 
the same average repair time of 0.5 MH. This is 
confirmed by experts from MRO industries and 
is a major point in reducing the model’s 
complexitiy. Thus the estimation of MH 
demand is equivalent to the estimation of 
numbers of failures. Instead of 0.5 MH the 
demand for each failure can be adjusted and in 
general set to say, d MH. 

Beside unscheduled maintenance events 
aircraft have to undergo regular inspections, so 
called checks which are also known as 
scheduled maintenance events. 
During those checks unscheduled maintenance 
can occur as well. Here, often a lot of failures 
are identified because systems are inspected in 
depth. These failures are not taken into 
consideration for the intended model due to the 
fact, that only failures occuring during normal 
operation are of interest for a MH demand 
model. 
 
With these assumptions the model for the MH 
demand caused by unscheduled maintenance 
events in a certain time can be expressed by: 

2AC ATA

1 2

1

tn n

t t i
i 1 i 1 t

MH d (x)dx
= =

= λ∑∑ ∫  
  
(3) 

nAC is the number of aircraft in the fleet of 
estimation, nATA is the number of aircraft 
systems and thus the number of failure types. d 
represents the MH demand for a single repair.  
 
To determine the accuracy of the model the 
magnitude of error relative to the estimate 
(MER) is calculated [13].  

empiry estimate
MER

estimate
−

=    
(4) 

 
Another measure of the model’s accuracy is the  
difference between empirical values and model 
values, so called residuals. The standard 
deviation of the residuals is used to build 
confidence bounds for the estimation. 

4  Data of this Study  

4.1 Original Data 
To assure modeling only equivalent aircraft 
[12] one single type of aircraft is selected for 
this study. This aircraft is a modern short- and 
medium-range aircraft being in operation at 
several fleets worldwide. 
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For this study data from one operator with 
legacy carrier profile and continental climatic 
operation conditions are analysed. 
Data contain maintenance-logfiles, daily FH 
and FC as well as aircraft age measured in FH 
ever flown (Total FH) and scheduled 
maintenance check dates. Reported failures can 
be identified by their ATA code with additional 
information about the deferal status. Written 
information on the individual failures are not 
available. All data mentioned are reported for 
three subsequent years and contain all failures 
within this time for more than 60 aircraft. 
 
4.2 Preparation of Data 
Modeling representative ROCOFs for the 
related aircraft type requires a wide range of 
different aged aircraft. Sorting the aircraft by 
their age in Total FH leads to a range between 
4000 FH and 34000 FH. Thus an age span of 
almost 10 years is available. 
The more aircraft examined simultaniously the 
more representative the modeled ROCOFs will 
be. At each point of age as much aircraft as 
possible should be available avoiding noise 
through single outliers. Thus the data are 
additionally censored to the time span between 
8000 FH and 32000 FH to assure at least 10 
aircraft at each point of age. 
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Fig. 1. Availabe number of aircraft per age 

In today’s aeronautical industry empirical data 
are difficult to obtain. Especially, sensible data 

containing failure information of aircraft are 
only accessible with rarity and under 
restrictions. Thus for reasons of anonymity no 
values will be added to failure rate diagrams.  

5  Results 

5.1 Parameter Identification 
Aircraft are split into two groups. The training 
aircraft are used for parameter identifcation. 
Remaining aircraft are validation aircraft. 
The likelihood functions are formulated and 
solved in the free Software Package R. 
 
For the air conditioning failure ATA 21 the 
following parameters where identified and will 
be shown representatively: α=3.6 10-5  β=1.54. 
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Fig. 2. Empirical and model failure rate for failure 

type ATA 21 air conditioning 
 
Applying the likelihood function with the 
Power Law Model  ROCOF assumes that the 
data follow the related rate. Testing whether 
this assumption is true or not can be conducted 
with a statistical goodness of fit test (Chi²-
Test). With a significance level of 5% test 
results less than a certain critical value lead to 
the acceptance of the model for the empirical 
data in the sample. This means the model is a 
valid one.  
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All failure types modeled passed the goodness 
of fit test. 
 
In the following diagrams the resulting 
ROCOFs of each failure type are illustrated. 
For reasons of clarity two diagrams are 
presented making the illustration less crowded. 
The failure types in each diagram are not sorted 
by any logic. 

 
Fig. 3. Model ROCOFs ATA 21,23, 24, 27, 28, 29, 36  
 

 
Fig. 4. Model ROCOFs ATA 25, 32, 33, 38, 49, 51, 71  
 
 

With the aircraft age in the sample between 
8000 FH and 32000 FH  the model is only 
applicable to aircraft of the related type and 
age. Extrapolation beyond this age should be 
done with great care. 

5.2 Model Application 
The ROCOFs for each failure type are the 
overlay of several equivalent aircraft. Thus the 
model represents an almost average aircarft of 
the related type. For this reason applying the 
model to one aircraft only will never lead to 
any senseful result. To obtain useful results the 
estimation of the MH demand for a fleet of 15 
or 20 aircraft is necessary. For big airlines this 
is the amount of aircraft which have their 
station at a certain airport or will be treated 
simultaniously in one time slot. 
 
To obtain representative results a fleet of 15 
and 20 aircraft is randomly chosen from the set 
of training aircraft as well as the validation 
aircaft several times. The model (3) is applied 
for each day in the three years of data. The 
resulting mean MER (MMER) are the average 
of each random selection’s MER. The residuals 
are those of all random selections together. 
 
Table 2. MMER Model application for a one day 
estimation interval 
Fleet 
size 

Training Data 
MMER 

Validation Data 
MMER 

15 25 % 25 % 
20 22 % 22 % 

 
Table 3. Standard deviation of residuals 
Fleet 
size 

Training          
Std. deviation 

Validation       
Std. deviation 

15 8.3 8.4 
20 10.3 9.8 

 
The residuals almost follow a normal 
distribution allowing to build 95%-confidence 
bounds as ±1.96 standard deviations of the 
residuals. 
With these confidence intervals the maximum 
of the MH demand can be estimated with 95%. 
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Table 4. 95%-Confidence bounds for daily estimation 
Fleet size Confidence bound 

15 ± 16.4 
20 ± 19.6 

 
Estimates for three or seven days are possible 
as well and for the reason of statistics lead to 
even better accuracy. 

6  Conclusion and Further Research 

6.1 Conclusion 
The presented approach illustrates that 
reliability theory methods are applicable to the 
problem of aircraft unscheduled maintenance. 
The flexible Weibull-based ROCOF of the 
Power Law Model allows the formulation of 
representative failure rates for almost every 
aircraft system. Thus short-time estimations of 
MH demand for fleets of 15 or 20 aircraft are 
possible. The model accuracry following 
simple statistics is between 75% and almost 
80% for daily estimations.  
The model in this simple form is applicable to 
the estimation of MH demand as only ATA 24 
(Electrical Power) needs a different 
qualification. Every other failure type can be 
treated by one class of qualification. Therefore 
mixing the failure types to calculcate an overall 
demand can be done without loss of vital 
information.  
 
The investigated aircraft age is between 8000 
FH and 32000 FH. Extrapolation of ROCOFs 
should be done with great care. 
 
One limitation can not be clarified with 
complete confidence. Aircraft are continiously 
maintained and technically improved following 
manufacturer advises. New aircraft of the same 
type already have those improvements as 
standard delivery condition. Thus new and 
older aircraft even of the same type may show 
slight differences which can, at the time being, 
not completely be analysed as no information 
about the aging of new aircraft is availabe. 

6.2 Further Research 
Using the aircraft age and the individual flight 
hours in the interval of estimation allows valid 
and useful results.  
To enhance the model accuracy further 
research will focus on the use of other 
variables. After the fundamental ROCOF 
approach presented the use of ROCOF with so 
called covariates may further improve the 
accuracy. 
Assuring the correct use of the ROCOF model 
the failure rate prior and after maintenance 
checks were investigated prior to formulation 
of likelihood functions. No significant 
influence by those checks is present for 13 out 
of 14 failure types. For the reason of this 
simple model the negligence of the slight 
improvement for one failure type is acceptable. 
Further research will deal with the proper 
improvement factor for that failure.  
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