

Fuel Cell Systems For Aeronautic Applications A Clean Way from Kerosene to Energy

Hamburg, September 04 2006

Introduction

- > Airbus Activities
- Synergy Effects
- > System Requirements and Environmental Conditions
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy
- > Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization
- Conclusion

DEUTSCHLAND

Introduction

Airbus Activities

- Airbus is one driver of industrialization and early application of fuel cell systems.
- Airbus is leading or involved in national and international projects to encourage the fuel cell technology progress.
- Airbus supports Joint Ventures of companies, authorities, universities and associations.
- Airbus supports the system supplier in design and development of airworthy qualified fuel cell systems.
- High level Aircraft requirements result in synergy effects on similar transportation applications.

Introduction

Synergy Effects

Introduction

System Requirements and Environmental Conditions

- Variable outside pressures and temperatures, varying between –2000 ft / +43000 ft and -72°C / +56°C
- Aircraft maneuver loads
- Vibrations
- Installation area (pressurized / unpressurized)
- Transient requirements incl. starting
- Fuel supply (kerosene vs. hydrogen)
- Cooling
- Mission profiles and safety

For each application on board of an Aircraft the most suitable fuel cell system configuration must be defined.

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

Introduction

Fuel Cell System

- Fuel Cell Operation
- Comparison Fuel Cell vs. Heat Engine
- > Development and Technical Targets
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization
- Conclusion

IS DEUTSCHLAND GN

Fuel Cell System

Fuel Cell Operation

Continuously change of chemical energy (hydrogen and oxygen) **directly** to electrical energy and heat without combustion

Fuel Cell System

Comparison – Fuel Cell vs. Heat Engine

$$\eta_{\text{Heat Engine}} = \eta_{\text{Rev}} \cdot \eta_{\text{C}} \cdot \eta_{\text{el}} = 0.83 \cdot 0.62 \cdot 0.9 = 0.46 = -46\%$$

Theoretical maximal achievable Efficiency: ~83%

G AIRBUS

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

Fuel Cell System

AIR

0

Development and Technical Targets

Development and Targets for Specific Weight and Volume of **Mobile Fuel Cell Stacks and Sytems**

- Introduction
- Fuel Cell System

Motivation for Fuel Cell System Application

- Ecological and Economical Aircraft Operation Aspects
- > Conventional Electrical Power Generation vs. Fuel Cell System
- > Aircraft Mission
- Fuel and Money Savings
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- > Step 5: Alternative Fuels
- > Industrialization
- > Conclusion

Ecological and Economical Aircraft Operation Aspects

Ecological Aspects:

- Noise reduction
- Emission reduction
- Higher fuel economy

Economical Aspects:

- Weight Reduction
- Low Maintenance
- Mission Improvements
- Elimination of RAT and APU
- Battery Reduction
- Potential for on-board water generation

Conventional Electrical Power Generation vs. Fuel Cell System

Aircraft Mission

Example: A330-300:

- ~100 000 L per flight of ~10 000 km (Average Fuel Consumption)
- Fuel Use: 3%* Aircraft Systems
 97% Propulsion

~ 3000 L per flight for Aircraft Systems operation

Fuel Savings

	Conventional Electrical Power Generation	Fuel Cell System
Efficiency	~40% (Maximum possible)	~60% (Target)
Fuel Use per Flight (10.000 km)	~3.000 Liter	~2.100 Liter

Kerosene Savings

~900 Liter per Flight

Annual Savings for a fleet of 30 Aircraft A330-300

- > On average 377 trips per year
- Assumed Kerosene Costs for 2020: 125 \$/barrel (0,79 \$/L)

Fuel Savings: Money Savings:

DEUTSCHLAND

~10 Mio L per Year ~8 Mio \$ per Year + Emission Fees

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application

Fuel Cell Systems Architecture

- System Architecture Overview
- Fuel Processing
- Fuel Cell Principle
- Comparison PEMFC SOFC
- Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization

IS DEUTSCHLAND GN

Conclusion Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

System Architecture Overview

Key Challenge Fuel Processing

Fuel Processing is the Conversion of Kerosene into a hydrogen rich gas. Three Parts are normally necessary:

Dehydrogenation

Dehydrogenation could be one possible solution

G AIRBUS

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

A **Fuel Cell** is an electrochemical device that continuously changes the electrical energy of hydrogen and oxygen from air **directly** to electrical energy and heat without combustion.

The overall chemical reaction: 2 $H_2 + O_2 \rightarrow 2 H_2O$

Different types of fuel cells with different working conditions are available:

- PEMFC (Protone Exchange Membrane Fuel Cell)
- SOFC (Solide Oxide Fuel Cell)

Comparison PEMFC – SOFC

	Proton Exchange Membrane Fuel Cell (PEMFC) Fuel Cell with polymer (sulfonic acid polymer \rightarrow Nafion) as electrolyte.	Solid Oxide Fuel Cell (SOFC) Fuel Cell with ceramic (Y_2O_3 -stabilized ZrO ₂ \rightarrow Yttria-stabilized zirconia) as electrolyte.
Advantages	 High development status (>100 kW_{el}) Many thermal cycles possible Water generation at cathode side 	 High working temperature (~800°C) Simple Cooling System Insensitive against Gas Impurities Simple Fuel Processing Highest efficiencies No humidification needed
Challenges	 Low working temperature (~80°C) Complex cooling system Sensitive against CO Complex Fuel Processing Humidification needed 	 Only few thermal cycles possible Low development status for mobile application (20 kW_{el}) Water generation at anode side

AIRBUS

AR

0

Comparison PEMFC – SOCF System

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture

> Airbus Fuel Cell System Strategy

- Step by Step Approach
- Industrialization Approach
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization
- Conclusion

Airbus Fuel Cell System Strategy

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy

Ongoing Projects and Activities

- Overview on fuel cell related research projects in Airbus
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization
- Conclusion

Ongoing Projects and Activities

Overview on Fuel Cell related research projects in Airbus

Project	Content	Target
POA Power Optimized Aircraft	 Power optimization strategies Kerosene fuelled SOFC system 	- SOFC functionality Demonstrator (1 kW)
APAWAGS Advanced Power And Water Generation System	 Kerosene fuelled FC system Water Generation PEM and SOFC technology 	 SOFC and PEMFC System ground demonstrator for power and water generation (5 kW)
CELINA Fuel Cell In A New Configured Aircraft	 Kerosene fuelled FC system Aircraft application investigation Preliminary safety assessment 	 Dynamic system simulation Extensive testing of PEMFC stack
FuCAp/FCEPS Fuel Cell Application (Demonstrator) Fuel Cell Emergency Power System	- FC emergency power system - H ₂ /O ₂ -Technology	 Flying test bed demonstrator 20 kW (2007) Integrated system flight tests
MOET More Open Electric Technology	 Electrical generation and distribution on Aircraft level Kerosene fuelled SOFC system 	 Architecture assessment SOFC system simulation
A/C SOFC Aircraft Solid Oxide Fuel Cell	-Kerosene fuelled SOFC system	 400 kW SOFC System Testing and benchmarking
KING Kerosene Reforming	 Fuel Processor development Desulfurization by adsorption Autothermal Reformer Dehydrogenation of kerosene 	 Dehydrogenation lab demonstrator (2006) 50-100 kW Fuel Processor (2009) 400 kW Fuel Processor

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

- Introduction
- Fuel Cell System
- Motivation
- Fuel Cell Systems Architecture
- Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities

Step 1: Demonstrator

- > Overview
- Installation Area
- System Architecture
- > Test Data Collection
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization

IS DEUTSCHLAND GN

Conclusion Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

Overview

Target (2007)

- Build Up of a Fuel Cell System Demonstrator
- Flight Test of the Fuel Cell System

Motivation

- First Safe Fuel Cell System operation on board
- Flight Test Data Collection, dynamic, heat, loads etc.

System Specification

- Power: 20 kW_{el}
- Fuel Cell: PEMFC
- Fuel: Pressurized Hydrogen and Oxygen

Installation Area

System Architecture

₹

GMBH.

DEUTSCHLAND

BUS

AIR

0

Test Data Collection

Flight Test Engineering Station

0

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy
- > Ongoing Projects and Activities
- Step 1: Demonstrator

Step 2: Fuel Cell Emergency Power System

- > Overview
- Proposed Installation Area
- Installation Concept
- System Architecture
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization

JS DEUTSCHLAND GN

Conclusion Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

Overview

Target (mid of next decade)

 Substitution of the Ram Air Turbine (RAT) by Fuel Cell Emergency Power System (FCEPS)

Advantages

- Support of the All Electric Aircraft Concept
- Weight Reduction
- Short System Starting Time
- Low Maintenance Costs
- Health Monitoring possible

Power System installation area

G

installation area

Installation Concept

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

System Architecture

AR

0

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System

Step 3: Fuel Cell Power Unit

- > Overview
- System Concept
- > Tail Cone Integration Concept
- Step 4: Fuel Cell as Primary Source
- Step 5: Alternative Fuels
- Industrialization
- Conclusion

DEUTSCHLAND

Step 3: Fuel Cell Power Unit

Overview

Target (end of next decade)

Power Generation by Fuel Cell System

Advantages

- Support of the All Electric Aircraft Concept
- Weight Reduction
- Mission Improvements
- Elimination of RAT and APU and battery reduction
- Potential for on-board water generation
- Emission Reduction

System Specification

- Power Output: 400 kW_{el}
- Fuel: Kerosene
- Specific Weight: 1 kg/kW
- Specific Volume: 1,5 L/kW

Step 3: Fuel Cell Power Unit

Step 3: Fuel Cell Power Unit

Tail Cone Integration Concept

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit

Step 4: Fuel Cell as Primary Power Source

- Overview
- > Advanced Aircraft Configurations
- Step 5: Alternative Fuels
- Industrialization
- Conclusion

Step 4: Fuel Cell as Primary Power Source

Overview

Target (20XX)

Primary Power Generation by Fuel Cell System

System Specification

- Power Output: 1000 kW_{el}
- Fuel: Kerosene

High Mature, Reliable and Safe Fuel Cell System!

Step 4: Fuel Cell as Primary Power Source

Advanced Aircraft System Configurations

Electrical Powered Air Conditioning

Advanced Main Engines

Emerging technologies:

Fuel Cell System

- > Optimized electrical and mechanical systems
- Power supply by fuel cell systems
- > Advanced cabin system concepts
- > New Aircraft system architectures

Electrical Actuators

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- > Step 4: Fuel Cell as Primary Power Source

Step 5: Alternative Fuels

- > Overview
- Industrialization
- Conclusion

Step 5: Alternative Fuels

Overview

Target (20XX)

Power Generation by Fuel Cell System with Alternative Fuels

Alternative Fuels:

- Desulfurized Kerosene
- > Hydrogen

STEP 5

- Ethanol/Methanol
- Biofuels
- Sunfuels

New Aircraft Generation

- Hydrogen Fuelled Aircraft
- New Tank System
- Fuel Cell System without Fuel Processing

- Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- > Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Power Source
- Step 5: Alternative Fuels

Industrialization

- > Partners
- > Airbus Growing Systems Test Lab
- > hycity Landesinitiative Brennstoffzellen und Wasserstofftechnologie Hamburg
- Conclusion

Industrialization

Industrialization

Growing Systems Test Lab in Hamburg

Test Rig with Reformer for SOFC Application

Test Rig with Integrated

PEM Fuel Cell

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

Test Rig for SOFC

Industrialization

Landesinitiative Brennstoffzellen und Wasserstofftechnologie Hamburg

Airbus is founding member of the Landesinitiative Brennstoffzellen und Wasserstofftechnologie Hamburg. Targets of the Initiative:

- Promotion of fuel cell and hydrogen technology in Hamburg
- Reduction of CO₂ emissions
- Integration of renewable energies
- Secure of the Life Quality in Hamburg
- Stimulation of the Economy and Science in Hamburg

- > Introduction
- Fuel Cell System
- Motivation for Fuel Cell System Application
- Fuel Cell Systems Architecture
- Airbus Fuel Cell System Strategy
- Ongoing Projects and Activities
- Step 1: Demonstrator
- Step 2: Fuel Cell Emergency Power System
- Step 3: Fuel Cell Power Unit
- Step 4: Fuel Cell as Primary Power Source
- Step 5: Alternative Fuels
- Industrialization

Conclusion

Conclusion

- Airbus is involved/driving projects and tasks to bring forward the fuel cell industrialization with major suppliers especially in aeronautical applications
- Airbus will gain an early integration with the step by step approach
 - Soon experience with applicated hardware
 - > Fundamental basis for further development
- Airbus is committed to apply fuel cell systems with strong support by industrial partners and system suppliers
- > Airbus is at the forefront of fuel cell technology and innovation
- Our advanced, environmental friendly and economical products will ensure an excellent competitiveness

Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0606539 - Issue 1

© AIRBUS DEUTSCHLAND GMBH. All rights reserved. Confidential and proprietary document.

This document and all information contained herein is the sole property of AIRBUS DEUTSCHLAND GMBH. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS DEUTSCHLAND GMBH. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS DEUTSCHLAND GMBH will be pleased to explain the basis thereof.

AIRBUS, its logo, A300, A310, A318, A319, A320, A321, A330, A340, A350, A380, A400M are registered trademarks.

