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Abstract  

This paper presents a control system design 
method for an autonomous helicopter using the 
Particle Swarm Optimization (PSO) method. In 
this paper, the nonlinear dynamic model of a 
miniature helicopter is directly used to design a 
control system without linearization process. 
The nonlinear dynamics of model helicopter is 
represented by sixteen state variables including 
flapping dynamics, engine dynamics, and rotor 
speed dynamics. PSO algorithm is adopted as 
an optimization solver. In the proposed method, 
controller gains are selected to minimize the 
error between the desired response and the 
actual response of helicopter control system. To 
improve the convergence speed, sequential 
quadratic programming (SQP) is integrated to 
the basic PSO algorithm. The performance of 
the designed control system for an autonomous 
helicopter is evaluated through fully nonlinear 
simulation. 

1 Introduction  
The helicopter system is a versatile flight 
machine because of its hovering capability, 
vertical take-off and landing, and aggressive 
maneuverability. Recently, the interest in 
unmanned helicopter system has been abruptly 
increased for surveillance and reconnaissance. 
For successful application to these missions, 
control system for an autonomous flight should 
be designed and implemented. Therefore, some 
researches for an autonomous flight using 
unmanned helicopter were performed. In these 
previous researches, YAMAHA RMAX system 
is the most successful one. The autonomous 

flight control system of RMAX was completed 
using linear PD controller [1].  

The flight control system design based on 
conventional approach [2] can be performed in 
such a way of yielding linear models at several 
reference flight conditions, designing linear 
controller for each condition, and blending these 
design points with gain scheduling scheme. 
However it is very difficult to develop an 
autonomous flight control system of unmanned 
helicopter based on the conventional method 
because the dynamics of helicopter is usually 
highly nonlinear and many uncertainties. In 
order to overcome this difficulty, various kinds 
of nonlinear control techniques have been 
studied. Among them, adaptive control using 
neural network was gracefully employed for 
unmanned helicopter system [3-5]. Though the 
nonlinear control techniques have some 
advantages in comparison to the conventional 
approach, the proportional-integral-derivative 
(PID) controller has been widely used in the real 
flight control system because of its simple 
structure and robust performance. Unfortunately, 
it is quite tedious and time-consuming to tune 
properly the gains of PID controller. In this 
paper, a heuristic method for the gain tuning of 
PID controller is proposed and applied to flight 
control system design for an autonomous 
helicopter. The proposed method determines the 
controller gains from numerical optimization 
approach. Fig. 1 shows the main process of the 
new method. In the new approach, the controller 
gains are selected to minimize the error between 
the desired response and the actual response of 
flight control system using particle swarm 
optimization (PSO) method [6,7]. Moreover, a 
hybrid PSO method integrated with sequential 
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quadratic programming (SQP) algorithm [8,9] is 
developed to improve the convergence speed. 

The paper is organized as follows. Section 
2 presents the nonlinear dynamics of unmanned 
helicopter. In Section 3, a hybrid PSO algorithm 
is proposed. Section 4 outlines a helicopter 
application of the new approach developed in 
Section 3. Conclusions are given in Section 5. 
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Fig. 1. The main process of proposed control system 
design method 

2 Nonlinear Helicopter Model 
In implementing the designed controller to the 
real system, modeling fidelity is an important 
factor to guarantee the performance of flight 
control system. The unmanned helicopter model 
for control system design is a Voyager GRS 260 
developed by JR PROP. As shown in Fig. 1, this 
miniature helicopter features a conventional 
type: two-blades, clockwise rotating main rotor, 
stabilizer bar, and tail rotor. Also, the physical 
parameters of our miniature helicopter are 
summarized in Table 1. 
 

 
 

Fig. 2. Voyager GRS 260 miniature helicopter 
 

Table 1. Parameters of Voyager GRS 260 helicopter 

Engine 23cc Gasoline Engine, 3HP
Fuselage Length 1570 mm 

Main/Tail Rotor Dia. 1770 mm / 289 mm 

Empty Weight 6.6 kg 

Max. Payload 5.0 kg 

2.1 Rigid Body Dynamics  
Referring to Gavrilets [10], if the cross products 
of inertia are neglected, the rigid body equations 
of motion for a helicopter are given by 
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where the subscript mr, fus, tr, vf, and ht 
indicate main rotor, fuselage, tail rotor, vertical 
fin, and horizontal stabilizer, respectively. In Eq. 
(2), Qe is the torque produced by the engine to 
counteract the aerodynamic torque on the main 
rotor blades. Since the helicopter blades rotate 
clockwise, Qe is always positive (Qe  > 0). 

2.2 Flapping Dynamics 
From the previous research on modeling of a 
small-scale unmanned helicopter [11], flapping 
dynamics of the main rotor and stabilizer bar 
can be lumped and represented by a pair of first- 
order tip-path plane dynamics. The lateral and 
longitudinal flapping dynamics are 
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where 
lon

Bδ  and 
lon

Aδ  are effective steady-state 
lateral and longitudinal gains from the cyclic 
inputs to the main rotor flap angles, latδ  and longδ  
are the lateral and longitudinal cyclic control 
inputs, and eτ  is the effective rotor time 
constant for a rotor with the stabilizer bar. The 
control moments produced by the flapping 
motion is the dominant rolling and pitching 
moments of main rotor. 

2.3 Engine and Rotor Speed Dynamics 
The rotor speed dynamics and the engine 
dynamics to the commanded torque are 
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In Eq. (5), eQ  is the engine torque, which is 
positive when the main rotor rotates clockwise, 
and mrQ  is the main rotor torque, which has an 
opposite sign to the engine torque. trQ  and trn  
represent the tail rotor torque and the gear ratio 
between the main rotor and tail rotor, 
respectively. In the engine dynamics modeled as 
a first order lag system, engτ  is an engine time 
constant, 0

eQ  is the main rotor torque at hover, 
and Ω  is the rotor speed. govK  is a governor 
gain of the engine. Governor plays a role of 
maintaining a constant engine rotational speed. 

The nonlinear dynamics represented in this 
section is available in low advance ratio flight 
envelope: from hover to 20m/sec (equivalent 
advance ratio is 0.15) [10]. 

3 A Hybrid Particle Swarm Optimization 
The particle swarm optimization (PSO) method 
is one of the evolutionary computation 
techniques. It was introduced by Kennedy and 
Eberhart based on observations of the social 
behavior of animals such as bird flocking, fish 
schooling, and swarm theory. PSO is different 
from evolutionary algorithm (EA) in that it does 
not need reproduction or mutation for producing 
the next generation. 

In this paper, a hybrid PSO algorithm is 
developed to improve the computation time and 
the convergence speed. The proposed hybrid 
PSO algorithm changes the optimization solver 
to sequential quadratic programming (SQP) 
algorithm when the given convergence criterion 
is met. 

3.1 The Basic PSO Algorithm 
The basic feature of PSO method is that each 
particle in the swarm is searching for the 
optimum with its position and velocity. In this 

process, each particle remembers the position it 
was in where, it had its best result so far. Also, 
the particles in the swarm co-operate each other 
in the way of exchanging the information where 
they have discovered the best position in the 
searching space. The basic PSO algorithm can 
be summarized as follows; 
 
PSO algorithm 
1. Randomly, initialize the position and the 
velocity of the particles. 
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2. For each particle, evaluate the fitness 
value with the given cost function. 
3. Compare a particle’s fitness evaluation 
with particle’s pbest ( i

kp ). Exchange the 
particle’s fitness value and location with pbest , 
if it is better. 
4. Compare a particle’s fitness evaluation 
with the population’s overall previous best, 
gbest ( g

kp ). Exchange the particle’s fitness value 
and location with gbest, if it is better. 
5. Update the velocity and the position of the 
particle according to the following equations. 

( ) ( )1 1 1 2 2
i i i i g i
k k k k k kv wv c r p x c r p x+ = + − + −

 
(8)

1 1
i i i
k k kx x v+ += +  (9)

6. Loop to step 2 until a criterion is met. 
 
In the velocity update equation of Eq. (8), w , 1c , 
and 2c  mean inertia weight, self and swarm 
confidence factors, respectively. 1r  and 2r  are 
random numbers on the interval [0, 1]. 

3.2 Integration of SQP Algorithm 
The termination criterion of the basic PSO 
algorithm is chosen as the fitness value does not 
vary during five generations. However, the 
amount of update rates in position and velocity 
is gradually decreased as all particles are 
gathered around the optimal solution. Since the 
convergence speed is decreased as well as the 
computation time is increased in the small 
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region containing an optimal solution. To avoid 
this problem, an optimization solver is changed 
from PSO algorithm to SQP algorithm when all 
particles are converged within 10% of an initial 
search area. Here, the final positions of all 
particles position determined by PSO algorithm 
are used as the initial values of SQP algorithm. 
The flow chart of the proposed hybrid PSO 
algorithm is shown in Fig. 3. 
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Fig. 3. The flow chart of a hybrid PSO algorithm 

4 Control System Design for an Autonomous 
Helicopter 
It is important to design flight control system 
for an autonomous or semi-autonomous flight of 
unmanned helicopter. The autonomous flight 
control system of our unmanned helicopter is 
shown in Fig. 4. Considering the mission that 
this unmanned helicopter has to accomplish, the 
outer-loop flight control system involves four 

channels, i.e. vertical, longitudinal, lateral, and 
yaw channels, for altitude control, longitudinal 
velocity control, lateral velocity control, and 
heading angle control with main rotor collective 
pitch, longitudinal cyclic, lateral cyclic, and tail 
rotor collective pitch as control inputs. The 
outer-loop controllers have PI controller except 
for the altitude controller. Both the longitudinal 
and the lateral channels have an inner-loop 
controller formed by pitch/roll angular rate and 
pitch/roll attitude angle feed-back. All actuator 
dynamics are modeled as first order system with 
the time constant of 0.05sec.  
 

 
 

Fig. 4. Block diagram of autonomous flight control 
system for unmanned helicopter 

4.1 Desired Response and Cost Function 
As mentioned in “Introduction”, controller gains 
are selected to minimize the error between the 
desired response and the actual response of 
flight control system. The desired response of 
autonomous flight control system is chosen that 
the output shows a second order system’s 
response: 

2
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Parameters of the desired response for four 
control channels are summarized in Table 2. 
Natural frequencies of vertical channel and yaw 
channel are faster than those of longitudinal and 
lateral channels. The reason is that, in a 
miniature helicopter characteristics, main rotor 
collective and tail rotor collective directly 
response to the control stick inputs, while 
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longitudinal cyclic and lateral cyclic responses 
have some time delay caused by the 90 deg. 
gyroscopic phase lag between the main rotor 
and a stabilizer bar. 
 

Table 2. Parameters of the desired responses 

 Vertical 
Channel 

Longitudinal and Lateral 
Channels 

Yaw 
Channel

ξ  0.7 0.5 1.0 

nω  3.0 1.5 3.0 
 

The optimization results are sensitively 
affected by the cost function in an optimization 
system. In this paper, we use the following cost 
function 
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where 0t  is the initial time, trt  is the transient 
time, ft  is the final time. ( )e t  is the error 
between the desired response and the actual 
response of flight control system and ( )u t  is the 
control input. In this cost function, different 
weightings can be given from the initial to 
transient time period and transient to final time 
period. 

4.2 Optimal Controller Gains 
In this paper, the optimal controller gains for 
each control channel are selected by directly 
using the nonlinear dynamic model described in 
Section 2. In the proposed hybrid PSO 
algorithm, the number of particles for each 
parameter is 30 and the self and swarm 
confidence factor is 1 2 1.5c c= = . The optimal 
controller gains are calculated 10 times by using 
pure PSO algorithm and the proposed hybrid 
PSO algorithm to comparison of convergent 
efficiency. Fig. 5 shows the variations of the 
cost in the case that the pure PSO algorithm and 
the proposed hybrid PSO algorithm are applied 
to vertical control channel. Though initial costs 

are different because of the randomly initialized 
particles, the convergence speeds to reach a 
certain cost value are same. However, the 
proposed hybrid PSO algorithm can rapidly 
reduce the cost with a few number of fitness 
evaluation. Moreover, cost calculated by the 
proposed method is smaller than that of pure 
PSO algorithm. This implies that the controller 
gain set determined by the proposed method 
represents a superior optimality. The average 
computation time of the pure PSO algorithm 
and the proposed hybrid PSO algorithm are, 
respectively, 1508 sec. and 591 sec. 
 

 
 

Fig. 5. The cost variations of the pure PSO algorithm and 
the hybrid PSO algorithm 

 
The optimal gain set obtained by the 

proposed method are presented in Table 3. 
 

Table 3. The optimal gain set of four control channels 

wK  0.35465 
h
pK  9.50293 
h
iK  0.00000 Vertical Channel 
h
dK  2.66968 
qK  1.56747 

Kθ
 3.81011 

u
pK  5.86340 Longitudinal Channel 
u
iK  1.91380 
pK  0.68155 

Kφ
 2.86800 

v
pK  4.22963 Lateral Channel 
v
iK  2.71701 
rK  1.48218 
pKψ  5.74388 Yaw Channel 
iKψ  0.00000 
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To analyze the performance of our flight control 
system, we observe the time responses of each 
control channel to step input and illustrated the 
results in Fig. 6. Here, the longitudinal and 
lateral velocity commands are limited to 5 m/sec. 
From the results shown in Fig. 6, we conclude 
that the designed control system might be 
adopted as a possible autonomous flight control 
system for an unmanned helicopter. 
 

 
 

Fig. 6. Responses of four control channels to step input 

4.3 Nonlinear Simulation Results 
The pirouette maneuver requires that a 
helicopter points its nose toward a point 
defining the center of a circle with a specified 
radius and then maneuvers around the circle 
holding a constant altitude. To satisfy these 
requirements, even though an excellent pilot, 
pirouette maneuver is a difficult flight. In this 
paper, to verify a potential capability of the 
designed autonomous flight control system, we 
perform a nonlinear simulation for pirouette 
maneuver. For this simulation, 2 m/sec lateral 
velocity command, 6 deg. heading angle com-
mand per second, and 20 m altitude command 
are engaged. The simulation results are shown 
in Fig. 7 ~ Fig. 10. From these simulation 
results, the autonomous flight control system of 
our unmanned helicopter successfully achieves 
a pirouette maneuver. Also, the altitude control 
performance and tracking performances of 
longitudinal velocity command and heading 
angle command are perfect. 

 
 

Fig. 7. Flight trajectory during pirouette maneuver 
 
 

 
 

Fig. 8. Responses of longitudinal velocity, lateral velocity, 
and altitude 

 
 

 
 

Fig. 9. Time histories of attitude angles 
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Fig. 10. Control stick inputs during pirouette maneuver 

5 Conclusions  
The paper suggests a control system design 
method for autonomous helicopter using a 
hybrid PSO algorithm. The proposed hybrid 
PSO algorithm combines the basic PSO 
algorithm and SQP algorithm to improve the 
convergence speed. The proposed method is 
successfully applied to the problem of optimal 
gain selection for unmanned helicopter system. 
The performance of the designed autonomous 
flight control system for unmanned helicopter is 
evaluated through fully nonlinear simulation on 
pirouette maneuver. 

  Implementation the proposed autonomous 
flight control system on the real system and 
flight test are remained for future work.  
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