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Abstract  

The design and analysis methods applied in 
multidisciplinary design and optimization of 
aircraft are continuously being improved in 
accuracy and reliability. The related 
computational complexity easily leads to high 
costs in terms of time, effort and money, needed 
for these analyses. In order to limit these costs, 
meta-models on the basis of fitting methods can 
be used. This paper presents a study in which 
various advanced interpolation and 
approximation techniques and optimization 
algorithms are applied in a response surface 
optimization approach for aircraft design 
problems. The results demonstrate the flexibility 
and the potential of this approach by tackling 
various complex design optimization problems 
at relatively low computational cost. 

1  Introduction 

The continuous development of the 
methodologies for aircraft design and analysis is 
aimed at achieving higher levels of detail in 
shorter analysis turn around cycles. Moreover, 
driven by ever increasing technical and 
commercial requirements due to global 
competition, more detailed design analyses are 
being required and applied in earlier phases of 
the aircraft design where there are still very 
many degrees of freedom and few restrictions 
on the design space [1]. The analyses 
traditionally used in the early phases of the 
aircraft design are mostly based on semi-

empirical rules [2]. Although computationally 
efficient, these analyses often have a limited 
range of validity, accuracy and flexibility. 
Therefore these methods are gradually being 
replaced by the more generic ‘geometry and 
physics based’ detailed design analysis methods 
that are generally applicable and potentially 
highly accurate [3]. However, these methods are 
mostly computationally expensive. Also, the 
required design analyses in aircraft 
multidisciplinary design and optimization 
(MDO) are various and may be difficult to 
combine into an integrated aircraft design 
system. Therefore such integrated aircraft 
design system is usually developed for a 
specific range of design problems, like 
optimization of blended-wing-body [4], [5] or 
transonic transport aircraft planform [6]. 
Moreover, such integrated aircraft design 
system often requires specific software (e.g. 
particular analysis tools) and hardware (e.g. 
dedicated compute servers), and is therefore 
prone to operational issues such as temporal 
unavailability of servers or licenses. The 
computational cost of (some of) the analyses in 
the integrated aircraft design system is another 
issue to be handled, especially when used within 
automated search or optimization loops that 
typically may require many design analysis 
evaluations (e.g. thousands). Approximation and 
interpolation methods (also known as meta-
modeling or data fitting) have been proposed 
and have shown to effectively deal with such 
issues [7], [8], [9] by providing compact, 
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accurate and computationally efficient 
representations of the considered properties of 
the underlying aircraft design (in optimization 
context also termed as design objectives or 
fitnesses). The key of this approach lies in the 
de-coupling of, on the one hand the 
computationally expensive integrated aircraft 
design analyses, and on the other hand the 
search process by automated optimization 
algorithms. The search process now makes use 
of the compact and computationally efficient 
meta-model and allows for high flexibility for 
further investigations. For the creation of the 
meta-model many different fitting methods are 
available (e.g. [7]), each with different 
advantages for different types of problems. 

In the present study a number of different 
fitting methods are applied to aircraft design 
problems. For effective sampling of the multi-
dimensional design domain, use is made of 
Design Of Experiments (DOE) methods. In the 
selected sample points the design objectives and 
constraints are evaluated by parallel 
computations with integrated aircraft design 
analysis systems. NLR’s multi-dimensional and 
multi-method data fitting tool MultiFit [10] is 
used to statistically analyze the data sets that 
result from the design evaluations and to 
generate meta-models using different fitting 
methods. The representativeness of the meta-
models is investigated and the most suitable 
meta-models are applied in the aircraft design 
process where several optimization algorithms 
are used to find the most promising aircraft 
designs. 

In this paper the methodology for obtaining 
and assessing the meta-models is described. For 
illustration of the approach and its benefits, two 
complementary aircraft design cases will be 
described, in which the meta-modeling 
approach is applied in the multi-disciplinary 
design and optimization of aircraft wings. The 
first one concerns a wing planform design study 
for single objective optimization of mission 
range, which is part of an MDO case study of a 
generalized transonic wing design that is 
currently ongoing in the European project 
Vivace [11]. The second one concerns a 
generalized transport aircraft winglet design 

study by multi-objective optimization of wing 
drag and bending moment. 

2  The MultiFit response surface approach  

In aircraft design problems the aim is to 
improve or optimize the characteristics (design 
objectives such as performance, behavior, etc.) 
of the product by variation of its properties 
(design parameters such as shape, material, 
etc.). In general the product’s properties (x) and 
characteristics (y) are expressed as real-valued 
(continuous) quantities and their inter-
dependency (f) is non-linear (y=f(x)). 
Evaluation of the function f is often costly (in 
terms of time and computer resources) and may 
involve (iterative) computational analyses (e.g. 
finite element or computational fluid dynamics). 
Because of these computational complications it 
is desirable to retrieve efficiently, i.e. using as 
few as possible function evaluations, the desired 
product’s characteristics (y) in the considered 
design domain (i.e. for the set of allowable 
values of the product’s properties x). This may 
be achieved, for example, by direct optimization 
of y for x using efficient gradient based 
optimization algorithms (e.g., [12]). However, 
lack of accurate gradient information (dy/dx), 
limited robustness and reliability of the 
computational analyses, or convergence into 
local sub-optima, may hamper the effectiveness 
of this approach. It is therefore beneficial to also 
apply ‘gradient-free’ global search methods, 
such as genetic algorithms and pattern search 
(e.g., [13]), besides the gradient based 
optimization algorithms. The large number of 
evaluations of the objective function (y=f(x)) 
that are typically needed by these search 
methods do not allow for a high computational 
cost per evaluation. An efficient approximate 
representation (y*=f*(x)), or meta-model, of the 
design problem is therefore required. A variety 
of fitting methods, such as polynomial 
regression, neural networks, and kriging 
models, are available for creating such meta-
models [7] from sampled data sets (xi, yi) of the 
design problem. In order to achieve an optimal 
meta-model the most suitable fitting method for 
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the considered design problem should be 
applied. There exist various statistical 
verification and cross validation methods [14], 
[15] by which the quality (or 
‘representativeness’) of the different meta-
models can be assessed and the most suitable 
method can be identified. These methods 
consider a (small) subset of the data set as so-
called verification points, in which the error of 
the prediction (y-y*) is evaluated for a fit that is 
made for the data set without the verification 
points. The NLR fitting tool MultiFit supports 
user-friendly creation, assessment and 
comparison of fits with a wide range of multi-
dimensional interpolation and approximation 
methods [10]. Suitable meta-models can be 
easily created and can be conveniently used in 
the further evaluation and optimization of the 
considered design problem. 

3  The aircraft wing design case studies 

3.1 Transonic wing MDO 

The wing design process is part of the 
Vivace wing MDO case study, which is based 
on a parametric aircraft wing model (Fig. 1). 

 
 The wing design process comprises the 

following consistently coupled computational 
analyses: geometry- and multi-model-
generation, low-speed aerodynamics, engine 
sizing, weight book-keeping, structural 

optimization, transonic aerodynamics and 
mission evaluation, see Fig. 2.  

 
Because the wing behavior can only be 

properly evaluated when taking into account the 
aircraft that it is part of, these wing design 
analyses do include other parts of the aircraft if 
relevant (e.g. besides the wing, also the fuselage 
is part of the model for the CFD cruise 
performance evaluation). Further details of 
these analyses are presented elsewhere [6] and 
are beyond the scope of this paper. 

These analyses lead to a collection of 
results that represent the performance of the 
considered wing. One of these results, the 
maximum mission range for fixed take-off 
weight, is selected in this study as the objective 
for the design process. This design objective can 
be improved or optimized in a global 
optimization loop, as also is indicated in Fig. 2. 
However, in this study the objective is not 
applied directly in the optimization loop. 
Instead, first a set of analysis results is 
generated in a number of design points that 
were selected according to a full-factorial DOE 
sampling of the considered design space. For 
simplicity, only two of the top-level wing 
planform design parameters (Fig. 1) are 

 
 
Fig. 1: The top level design parameters used in 
the Vivace transonic wing MDO case study. 

 
Fig. 2: Transonic wing multi-disciplinary design 
analysis process as used in Vivace [6]. 
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considered in this study: wing semi-span and 
outer-wing leading-edge sweep angle. From the 
resulting data set of analyses results, i.e. range 
versus semi-span and sweep, a series of meta-
models (or: response surface fits) are generated 
with the MultiFit tool. The ‘best fits’ are 
selected on the basis of detailed assessment and 
comparison of the fits in MultiFit. Local 
predictive quality of the fits in the most 
promising region of the design domain is 
assessed by evaluation of the fit errors (or 
residuals) in subsequently two sets of 
verification points, i.e., in the one single data 
point and in the five data points with the best 
range values, respectively. Global predictive 
quality of the fits is assessed by a so-called 
leave-one-out cross-validation assessment, 
where a fit is made on the whole data set except 
one verification point in which the residual is 
evaluated, which is repeated for each of the data 
points. The Root Mean Squared Error (RMSE) 
of each of these residuals (fit errors) is 
considered as the global inaccuracy measure for 
the fit of the whole data set. The results of these 
assessments are shown in Table 1. 

 

The MultiFit assessment indicates that 
locally, in the most promising region of the 

design domain, the kriging-quadratic-cubic [16] 
fit (Kriging-qc) has the best predictive quality. 
The best global fit quality in the complete 
design domain, as evaluated by the leave-one-
out assessment, is found with the 5th order 
polynomial fit (poly5). However, the MultiFit 
assessment also gave warnings that 5th and 6th 
order polynomial fits are unreliable due to the 
ill-conditioned least-squares matrix equation 
from which the polynomial coefficients were 
resolved. Therefore the 4th order polynomial fit 
(poly4) was selected as the most suitable fit for 
the design optimization analysis, as well as the 
kriging-qc fit. For reference, also the commonly 
used 2nd order polynomial fit (poly2) was 
applied in the optimization analysis in order to 
assess the benefits of the different fitting 
methods. The surfaces of these three fits are 
shown in Fig. 3. Note that the Poly2 fit is quite 
similar to the Kriging-qc fit and therefore not 
separately visible. 

The optimum value for the range was then 
determined for each of the three fit functions, in 
the bounded design domain as indicated in the 
plot of Fig. 3 (28 m < span < 32 m ; 20 deg < 
sweep < 40 deg). These optimizations are 
carried out using several optimization 
algorithms: Matlab's constrained single-
objective optimization algorithms FMINCON 
(Optimization Toolbox) [12] and GA (GADS 
Toolbox) [13], and MNSGA, an in-house 
developed Matlab implementation of a 
constrained multi-objective non-dominated 
sorting algorithm [17]. The gradient-based 
search algorithm FMINCON has a risk of 
converging into local optimum design points, 
depending on the starting point used in the 
optimization. Therefore this optimization is run 
several times, each time starting from one of the 
35 design points of the data set. The GA and 
MNSGA algorithms are both run with these 35 
design points as initial population, and with a 
maximum of 100 generations. Each of these 
three optimization algorithms finds the same 
optimum range value for each of the fit 
functions; see Fig. 3. These three optima found 
are slightly different from each other, indicating 
that in this region of the design domain the local 
behavior of the three fit functions is different. 

Table 1: The MultiFit assessment results: 
RMSE comparison for each of the methods for
the three verification procedures: in the left and 
middle columns: RMSEs of the residual in the 
one and five verification points, respectively; 
right column: averaged RMSEs of the leave-
one-out cross-validation assessment. 
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Also the three optimum design points have been 
evaluated by the multi-disciplinary design 
analysis (Fig. 2), yielding the accurate range 
values (verification results) in these design 
points. These verification results are also 
compared to the predictions of the each of the fit 
functions for additional verification. The results 
are summarized in Table 2. 

 
Table 2: Results of the design optimization. 
Design 
point 

Range- 
Analysis- 
verification 

Range-  
poly2-
prediction 

Range-
poly4-
prediction 

Range-
krigqc-
prediction 

Poly2 optimum: 
Span: 30.5855   
Sweep: 23.0082 

6015.2 nm 5969.2 nm 
(∆=46.0 nm) 

6018.8 nm 
(∆=-3.6 nm) 

6005.9 nm 
(∆=9.3 nm) 

Poly4 optimum: 
Span: 30.6848   
Sweep: 23.2703   

6022.5 nm 5968.2 nm 
(∆=54.3 nm) 

6023.2 nm 
(∆=-0.7 nm) 

6000.3 nm 
(∆=22.2 nm) 

Kriqc  optimum: 
Span: 30.5266 
Sweep: 23.6278 

6008.8 nm 5967.5 nm 
(∆=41.3 nm) 

6015.1 nm 
(∆=-6.3 nm) 

6009.2 nm 
(∆=-0.4 nm) 

RMSE:  47.5 nm 4.2 nm 13.9 nm 

 

 
From these results it can be concluded that 

the Poly4 response surface provides the best 
results for this design case: the optimal design 
point with the best range value (6023.2 nm) is 
found with this fit, and was quite well 
confirmed (6022.5 nm) by the verification 
analysis performed in that design point. Also the 

average accuracy of this fit in the three 
verification points (Table 2) is the highest (for 
the residuals in these points: RMSE=4.2 nm). 
The kriging-qc fit is slightly less accurate in 
these verification points (RMSE=13.9 nm), and 
the poly2 fit is relatively in-accurate 
(RMSE=47.5 nm). Because of this relatively 
large local fitting error of the poly2 response 
surface, the high range value (6015.2 nm) in the 
optimum design point found with this fit should 
be considered as a coincidence. 

The multi-disciplinary design analysis 
computations (Fig. 2) were performed with 
dedicated simulation tools on specific computer 
architectures (i86 processor running Linux 
2.6.9, and MIPS R14000 500MHz processor 
running SGI-Irix 6.5), and required about 1500 
seconds computation time for a complete 
evaluation of one design point. Moreover, 
because of the different computers involved in 
the sequence of analyses, the proper data 
management and scheduling of the computation 
jobs is somewhat intricate. In contrast, the 
evaluation of the response surface prediction of 
the range value is merely a push-button 
operation in the Matlab environment that can be 
conveniently called from other programs such 
as optimization functions, takes only sub-second 
computation time and is efficiently vectorized 
such that even thousands of evaluations can be 
easily evaluated within one second on a 
standard PC (Pentium-4 - 2 GHz, WinXP). 

3.2 Multi-objective optimization of winglets 

To demonstrate both the power and the 
flexibility of the response surface approach 
presented in this paper, this section deals with a 
more extensive design problem in a similar way 
as the previous transonic wing design problem. 
While, for the sake of simplicity, the previous 
case was limited to only two design parameters 
and one objective, this second design case 
concerns a generalized transport aircraft winglet 
design study, involving 9 geometric design 
parameters (Fig. 4) and 3 separate objective 
functions that should be minimized 
simultaneously. These objectives are based on 
the difference between the behavior of the 

 
Fig. 3: The three selected response surfaces of 
range versus wing span and sweep angle; the 
color of the surface corresponds to the range 
value, which is also represented by the vertical 
axis. The black dots represent the 35 points of 
the data set on which the fit functions are based. 
The optimum range values that were found for 
these three response surfaces are indicated. 
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aircraft with - and without winglets. The 
objective functions represent the drag 
coefficient increments (∆CD1 and ∆CD2 
respectively) due to the winglets for two 
different points in the flight envelope, and the 
bending moment increment (∆MX2) due to the 
winglets in the second aforementioned flight 
envelope point. For efficiency of representation, 
in the following text the 3 objectives ∆CD1, 
∆CD2 and ∆MX2 will be denoted as y1, y2, y3, 
respectively, and the 9 design parameters as 
given in Fig. 4 will be denoted as x1 to x9. 

Just like in the previous wing design case, 
the approach is to sample the considered design 
space of the winglet, which is spanned by the 9 
design variables. An important difference here, 
however, is the high dimension of this design 
space. A full-factorial sampling in this case 
would lead to a prohibitively large number of 
design points. For example 3 values for each 
parameter would result in 39 = 19683 design 
points. Considering that each design analysis 
would take about 10000 seconds, and a 
maximum of 4 analyses could be run in parallel 
(due to hardware, software and license 
limitations) it would require at least 49 million 
seconds (nearly 14000 hours) of throughput 
time. Therefore a much coarser sampling is 
applied, using a ‘space-filling’ latin-hypercube 
method (Matlab’s LHSDESIGN function). A 
first set of 126 design points was created, which 
was aimed at having ample data points available 
for creating at least the (9 dimensional) 2nd 
order polynomial fit (having 55 coefficients). 

These design points were submitted to the 
design analysis process, which consists of 
geometry generation, static aerodynamic loads, 
aero-elastic analysis and atmospheric turbulence 
loads (PSD) (Fig. 5). 

  
 

 
Fig. 4: The 9 geometric winglet design 
parameters. 

 
Fig. 5: The aerodynamic and aero-elastic 
analysis process for the winglet design study. 

 
Fig. 6: The 104 design points and their analysis 
results as contained in the data set. The upper 9 
graphs give the 9 design parameter values for each 
of these 104 design points. The lower two graphs 
give the two drag objective functions (∆CD1 and
∆CD2) on the vertical axis. The third objective 
(∆MX2) is used as horizontal axis in each of the 11 
graphs. Note that each design point is represented 
in each of the graphs by the same marker symbol. 
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From the analyses results the objective 

function values were derived for each of the 
design points, where it should be noted that 22 
out of the 126 analysis runs failed due to 
numerical simulation problems, resulting in 104 
successfully evaluated design points. These 104 
design points are shown in Fig. 6. 

Just like in the previous wing MDO study, 
also this data set of 104 design results was 
further processed with the MultiFit tool into the 
‘best-fit’ meta-models (or: response surface fits) 
for each of the three design objectives. From 
extensive cross-validation assessments, like the 
ones described for the previous design study, it 
appeared that the kriging-linear-cubic (Kriging-
lc) method provides the most suitable fits for 
each of the three objectives. These three fits 
were then applied in several optimization 
analyses using the same optimization algorithms 
as in the previous study. 

Firstly, a straight-forward multi-objective 
optimization of the three objectives with the 
MNSGA program was performed with a 
population of 1000 individuals and 1000 
generations, where the initial population was 
randomly created. The search domain was 
bounded to the central 70% of the 9 dimensional 
design space hypercube that was used for the 
sampling of the 126 design points. The edges of 
these two concentric hypercubes have lengths 
∆xi

search-space = 0.7 ∆xi
design-space. This is illustrated 

for the two dimensional case in Fig. 7 below. 

 

The rather restrictive 70% search space 
was used to avoid extrapolation outside the 9D 
‘convex hull’ (or ‘cloud’) of the 104 design 
points, in order to keep a reasonable accuracy of 
the fit functions. In the larger search space, there 
will be lower probability of having sampled 
design points near the boundaries, i.e. higher 
probability of fit extrapolation. 

  
The multi-objective search algorithm in 

MNSGA looks for design points for which each 
of the objectives have minimal values according 
to the Pareto optimal definition [17]. This leads 

 
Fig. 7: Illustration in two dimensions of the 
definition of the 70%, 80%, 90% and 100% 
search spaces.  

 

 
Fig. 8: Resulting set of non-dominated design 
points of the three-objective MNSGA 
optimization in the 70% search space of the 
winglet design. Note that these results are 
presented in objective space. Each point in 
objective space corresponds to a point in the 9D 
design space according to the transformation of 
the (fitted) objective functions (y*=f*(x)). The 
upper graph shows the 3D plot of these results. 
The lower graph shows the 2D projections of 
these results. 
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to a set of so-called non-dominated design 
points, i.e. design points for which each of the 
objectives could not be further improved 
without worsening of the other objectives. This 
set of non-dominated design points is shown in 
Fig. 8. 

Besides this straight-forward three-
objective optimization, also more specific 
search runs were performed with MNSGA 
where one or two of the objective functions 
were transformed into constraint functions. In 
these runs the objective(s) yi were minimized 
and inequality constraint function(s) yj < �j_k 
were applied (i,j,k∈{1,2,3} ; i�j). Separate runs 
with three different constraint values �j_k for 
each yj were performed, resulting in 37 MNSGA 
runs in total (i.e., one run with no constraints, 
3x3=9 runs with one constraint, and 3x3x3=27 
runs with two constraints). The constraint values 
�j_k used in these runs are given in the first 
column of Table 3 below. These constrained 
runs searched more specifically for those design 
points that just fulfilled the considered 
constraints, and the corresponding sets of non-
dominated design points were found. The 27 
runs with two constraints (i.e., constrained-
single-objective optimizations) were also done 
with the two single-objective optimization 
algorithms GA and FMINCON. The GA runs 
were performed with a population of 104 
individuals, and 100 generations, using the 
points in the data set as initial population. 
Starting point for the FMINCON runs was 
always the optimum point found in the GA run. 
The results of all these 3x27=81 single objective 
runs are given in Table 3. It should be noted that 
these single objective runs were rather 
computationally expensive, in particular the 
FMINCON runs of which some took up to 
about 30 minutes (Pentium-4 - 2 GHz, WinXP). 

 
Table 3: Results of the 27 constrained-single-
objective optimization runs with each of the 3 
optimizers.  
SOO case (objective and 
constraints) 

MNSGA 
result 

GA result FMINCON 
result 

Min(y1);y2<1.5;y3<15 y1 = -9.236 y1 = -8.0900 y1 = -9.2579 
Min(y1);y2<0.5;y3<15 y1 = -8.879 y1 = -7.9062 y1 = -8.9102 
Min(y1);y2<0;y3<15 y1 = -7.980 y1 = -6.2619 y1 = -7.3622 
Min(y1);y2<1.5;y3<10 y1 = -7.145 y1 = -6.1327 y1 = -6.5086 
Min(y1);y2<0.5;y3<10 y1 = -7.061 y1 = -6.4018 y1 = -7.1193 

Min(y1);y2<0;y3<10 y1 = -7.015 y1 = -6.2620 y1 = -7.0914 
Min(y1);y2<1.5;y3<5 y1 = -4.617 y1 = -4.0052 y1 = -4.4829 
Min(y1);y2<0.5;y3<5 y1 = -4.629 y1 = -4.2378 y1 = -4.6670 
Min(y1);y2<0;y3<5 y1 = -4.205 y1 = -4.0531 y1 = -4.1000 
Min(y2);y1<-8;y3<15 y2 = 0.030 y2 = 0.6500 y2 = 0.0317 
Min(y2);y1<-5;y3<15 y2 = -0.784 y2 = 0.6500 y2 = -0.3638 
Min(y2);y1<-3;y3<15 y2 = -0.784 y2 = 0.6500 y2 = -0.3701 
Min(y2);y1<-8;y3<10 y2 = 0.401 y2 = 0.6500 y2 = 0.5275 
Min(y2);y1<-5;y3<10 y2 = -0.462 y2 = 2.1387 y2 = -0.3690 
Min(y2);y1<-3;y3<10 y2 = -0.473 y2 = 2.5328 y2 = -0.2318 
Min(y2);y1<-8;y3<5 y2 = 0.154 y2 = 0.6500 y2 = 0.2111 
Min(y2);y1<-5;y3<5 y2 = 0.139 y2 = 0.9609 y2 = 0.2921 
Min(y2);y1<-3;y3<5 y2 = -0.319 y2 = 1.6885 y2 = -0.0287 
Min(y3);y1<-8;y2<1.5 y3 = 11.976 y3 = 14.9810 y3 = 11.8913 
Min(y3);y1<-5;y2<1.5 y3 = 5.671 y3 = 11.8238 y3 = 5.8026 
Min(y3);y1<-3;y2<1.5 y3 = 2.870 y3 = 14.2869 y3 = 2.8642 
Min(y3);y1<-8;y2<0.5 y3 = 12.339 y3 = 14.3771 y3 = 12.0676 
Min(y3);y1<-5;y2<0.5 y3 = 5.720 y3 = 13.9039 y3 = 5.6304 
Min(y3);y1<-3;y2<0.5 y3 = 3.040 y3 = 13.9039 y3 = 3.0344 
Min(y3);y1<-8;y2<0 y3 = 15.324 y3 = 16.1005 y3 = 14.6918 
Min(y3);y1<-5;y2<0 y3 = 6.579 y3 = 10.0450 y3 = 5.8316 
Min(y3);y1<-3;y2<0 y3 = 3.485 y3 = 10.0450 y3 = 3.8906   

     
All solutions (i.e., sets of non-dominated design 
points) of each of the 91 (37+27+27) 
optimization runs were now put together in one 
large set of more than 10000 different design 
points. For this set the so-called Pareto ranking 
(i.e., the order in which the design points are 
dominated) was determined, and the best 
(Pareto rank 1, or non-dominated) design points 
were selected. It appeared that many of these 
non-dominated designs were found on the 
boundaries of the 70% search space. Therefore 
it was decided to perform additional MNSGA 
search runs in increased search domains of 80%, 
90% and 100% of the design space, 
respectively. Again 1000 individuals and 1000 
generations were used in these runs. The sets of 
non-dominated design points resulting from 
these runs were added to all the non-dominated 
designs points of the 70% search space, 
resulting in a total set of nearly 16000 points. 
For this set again the non-dominated design 
points were determined. Still very many 
(thousands) rank 1 points remained, and a 
further selection (‘filtering’) of interesting 
design points was applied. Firstly, the points 
that originated from the 70% search runs were 
selected because these are likely to have the 
smallest fitting error. This resulted in 161 
selected points. From the other points, which 
originated from the 80%, 90% and 100% runs, 
first a selection was made on the basis of the 
distance of a point to its neighboring points in 
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objective space. 89 points with the largest 
distances were selected, such that together with 
the 70% points, there remained 250 best points. 
From these points, the points with very high 
values for one or two of the objectives were 
removed. Subsequently the points that were 
likely to have large fitting errors were removed, 
i.e. the points closest to the design domain 
boundaries. Finally the 7 most suitable Pareto 
design points remained, as shown in Fig. 9 
below. 

 
Fig. 9: The objective values for the 7 best 
design points from the Pareto set and the 5 best 
design points from the data set, and for the final 
point found with FMINCON and its verification 
results. 

 
The design point around y3 (i.e., ∆MX2) � 

12.5% was then further improved by using it as 
starting point in 3 additional FMINCON runs, in 
which subsequently each of the 3 objectives was 
further minimized constraining the other 
objectives to their value in the starting point. 
One final best design point was then selected, 
which is given in the table 4 below. 
 
Table 4: Resulting optimum design points. 

Closest data set point (y1,y2,y3) (-6.76 , -0.13 , 13.25) 
Final best point (y1,y2,y3) (-7.00 , -0.78 , 12.5) 
Verification of final best point (y1,y2,y3) (-6.30 ,  0.02 ,  12.5) 

 
For verification, the final best design point 

was also evaluated by the design analysis. The 
objective values as predicted by the meta-
models (Kriging-lc fits) showed quite good 
correspondence with this verification result for 
y3, but were less accurate for y1 and y2; see table 
4. Although these accuracies in this final design 
point were not very satisfactory, it was 

concluded from additional MutiFit evaluations 
that the other fitting methods would not provide 
any significantly better local accuracy in this 
design point. Moreover, the limited accuracy for 
y1 and y2 eventually is due to the small data set, 
which is very sparse for the 9 dimensional 
design space. 

The verification result in the final best 
design point, when compared to the best of the 
104 design points of the original data set (Table 
4), shows a clear improvement for y3, but 
slightly worse values for y1 and y2. It should be 
noted though that this verification result is 
Pareto optimal when compared to the points of 
the data set. Moreover, it provides a quite 
different optimal design alternative as it is 
located in a quite different region of the design 
space. 

Conclusions and discussion 

The response surface optimization 
approach for aircraft design presented in this 
paper is flexible and applicable to a variety of 
design problems. A key benefit of this approach 
is that large numbers of interesting (Pareto 
optimal) design points can be found relatively 
quickly and easily at the cost of only few 
computationally expensive analyses, whilst a 
reasonable control of the accuracy is 
maintained. For high-dimensional design 
problems the visualization, assessment and 
selection of the most interesting design points 
requires special attention. Representation of the 
results in parameter space as well as in objective 
space provides valuable information for design 
decisions, where involvement of design 
specialists is required. 

The accuracy of the objective function 
values as predicted by the fits is an aspect of 
this approach that needs special attention. 
Several ways to deal with the accuracy aspect 
were demonstrated: Use as much as possible 
information that is available, e.g. proper DOE, 
as many as possible data points, a priori 
knowledge of the underlying functions; use 
different fitting methods and determine the best 
fit; carefully define appropriate validity domains 
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for the fits (e.g. avoid extrapolation); try to 
account for fitting errors in the fit prediction by 
incorporating residual estimations. 

The FMINCON optimization runs in the 
winglet study required quite many (several 
hundreds) evaluations of the objective and 
constraint (response surface) functions. These 
evaluations are performed sequentially, so 
cannot be effectively vectorized. Although these 
functions are quickly evaluated (less than one 
second), computing time does become an issue 
if many FMINCON runs are required. This 
issue can be dealt with by incorporating the 
gradients of the objective and constraint 
functions in the FMINCON optimization run. 
Current investigation is ongoing to include these 
gradient functions by means of the derivatives 
of the considered response surface functions. 
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