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Abstract  

Within the VIVACE project, an object-oriented 
simulation tool called PROOSIS is developed to 
integrate all European gas turbine simulation 
technology into a single framework. As 
optimization functionalities are required, the 
MAX optimization code developed at Cenaero 
has been made accessible from PROOSIS, and 
applied for demonstration to a turbofan model. 

1  Introduction 

In the context of the VIVACE European 
project dedicated to aeronautical collaborative 
design [1], the ECP (European Cycle Program) 
work package develops a comprehensive multi-
disciplinary, object-oriented simulation environ-
ment in order to integrate all European gas 
turbine simulation technology into a common 
framework providing shared standards and 
methodologies for European universities, 
research institutes and corporate companies. 
This simulation tool has been named PROOSIS 
(i.e.: PRopulsion Object Oriented SImulation 
Software). 

The main goal of  PROOSIS is to provide a 
standard for gas turbine modelling in Europe, 
and allow non-engine companies to have a 
common tool for jet engine simulation. As 
robust and efficient optimization functionalities 

are also required within its architecture, MAX 
(an optimization code developed at Cenaero) 
has been made accessible from PROOSIS. After 
a description of PROOSIS (§2), MAX opti-
mization algorithms will be described in detail 
(§3). Then, the coupling of MAX with 
PROOSIS will be discussed (§4), followed by 
the conclusions (§5). 

2  PROOSIS 

As an object-oriented tool, PROOSIS 
enables the creation of sophisticated engine 
models by assembling some basic components 
(characterized by their thermodynamical 
behaviour). For example, a turbofan (cf. figure 
1) can be modelled by assembling compressors, 
turbines, shafts, a nozzle, a fuel tank, etc. Each 
individual component is characterized by 
variables and functions, either internal or 
external; only the external ones (the ports)  
communicate with the other components. This 
philosophy is analogous to object-oriented 
programming, the internal variables and 
functions acting as private ones, whereas the 
ports are accessible by other components like 
public variables and functions. 

Once the engine is designed, steady and 
transient performance must be calculated for 
different purposes, like verifying the engine 
behaviour in the whole flight domain, 
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calculating fuel consumption for specified 
missions, etc. 
 

 
Figure 1: turbofan modelled in PROOSIS. 

 
 

For instance, Alexiou and Mathioudakis 
[2] demonstrated the efficiency of PROOSIS in 
the development and use of an engine 
performance model for gas turbine. 

Then, optimization tools can be used. That 
matter is discussed in the next section. 

3 MAX optimization algorithm 

3.1 Multiobjective evolutionary algorithms 

A general optimization problem can be 
formulated as follows: 

 

                               
x

min  f(x) (1) 

                               g(x) ≥ 0 (2) 
                               h(x) = 0  (3) 

                    xi ∈ Xi  for i = 1,…, n   (4) 
where: 

• f(x)
T
 = [ f1 (x)  f2 (x) … fm (x) ]; (5) 

• g(x)
T
 = [ g1 (x)  g2 (x) … gp (x) ]; (6) 

• h(x)
T
 = [ h1 (x)  h2 (x) … hq (x) ].  (7) 

 
Equality constraints are commonly 

transformed into inequality constraints:  
 

        hi(x) = 0 is replaced by |hi(x)| ≤  εi ,  (8) 
 

where εi is the degree of violation 
authorized by the user. 

Since the late eighties, evolutionary 
algorithms (EAs) have demonstrated their 

robustness and efficiency in solving single-
objective optimization problems in various 
engineering fields. Based on the Darwinian law 
of the survival of the fittest, EAs start with a set 
of potential designs and make them evolve by 
successive operations of selection and 
recombination, aiming at converging towards 
the global optimum at the end of the process [3].  

One of their most common instances is the 
genetic algorithm (GA) [4]. GAs are particularly 
well suited for problems with mixed variables; 
furthermore, they can handle noisy, multi-modal 
and discontinuous functions. They do not 
require the computations of the sensitivities, and 
are more likely to find the global optimum (in 
comparison with gradient-based algorithms). 

However, in lots of industrial applications, 
dealing with only one objective is generally not 
sufficient. Therefore, multiobjective evolu-
tionary algorithms (MOEAs) have been 
developed in order to find the Pareto optimal 
set, i.e. the set of non-dominated solutions such 
that there exists no other feasible individual in 
the search space better with respect to all 
criteria [5]. 

The concept of Pareto optimum (or non-
dominated solution) constitutes a major key to 
take the multiobjective aspect into account. By 

definition, a design vector x* ∈ F is Pareto 

optimal if and only if there exists no other x ∈ F 
such that: 
 

                  fi (x) ≤ fi (x*)  for i = 1,…, m (9) 
 

with fi(x) < fi(x
*
)  for at least one objective 

i. F is the feasible domain defined by : 
 

         F  = { x ∈ X | gj (x) ≥ 0  for j = 1,…, p  
                and  hk (x) = 0  for k = 1,…, q } (10) 
 

As the solution is not unique, the user has 
to provide additional information about his/her 
preferences in order to find the optimum 
solution. Three different approaches are 
available in the literature [6]:  

 
1. Preferences are used at the end, when 

the Pareto front has been completely 
determined (a posteriori methods); 
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2. Preferences are used during the opti-
mization process, in an interactive way 
(progressive methods); 

3. Preferences are included since the be-
ginning of the search process (a priori 
methods). 

 
When the user already has a clear opinion 

about his/her preferences, a priori techniques 
might give interesting results very quickly [7]. 
They consist in defining preferences (through 
weights or via a ranking of the objectives) 
before the algorithm starts its search. The 
weighted sum method is the most common 
instance of these techniques. In this approach, 
the m objective functions are aggregated into 
one, as follows : 

        f(x) = ∑
=

m

1i

iw .  fi(x)  (with ∑
=

m

i

iw
1

= 1) (11) 

 
Other traditional methods include the 

weighted min-max method, the goal 
programming, etc. To handle preferences more 
accurately, specific methods have been 
developed in the multi-criteria decision aid 
(MCDA) field, like ELECTRE, PROMETHEE, 
MELCHIOR, …, and adapted to multiobjective 
evolutionary optimization [8]. 

Nevertheless, when the user lacks of 
information about the problem, a posteriori 
MOEAs are preferred. Recent advances in 
MOEAs include NPGA2 (Niched-Pareto 
Genetic Algorithm 2 [9]), NSGA-II (Non-
dominated Sorting Genetic Algorithm II [10]), 
PAES (Pareto Archived Evolution Strategy 
[11]) and SPEA2 (Strength Pareto Evolutionary 
Algorithm 2 [12]). 

The SPEA2 method proposed by Zitzler 
and Thiele [12] is a widespread instance of a 
posteriori MOEAs. The initial SPEA works as 
follows: 

 
- step 1: generate an initial population P 

and create the empty external non-
dominated set P0; 

- step 2: copy non-dominated members 
of P to P0; 

- step 3: remove solutions within P0 

which are covered by any other 
member of P0; 

- step 4: if the cardinality of P0 exceeds a 
user-defined number N0, prune P0 by 
means of clustering; 

- step 5: calculate the fitness of each 
individual in P and P0 ; 

- step 6: select individuals from P + P0 

until the mating pool is filled, and 
apply crossover and mutation; 

- step 7: if the maximum number of 
generations is not reached, go to Step 
2. 

 
In order to remediate to some drawbacks of 

SPEA, Zitzler et al. proposed to change the 
fitness calculation in the so-called SPEA2 
method (the reader interested in these 
modifications can find the detailed information 
in [12]). The numerical results presented in [12] 
show that in all test cases SPEA2 performs 
better than SPEA. 

3.2 Approximation methods 

However, one of the main drawbacks of a 
posteriori MOEAs is the large number of 
function evaluations they require, which can be 
critical when time consuming computations 
have to be performed. Therefore, the method 
implemented in MAX (the optimization code 
developed in Cenaero) is organized as follows 
(cf. figure 2): first, a database is built by running 
the exact model on a set of initial individuals, 
and used to create an approximated model by 
means of radial basis function networks. Then, a 
predefined number of loops are performed, each 
loop consisting in:  

 
1. executing SPEA2 on the approximated 

model; 
2. computing a subset of the Pareto solutions 

found by the EA thanks to the accurate 
(expensive) model;  

3. adding these new points to the database in 
order to construct a better approximation.  

 
This approach has given very good results 

while decreasing the number of function calls 
by a factor close to 10 (in comparison with 
SPEA2 without approximation), opening the 
path of multiobjective optimization to many 
areas of engineering. Indeed, MAX has been 
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used successfully in several applications 
(aerodynamic optimization of turbomachinery 
blades [13], heat pipe design optimization, etc.) 
involving expensive simulations (CFD, FEM, 
etc.).  

 

 
 

Figure 2: flow-chart of the multiobjective 
optimization algorithm implemented in MAX. 

 
Of course this approach is also available 

for single-objective optimization, in a slightly 
modified way, as depicted in figure 3. 

 
 

 
Figure 3: flow-chart of the single-objective optimization 

algorithm implemented in MAX. 

3.3 Handling of the constraints 

In addition to these developments, specific 
constraint-handling techniques have been added 
in conjunction with these methods in order to 
enforce the algorithm to reach the feasible 
search space (i.e. the region where the designs 
satisfy all the technical requirements imposed 
by the user). 

The handling of constraints in genetic 
algorithms is a delicate task, which explains the 
important amount of techniques devised to 
address it. In single-objective optimization, 
Michalewicz and Coello classified them in six 

categories [14]: 
 
1. lethalization or death penalty techni-

ques; 
2. penalization techniques; 
3. methods separating the objectives and 

the constraints; 
4. methods with decoders or constraint-

preserving operators; 
5. repair algorithms; 
6. hybrid methods. 
 
The penalization of individuals violating 

the constraints is the most popular approach by 
the EA community. A new objective function 
f'(x) is defined by adding a penalty to each 
infeasible solution. 

For instance, Joines and Houck proposed a 
method with dynamic coefficients, whose 
values are computed with respect to the number 
of the current generation [15]: 

 

  f '(x) = f(x) + (C.t)
α β

)(
1

xj

p

j

j gG∑
=

 (12) 

 
where Gj is the Heaviside operator such 

that Gj = 1 when the j
th

 constraint is violated ;  t 

is the generation number, and C, α and β are 
parameters of the method (standard values 

recommended in [15] are: C=1, α =1 and β =2). 
Penalization techniques provide good 

results without significant modification of the 
standard evolutionary algorithm. However, the 
difficulty in the choice of the parameters 
constitutes their main drawback, because no 
general rule can be applied to determine their 
values. 

To alleviate this problem, Deb proposed a 
constraint tournament selection method that 
works as follows [16]: 

 
- when two individuals are compared, the 

feasible one is always preferred to the 
infeasible one; 

- if both individuals are feasible, the one 
with the best objective function value is 
chosen; 

- if both individuals are infeasible, the one 
with the least violation of the constraints 
is preferred. 
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This technique has demonstrated to be 

successful [16], especially in providing feasible 
solutions in highly constrained problems.  

Both methods (Joines and Houck’s and 
Deb’s) have been implemented in MAX GAs. 
However, the handling of the constraints must 
not only be performed inside the GA, but also 
during the calculation of the global fitness 
function used for validation (which is required 
to compare the best solutions found by the GA). 

In this case, it is thus necessary to construct 
a global fitness function taking into account the 
constraints, as it is the case in penalization. 
Therefore, three different penalty methods have 
been implemented: 

 
- static penalty: the fitness function is 

computed as follows: 

     f '(x) = f(x) + Cj 
 

)(
1

xj

p

j

j gG∑
=

 (13) 

- Joines and Houck’s dynamic penalty (see 
above); 

- Bean and Hadj-Alouane’s adaptive 
penalty [16]: 

 

     f '(x) = f(x) + λ(t) 
 2

1

)(xj

p

j

j gG∑
=

 (14)  

where:  

     ▪  λ(t+1) = λ(t)/β1  if case #1; 

     ▪  λ(t+1) = β2.λ(t)  if case #2; 

     ▪  λ(t+1) = λ(t)  otherwise, 
 
with cases #1 and #2 denoting situations 
where the best individual in the last k 
generations was always (#1) or never (#2) 
feasible (k must be defined by the user). It 
means that the penalty decreases if the 
best individual in the last k generations 
was systematically feasible, and decreases 
if it was always infeasible; otherwise the 
penalty parameter remains unchanged. 
 

Adaptive penalization has the advantage to 
pay heed to the results obtained at previous 
generations. 

 

3.4 Numerical examples 

In order to demonstrate MAX ability to 
solve optimization problems, two examples will 
be presented.  

First, Rastrigin 2D single-objective 
function is tested. It has several local minima, as 
depicted in fig. 4 and 5 (zoom), and its global 
optimum is characterized by an objective 
function f(x*) equal to 0. 

 
Figure 4: Rastrigin 2D function. 

 
 

 
Figure 5: Rastrigin 2D function (zoom). 

 
MAX Approximated GA has been applied 

with different numbers of design loops (1 design 
loop means: building the approximation model 
+ optimizing this model + computing the 
solution with the accurate model). The results 
are collected in table 1, showing that acceptable 
solutions can be found for a smaller number of 
function evaluations than with a classical 
genetic algorithm (without approximation). 
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Test case Rastrigin 2D 

Classical GA 
Number of evaluations 
Best objective function 

 
1562 
0.0 

Approximated GA-25 
Number of evaluations 
Best objective function 

 
30 

1.8304 

Approximated GA-50 
Number of evaluations 
Best objective function 

 
55 

0.1882 

Approximated GA-75 
Number of evaluations 
Best objective function 

 
80 

0.0264 

Approximated GA-100 
Number of evaluations 
Best objective function 

 
105 

2.364.10
-6 

Approximated GA-200 
Number of evaluations 
Best objective function 

 
205 

3.0816.10
-11 

 
Table 1: MAX results for Rastrigin 2D function. 
 
 
The second example, due to Srinivas [17], 

is characterized by 2 objectives and 2 
constraints.  

 
Figure 6: MAX SPEA and SPEA2 results  

for Srinivas problem. 
 
 
Figures 6 and 7 depict the Pareto fronts 

obtained without or with approximation scheme, 
which are similar. This shows clearly the benefit 
of using MAX Approximated-GA to decrease 
the number of evaluations required to find the 
Pareto front, since the classical SPEA(2) 
method needed 2500 evaluations to locate the 
Pareto front, while the Approximated-GA found 
it in only 493 evaluations. 

 

 
 

Figure 7: MAX Approximated-GA  results 
 for Srinivas problem. 

 

3.5 MAX API for PROOSIS 

In addition to its advanced functionalities 
for engine performance modelling, PROOSIS 
software is meant to act interatively with other 
tools and softwares. In particular, C++ and 
Fortran codes can be coupled with PROOSIS as 
soon as an application programming interface 
(API) is provided. 

Consequently, as MAX is built on an C++ 
object-oriented architecture, it has been 
converted as an API class to allow for fast and 
efficient integration within PROOSIS. 
Practically, it means that within PROOSIS, all 
classes of MAX defined in the API are 
accessible. 

The next section describes the step-by-step 
procedure followed to perform optimization 
tasks in a model defined in PROOSIS. 

4 Applications 

In order to understand the flow of events 
that must be performed to optimize a PROOSIS 
model, an example taken from the GAS 
TURBINE EXAMPLES library will be used: 
the turbofan. Its graphical representation in 
EcoDiagram has been illustrated in figure 1. 

The efficiencies of the fan and of the 
compressor are the variables, and the goal is to 
maximize the thrust. No constraints are 
imposed. This trivial example is meant to 
demonstrate the ability of MAX API C++ class 



25
TH 

INTERNATIONAL CONGRESS OF T HE AERONAUTICAL SCIENCES 
 

7 

 

to be used in conjunction with PROOSIS 
models. 

The first step consists in building 
experiment function, which will contain the 
definition of the objectives and constraints to 
optimize. 

 
FUNCTION NO TYPE fcn turbofan  
   (OUT INTEGER nDesignVariables, 
    OUT REAL designVariables[], 
    OUT REAL responseVariables[], 
    OUT INTEGER successSwitch) 
BODY 
  Compressor.EP=designVariables[1] 

  Fan.EP = designVariables[2] 
  TIME = 0. 
  STEADY() 
  responseVariables[1]=   
     Nozzle.thrust.F 
  successSwitch= 1 
END FUNCTION 

 
The designVariables are real (continuous) 

variables, whereas the responseVariables are 
the functions (objectives and constraints) 
needed by the optimization problem. After the 
definition of a function computing the equations 
governing the behaviour of the component and 
defining the objectives and constraints, the 
variables and parameters of the optimization 
have to be defined, as well as an object of 
maxNewAPI class (which will be called to 
optimize the turbofan). 

 
EXPERIMENT optimization ON    
   turbofan.design 
DECLS 
-- setting the parameters for MAX 
   optimization 
INTEGER nDesignVariables = 2 
INTEGER nResponseVariables = 1 
INTEGER nObjectives = 1 
INTEGER objectiveType[1]= {1}  
  -- maximize 
INTEGER nConstraints = 0 
  -- no constraints 
INTEGER constraintType[2]= {1,1}  
  -- upper bound 
INTEGER optimizationAlgorithm = 1 
INTEGER reproductionCycleCount= 20 
INTEGER populationSize = 20 
INTEGER designLoopCount= 10 
REAL designVariables[2]= {0.8,0.8} 
REAL designVariablesLower[2] =  
     {0.75,0.75} 
REAL designVariablesUpper[2] =  
     {0.95,0.95} 
REAL constraintBound[2] = {0,0} 
REAL solutionSet[1000] 
OBJECTS 

   maxNewAPI opti  
   -- defining an object opti of    
      class maxNewAPI 
 

INIT  

  -- set initial values for   
     variables 
  (...) 
BOUNDS  
  -- set expressions for boundary  
     variables: v = f(t,...) 
  (...) 
BODY 
  -- launching the optimization 
  opti.max(fcn turbofan, 
     nDesignVariables, 
     designVariables, 
     designVariablesLower, 
     designVariablesUpper, 
     nResponseVariables, 
     nObjectives, 
     objectiveType, 
     nConstraints, 
     constraintType, 
     constraintBound, 
     solutionSet, 
     optimizationAlgorithm, 
     reproductionCycleCount, 
     populationSize, 
     designLoopCount) 
END EXPERIMENT 

 
In the declaration field, all the variables 

required by the optimization must be set.  
Here are some remarks about three 

variables: 
 

• solutionSet: this vector contains the 
solution found by the algorithm. In 
single-objective optimization, it consists 
of a vector whose first elements are the 
design variables, followed by the 
objectives (and possibly the constraints). 
In multiobjective optimization, the 
format is the same as for 1 objective, 
except that in general the solution is 
made of multiple (non-dominated) 
points constituting an approximation of 
the Pareto set; 

• optimizationAlgorithm: the user can 
choose among 4 optimization algo-
rithms:  

o 1: single-objective genetic 
algorithm (with advanced 
operators); 

o 2: single-objective genetic 
algorithm combined with an 
approximated model based on 
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radial basis function networks (to 
speed up the process when time 
consuming models are used); 

o 3: multiobjective genetic 
algorithm based on SPEA; 

o 4: multiobjective genetic 
algorithm based on SPEA and 
combined with an approximated 
model. 

• designLoopCount: when the GA is 
combined with an approximated model, 
the process is divided in two levels: a 
general level consisting in building the 
approximated model and running the 
exact simulation, and a local level (the 
GA applied to the approximated model). 
The number of design loops corresponds 
to the number of runs of the GA on the 
approximate models.  

 
Once the parameters of the problem are 

defined, and an object opti created, the 
optimization process can be launched via the 
GUI in PROOSIS. 

Predictably, the results show that the 
maximum thrust is obtained for compressor and 
fan with maximum efficiencies. 

 
MAX optimization results 
------------------------ 
Best design vector: component 1  
   = 0.950000 
Best design vector: component 2  
   = 0.950000 
Corresponding value of objective 1  
   = 57340.344827 

 
Should the solution found by the algorithm 

be infeasible, this would be indicated in the 
report. In all cases, when there are constraints, 
their values for the best design are written. 

In multiobjective optimization, the same 
formats are used, except that the solution is 
generally not composed of 1 point but of several 
non-dominated points. Regarding the 
constraints, the number of feasible and 
infeasible solutions in the Pareto front are 
written in the report. 

More sophisticated and realistic 
applications will be treated during the last 
period of the VIVACE project; this first 
example has been presented in order to illustrate 

the coupling of MAX and PROOSIS and its 
promising application to the optimization of gas 
turbine engine performance models.  

5 Conclusions 

This work focuses on the coupling of MAX 
optimization software to engine performance 
models created thanks to PROOSIS, an object-
oriented simulation software dedicated to gas 
turbine applications. The optimization proposed 
in this study combines single- and 
multiobjective evolutionary algorithms with 
approximation methods in order to reduce the 
number of calls to the computation of the 
model. This approach gives similar results (in 
comparison with multiobjective schemes 
without approximation) while decreasing 
drastically the number of function evaluations.  

In this paper, the emphasis has been put to 
illustrate the coupling of MAX with PROOSIS, 
allowing for performing optimization tasks in a 
straightforward way. As PROOSIS is still in 
development within the VIVACE project, more 
realistic examples will be treated eventually. 
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