
25
TH

INTERNATIONAL CONGRESS OF T HE AERONAUTICAL SCIENCES

1

Abstract

Within the VIVACE project, an object-oriented
simulation tool called PROOSIS is developed to
integrate all European gas turbine simulation
technology into a single framework. As
optimization functionalities are required, the
MAX optimization code developed at Cenaero
has been made accessible from PROOSIS, and
applied for demonstration to a turbofan model.

1 Introduction

In the context of the VIVACE European
project dedicated to aeronautical collaborative
design [1], the ECP (European Cycle Program)
work package develops a comprehensive multi-
disciplinary, object-oriented simulation environ-
ment in order to integrate all European gas
turbine simulation technology into a common
framework providing shared standards and
methodologies for European universities,
research institutes and corporate companies.
This simulation tool has been named PROOSIS
(i.e.: PRopulsion Object Oriented SImulation
Software).

The main goal of PROOSIS is to provide a
standard for gas turbine modelling in Europe,
and allow non-engine companies to have a
common tool for jet engine simulation. As
robust and efficient optimization functionalities

are also required within its architecture, MAX
(an optimization code developed at Cenaero)
has been made accessible from PROOSIS. After
a description of PROOSIS (§2), MAX opti-
mization algorithms will be described in detail
(§3). Then, the coupling of MAX with
PROOSIS will be discussed (§4), followed by
the conclusions (§5).

2 PROOSIS

As an object-oriented tool, PROOSIS
enables the creation of sophisticated engine
models by assembling some basic components
(characterized by their thermodynamical
behaviour). For example, a turbofan (cf. figure
1) can be modelled by assembling compressors,
turbines, shafts, a nozzle, a fuel tank, etc. Each
individual component is characterized by
variables and functions, either internal or
external; only the external ones (the ports)
communicate with the other components. This
philosophy is analogous to object-oriented
programming, the internal variables and
functions acting as private ones, whereas the
ports are accessible by other components like
public variables and functions.

Once the engine is designed, steady and
transient performance must be calculated for
different purposes, like verifying the engine
behaviour in the whole flight domain,

MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

APPLIED TO AIRCRAFT ENGINE DESIGN

R. Filomeno Coelho*, S. Pierret*, P. Cobas**

*CENAERO A.S.B.L.
Bâtiment Mermoz 1, 2ème étage – Av. Mermoz, 30 – B-6041 Gosselies (Belgium)

Phone:+32(0)71.91.93.65 / Fax: +32(0)71.91.93.31
E-mail: { rajan.coelho ; stephane.pierret}@cenaero.be

**Empresarios Agrupados Internacional, S.A.
Magallanes, 3 – 28015 Madrid (Spain)

Phone: +34-91.309.80.28 / Fax: +34-91.591.26.55
E-mail: pce@ecosimpro.com

Keywords: aircraft engine design, optimization, evolutionary algorith ms, gas turbine.

R. Filomeno Coelho, S. Pierret, P. Cobas

2

calculating fuel consumption for specified
missions, etc.

Figure 1: turbofan modelled in PROOSIS.

For instance, Alexiou and Mathioudakis
[2] demonstrated the efficiency of PROOSIS in
the development and use of an engine
performance model for gas turbine.

Then, optimization tools can be used. That
matter is discussed in the next section.

3 MAX optimization algorithm

3.1 Multiobjective evolutionary algorithms

A general optimization problem can be
formulated as follows:

x

min f(x) (1)

 g(x) ≥ 0 (2)
 h(x) = 0 (3)

 xi ∈ Xi for i = 1,…, n (4)
where:

• f(x)
T
 = [f1 (x) f2 (x) … fm (x)]; (5)

• g(x)
T
 = [g1 (x) g2 (x) … gp (x)]; (6)

• h(x)
T
 = [h1 (x) h2 (x) … hq (x)]. (7)

Equality constraints are commonly

transformed into inequality constraints:

 hi(x) = 0 is replaced by |hi(x)| ≤ εi , (8)

where εi is the degree of violation
authorized by the user.

Since the late eighties, evolutionary
algorithms (EAs) have demonstrated their

robustness and efficiency in solving single-
objective optimization problems in various
engineering fields. Based on the Darwinian law
of the survival of the fittest, EAs start with a set
of potential designs and make them evolve by
successive operations of selection and
recombination, aiming at converging towards
the global optimum at the end of the process [3].

One of their most common instances is the
genetic algorithm (GA) [4]. GAs are particularly
well suited for problems with mixed variables;
furthermore, they can handle noisy, multi-modal
and discontinuous functions. They do not
require the computations of the sensitivities, and
are more likely to find the global optimum (in
comparison with gradient-based algorithms).

However, in lots of industrial applications,
dealing with only one objective is generally not
sufficient. Therefore, multiobjective evolu-
tionary algorithms (MOEAs) have been
developed in order to find the Pareto optimal
set, i.e. the set of non-dominated solutions such
that there exists no other feasible individual in
the search space better with respect to all
criteria [5].

The concept of Pareto optimum (or non-
dominated solution) constitutes a major key to
take the multiobjective aspect into account. By

definition, a design vector x* ∈ F is Pareto

optimal if and only if there exists no other x ∈ F
such that:

 fi (x) ≤ fi (x*) for i = 1,…, m (9)

with fi(x) < fi(x
*
) for at least one objective

i. F is the feasible domain defined by :

 F = { x ∈ X | gj (x) ≥ 0 for j = 1,…, p
 and hk (x) = 0 for k = 1,…, q } (10)

As the solution is not unique, the user has
to provide additional information about his/her
preferences in order to find the optimum
solution. Three different approaches are
available in the literature [6]:

1. Preferences are used at the end, when

the Pareto front has been completely
determined (a posteriori methods);

25
TH

INTERNATIONAL CONGRESS OF T HE AERONAUTICAL SCIENCES

3

2. Preferences are used during the opti-
mization process, in an interactive way
(progressive methods);

3. Preferences are included since the be-
ginning of the search process (a priori
methods).

When the user already has a clear opinion

about his/her preferences, a priori techniques
might give interesting results very quickly [7].
They consist in defining preferences (through
weights or via a ranking of the objectives)
before the algorithm starts its search. The
weighted sum method is the most common
instance of these techniques. In this approach,
the m objective functions are aggregated into
one, as follows :

 f(x) = ∑
=

m

1i

iw . fi(x) (with ∑
=

m

i

iw
1

= 1) (11)

Other traditional methods include the

weighted min-max method, the goal
programming, etc. To handle preferences more
accurately, specific methods have been
developed in the multi-criteria decision aid
(MCDA) field, like ELECTRE, PROMETHEE,
MELCHIOR, …, and adapted to multiobjective
evolutionary optimization [8].

Nevertheless, when the user lacks of
information about the problem, a posteriori
MOEAs are preferred. Recent advances in
MOEAs include NPGA2 (Niched-Pareto
Genetic Algorithm 2 [9]), NSGA-II (Non-
dominated Sorting Genetic Algorithm II [10]),
PAES (Pareto Archived Evolution Strategy
[11]) and SPEA2 (Strength Pareto Evolutionary
Algorithm 2 [12]).

The SPEA2 method proposed by Zitzler
and Thiele [12] is a widespread instance of a
posteriori MOEAs. The initial SPEA works as
follows:

- step 1: generate an initial population P

and create the empty external non-
dominated set P0;

- step 2: copy non-dominated members
of P to P0;

- step 3: remove solutions within P0

which are covered by any other
member of P0;

- step 4: if the cardinality of P0 exceeds a
user-defined number N0, prune P0 by
means of clustering;

- step 5: calculate the fitness of each
individual in P and P0 ;

- step 6: select individuals from P + P0

until the mating pool is filled, and
apply crossover and mutation;

- step 7: if the maximum number of
generations is not reached, go to Step
2.

In order to remediate to some drawbacks of

SPEA, Zitzler et al. proposed to change the
fitness calculation in the so-called SPEA2
method (the reader interested in these
modifications can find the detailed information
in [12]). The numerical results presented in [12]
show that in all test cases SPEA2 performs
better than SPEA.

3.2 Approximation methods

However, one of the main drawbacks of a
posteriori MOEAs is the large number of
function evaluations they require, which can be
critical when time consuming computations
have to be performed. Therefore, the method
implemented in MAX (the optimization code
developed in Cenaero) is organized as follows
(cf. figure 2): first, a database is built by running
the exact model on a set of initial individuals,
and used to create an approximated model by
means of radial basis function networks. Then, a
predefined number of loops are performed, each
loop consisting in:

1. executing SPEA2 on the approximated

model;
2. computing a subset of the Pareto solutions

found by the EA thanks to the accurate
(expensive) model;

3. adding these new points to the database in
order to construct a better approximation.

This approach has given very good results

while decreasing the number of function calls
by a factor close to 10 (in comparison with
SPEA2 without approximation), opening the
path of multiobjective optimization to many
areas of engineering. Indeed, MAX has been

R. Filomeno Coelho, S. Pierret, P. Cobas

4

used successfully in several applications
(aerodynamic optimization of turbomachinery
blades [13], heat pipe design optimization, etc.)
involving expensive simulations (CFD, FEM,
etc.).

Figure 2: flow-chart of the multiobjective
optimization algorithm implemented in MAX.

Of course this approach is also available

for single-objective optimization, in a slightly
modified way, as depicted in figure 3.

Figure 3: flow-chart of the single-objective optimization

algorithm implemented in MAX.

3.3 Handling of the constraints

In addition to these developments, specific
constraint-handling techniques have been added
in conjunction with these methods in order to
enforce the algorithm to reach the feasible
search space (i.e. the region where the designs
satisfy all the technical requirements imposed
by the user).

The handling of constraints in genetic
algorithms is a delicate task, which explains the
important amount of techniques devised to
address it. In single-objective optimization,
Michalewicz and Coello classified them in six

categories [14]:

1. lethalization or death penalty techni-

ques;
2. penalization techniques;
3. methods separating the objectives and

the constraints;
4. methods with decoders or constraint-

preserving operators;
5. repair algorithms;
6. hybrid methods.

The penalization of individuals violating

the constraints is the most popular approach by
the EA community. A new objective function
f'(x) is defined by adding a penalty to each
infeasible solution.

For instance, Joines and Houck proposed a
method with dynamic coefficients, whose
values are computed with respect to the number
of the current generation [15]:

 f '(x) = f(x) + (C.t)
α β

)(
1

xj

p

j

j gG∑
=

 (12)

where Gj is the Heaviside operator such

that Gj = 1 when the j
th

 constraint is violated ; t

is the generation number, and C, α and β are
parameters of the method (standard values

recommended in [15] are: C=1, α =1 and β =2).
Penalization techniques provide good

results without significant modification of the
standard evolutionary algorithm. However, the
difficulty in the choice of the parameters
constitutes their main drawback, because no
general rule can be applied to determine their
values.

To alleviate this problem, Deb proposed a
constraint tournament selection method that
works as follows [16]:

- when two individuals are compared, the

feasible one is always preferred to the
infeasible one;

- if both individuals are feasible, the one
with the best objective function value is
chosen;

- if both individuals are infeasible, the one
with the least violation of the constraints
is preferred.

25
TH

INTERNATIONAL CONGRESS OF T HE AERONAUTICAL SCIENCES

5

This technique has demonstrated to be

successful [16], especially in providing feasible
solutions in highly constrained problems.

Both methods (Joines and Houck’s and
Deb’s) have been implemented in MAX GAs.
However, the handling of the constraints must
not only be performed inside the GA, but also
during the calculation of the global fitness
function used for validation (which is required
to compare the best solutions found by the GA).

In this case, it is thus necessary to construct
a global fitness function taking into account the
constraints, as it is the case in penalization.
Therefore, three different penalty methods have
been implemented:

- static penalty: the fitness function is

computed as follows:

 f '(x) = f(x) + Cj

)(
1

xj

p

j

j gG∑
=

 (13)

- Joines and Houck’s dynamic penalty (see
above);

- Bean and Hadj-Alouane’s adaptive
penalty [16]:

 f '(x) = f(x) + λ(t)
 2

1

)(xj

p

j

j gG∑
=

 (14)

where:

 ▪ λ(t+1) = λ(t)/β1 if case #1;

 ▪ λ(t+1) = β2.λ(t) if case #2;

 ▪ λ(t+1) = λ(t) otherwise,

with cases #1 and #2 denoting situations
where the best individual in the last k
generations was always (#1) or never (#2)
feasible (k must be defined by the user). It
means that the penalty decreases if the
best individual in the last k generations
was systematically feasible, and decreases
if it was always infeasible; otherwise the
penalty parameter remains unchanged.

Adaptive penalization has the advantage to
pay heed to the results obtained at previous
generations.

3.4 Numerical examples

In order to demonstrate MAX ability to
solve optimization problems, two examples will
be presented.

First, Rastrigin 2D single-objective
function is tested. It has several local minima, as
depicted in fig. 4 and 5 (zoom), and its global
optimum is characterized by an objective
function f(x*) equal to 0.

Figure 4: Rastrigin 2D function.

Figure 5: Rastrigin 2D function (zoom).

MAX Approximated GA has been applied

with different numbers of design loops (1 design
loop means: building the approximation model
+ optimizing this model + computing the
solution with the accurate model). The results
are collected in table 1, showing that acceptable
solutions can be found for a smaller number of
function evaluations than with a classical
genetic algorithm (without approximation).

R. Filomeno Coelho, S. Pierret, P. Cobas

6

Test case Rastrigin 2D

Classical GA
Number of evaluations
Best objective function

1562
0.0

Approximated GA-25
Number of evaluations
Best objective function

30

1.8304

Approximated GA-50
Number of evaluations
Best objective function

55

0.1882

Approximated GA-75
Number of evaluations
Best objective function

80

0.0264

Approximated GA-100
Number of evaluations
Best objective function

105

2.364.10
-6

Approximated GA-200
Number of evaluations
Best objective function

205

3.0816.10
-11

Table 1: MAX results for Rastrigin 2D function.

The second example, due to Srinivas [17],

is characterized by 2 objectives and 2
constraints.

Figure 6: MAX SPEA and SPEA2 results

for Srinivas problem.

Figures 6 and 7 depict the Pareto fronts

obtained without or with approximation scheme,
which are similar. This shows clearly the benefit
of using MAX Approximated-GA to decrease
the number of evaluations required to find the
Pareto front, since the classical SPEA(2)
method needed 2500 evaluations to locate the
Pareto front, while the Approximated-GA found
it in only 493 evaluations.

Figure 7: MAX Approximated-GA results
 for Srinivas problem.

3.5 MAX API for PROOSIS

In addition to its advanced functionalities
for engine performance modelling, PROOSIS
software is meant to act interatively with other
tools and softwares. In particular, C++ and
Fortran codes can be coupled with PROOSIS as
soon as an application programming interface
(API) is provided.

Consequently, as MAX is built on an C++
object-oriented architecture, it has been
converted as an API class to allow for fast and
efficient integration within PROOSIS.
Practically, it means that within PROOSIS, all
classes of MAX defined in the API are
accessible.

The next section describes the step-by-step
procedure followed to perform optimization
tasks in a model defined in PROOSIS.

4 Applications

In order to understand the flow of events
that must be performed to optimize a PROOSIS
model, an example taken from the GAS
TURBINE EXAMPLES library will be used:
the turbofan. Its graphical representation in
EcoDiagram has been illustrated in figure 1.

The efficiencies of the fan and of the
compressor are the variables, and the goal is to
maximize the thrust. No constraints are
imposed. This trivial example is meant to
demonstrate the ability of MAX API C++ class

25
TH

INTERNATIONAL CONGRESS OF T HE AERONAUTICAL SCIENCES

7

to be used in conjunction with PROOSIS
models.

The first step consists in building
experiment function, which will contain the
definition of the objectives and constraints to
optimize.

FUNCTION NO TYPE fcn turbofan
 (OUT INTEGER nDesignVariables,
 OUT REAL designVariables[],
 OUT REAL responseVariables[],
 OUT INTEGER successSwitch)
BODY
 Compressor.EP=designVariables[1]

 Fan.EP = designVariables[2]
 TIME = 0.
 STEADY()
 responseVariables[1]=
 Nozzle.thrust.F
 successSwitch= 1
END FUNCTION

The designVariables are real (continuous)

variables, whereas the responseVariables are
the functions (objectives and constraints)
needed by the optimization problem. After the
definition of a function computing the equations
governing the behaviour of the component and
defining the objectives and constraints, the
variables and parameters of the optimization
have to be defined, as well as an object of
maxNewAPI class (which will be called to
optimize the turbofan).

EXPERIMENT optimization ON
 turbofan.design
DECLS
-- setting the parameters for MAX
 optimization
INTEGER nDesignVariables = 2
INTEGER nResponseVariables = 1
INTEGER nObjectives = 1
INTEGER objectiveType[1]= {1}
 -- maximize
INTEGER nConstraints = 0
 -- no constraints
INTEGER constraintType[2]= {1,1}
 -- upper bound
INTEGER optimizationAlgorithm = 1
INTEGER reproductionCycleCount= 20
INTEGER populationSize = 20
INTEGER designLoopCount= 10
REAL designVariables[2]= {0.8,0.8}
REAL designVariablesLower[2] =
 {0.75,0.75}
REAL designVariablesUpper[2] =
 {0.95,0.95}
REAL constraintBound[2] = {0,0}
REAL solutionSet[1000]
OBJECTS

 maxNewAPI opti
 -- defining an object opti of
 class maxNewAPI

INIT

 -- set initial values for
 variables
 (...)
BOUNDS
 -- set expressions for boundary
 variables: v = f(t,...)
 (...)
BODY
 -- launching the optimization
 opti.max(fcn turbofan,
 nDesignVariables,
 designVariables,
 designVariablesLower,
 designVariablesUpper,
 nResponseVariables,
 nObjectives,
 objectiveType,
 nConstraints,
 constraintType,
 constraintBound,
 solutionSet,
 optimizationAlgorithm,
 reproductionCycleCount,
 populationSize,
 designLoopCount)
END EXPERIMENT

In the declaration field, all the variables

required by the optimization must be set.
Here are some remarks about three

variables:

• solutionSet: this vector contains the
solution found by the algorithm. In
single-objective optimization, it consists
of a vector whose first elements are the
design variables, followed by the
objectives (and possibly the constraints).
In multiobjective optimization, the
format is the same as for 1 objective,
except that in general the solution is
made of multiple (non-dominated)
points constituting an approximation of
the Pareto set;

• optimizationAlgorithm: the user can
choose among 4 optimization algo-
rithms:

o 1: single-objective genetic
algorithm (with advanced
operators);

o 2: single-objective genetic
algorithm combined with an
approximated model based on

R. Filomeno Coelho, S. Pierret, P. Cobas

8

radial basis function networks (to
speed up the process when time
consuming models are used);

o 3: multiobjective genetic
algorithm based on SPEA;

o 4: multiobjective genetic
algorithm based on SPEA and
combined with an approximated
model.

• designLoopCount: when the GA is
combined with an approximated model,
the process is divided in two levels: a
general level consisting in building the
approximated model and running the
exact simulation, and a local level (the
GA applied to the approximated model).
The number of design loops corresponds
to the number of runs of the GA on the
approximate models.

Once the parameters of the problem are

defined, and an object opti created, the
optimization process can be launched via the
GUI in PROOSIS.

Predictably, the results show that the
maximum thrust is obtained for compressor and
fan with maximum efficiencies.

MAX optimization results

Best design vector: component 1
 = 0.950000
Best design vector: component 2
 = 0.950000
Corresponding value of objective 1
 = 57340.344827

Should the solution found by the algorithm

be infeasible, this would be indicated in the
report. In all cases, when there are constraints,
their values for the best design are written.

In multiobjective optimization, the same
formats are used, except that the solution is
generally not composed of 1 point but of several
non-dominated points. Regarding the
constraints, the number of feasible and
infeasible solutions in the Pareto front are
written in the report.

More sophisticated and realistic
applications will be treated during the last
period of the VIVACE project; this first
example has been presented in order to illustrate

the coupling of MAX and PROOSIS and its
promising application to the optimization of gas
turbine engine performance models.

5 Conclusions

This work focuses on the coupling of MAX
optimization software to engine performance
models created thanks to PROOSIS, an object-
oriented simulation software dedicated to gas
turbine applications. The optimization proposed
in this study combines single- and
multiobjective evolutionary algorithms with
approximation methods in order to reduce the
number of calls to the computation of the
model. This approach gives similar results (in
comparison with multiobjective schemes
without approximation) while decreasing
drastically the number of function evaluations.

In this paper, the emphasis has been put to
illustrate the coupling of MAX with PROOSIS,
allowing for performing optimization tasks in a
straightforward way. As PROOSIS is still in
development within the VIVACE project, more
realistic examples will be treated eventually.

Acknowledgements

CENAERO A.S.B.L. is supported by the
Walloon Region and the ERDF European funds
(under contract EP1A 122030000102).

This work in particular has been funded
through the Integrated Project VIVACE (AIP3-
CT-2003-502917).

The authors would also like to warmly
thank the partners of Work Package 2.4 of
VIVACE for their collaboration and support.

References

[1] http://www.vivaceproject.com

[2] A. Alexiou, K. Mathioudakis, Gas Turbine Engine
Performance Model Applications Using an Object-
oriented Simulation Tool, Proceedings of ASME
TurboExpo 2006, May 8-11, Barcelona, Spain
(2006).

[3] T. Bäck T, D.B. Fogel, Z. Michalewicz (eds.),
Handbook of Evolutionary Computation, Oxford
University Press, New York, 1997.

[4] D.E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley Longman, New York, 1989.

[5] D.A. Van Veldhuizen, G.B. Lamont, Multiobjective

25
TH

INTERNATIONAL CONGRESS OF T HE AERONAUTICAL SCIENCES

9

Evolutionary Algorithms : Analyzing the State-of-the-
Art, Evolutionary Computation vol. 8 (2), pp. 125-
147 (2000).

[6] C.A.C. Coello, D.A. Van Velduizen, G.B. Lamont,
Evolutionary Algorithms for Solving Multi-Objective
Problems, Kluwer Academic/Plenum Publishers,
New York, 576 pp. (2002).

[7] R. Filomeno Coelho, Multi-criteria Optimization with
Expert Rules for Mechanical Design, Faculty of
Applied Sciences, Université Libre de Bruxelles
(2004).

[8] R. Filomeno Coelho, H. Bersini, Ph. Bouillard,
Parametrical Mechanical Design with Constraints
and Preferences: Application to a Purge Valve,
Computer Methods in Applied Mechanics and
Engineering, 192/39-40, pp. 4355-4378 (2003).

[9] M. Erickson, A. Mayer and J. Horn, The Niched
Pareto Genetic Algorithm 2 Applied to the Design of
Groundwater Remediation Systems, In E. Zitlzler, K.
Deb, L. Thiele, C.A.C. Coello and D. Corne, editors,
First International Conference on Evolutionary
Multicriterion Optimization, pp. 681-695, Springer-
Verlag, Lecture Notes on Computer Science No.
1993 (2001).

[10] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA–II, IEEE Transactions on Evolutionary
Computation, vol. 6 (2), pp. 182-197 (2002).

[11] J.D. Knowles and D.W. Corne, Approximating the
Non-dominated Front Using the Pareto Archived
Evolution Strategy, Evolutionary Computation, vol. 8
(2), pp. 149-172 (2000).

[12] E. Zitzler, M. Laumanns, L. Thiele, SPEA2:
improving the strength Pareto evolutionary
algorithm, EUROGEN 2001, K. Giannakoglou (ed.),
CIMNE Editions (2001).

[13] S. Pierret, H. Kato, R. Filomeno Coelho, A.
Merchant, Multi-objective and Multi-disciplinary
shape optimization, EUROGEN 2005, Evolutionary
and Deterministic Methods for Design, Optimization
and Control with Applications to Industrial and
Societal Problems, R. Schilling, W. Haase, J.
Périaux, H. Baier, G. Bugeda (eds.) (2005).

[14] C.A.C. Coello, Theoretical and numerical constraint-
handling techniques used with evolutionary
algorithms: a survey of the state of the art, Computer
Methods in Applied Mechanics and Engineering
2002; 191:1245-1287.

[15] J.A. Joines, C.R. Houck, On the use of non-stationary
penalty functions to solve nonlinear constrained
optimization problems with GAs, Proceedings of the
First IEEE International Conference on Evolutionary
Computation, pp. 579-584, IEEE Press (1994).

[16] K. Deb, An efficient constraint handling method for
evolutionary algorithms, Computer Methods in
Applied Mechanics and Engineering, 186, pp. 311-
338 (2000).

[17] K. Deb, Constrained Test Problems for Multi-
Objective Evolutionary Optimization, First

International Conference on Evolutionary Multi-
Criterion Optimization, pp. 284-298 (2001).

