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Abstract  

The possibility of controlling turbulent flow 
fields by the action of electromagnetic forces is 
numerically investigated. A suitable 
configuration of magnets and electrodes can 
generate a body force, called the Lorentz force 
that influences the boundary layer. Application 
of an appropriate electromagnetic field can 
decrease the skin friction coefficient over a 
turbulent supersonic flat plate. The vortex 
shedding generated behind a square cylinder 
can be altered.  

1  Introduction  

Magnetohydrodynamics (MHD) is the branch of 
fluid dynamics dealing with the interaction 
between an electromagnetic field and a velocity 
field. The fluid needs to be sufficiently 
electrically conducting for the electromagnetic 
field to have any significant effect [1]. A wide 
variety of MHD applications have been 
identified, ranging from high-speed aircraft 
propulsion systems [2], ship and submarine 
propulsion systems, radar systems, to power 
generators. When an electromagnetic field is 
applied to an electrically conducting fluid, an 
induced electric current is generated due to the 
fluid motion, and it produces a body force, 
known as the Lorentz force. This body force 
acts on the fluid, offering a new means of flow 
control. The Lorentz force tends to suppress 
turbulence by damping velocity fluctuations to a 
certain extent. Recent numerical investigations 
have shown that the MHD effect is beneficial 
for both laminar and turbulent flows. The 

possibility of delaying the boundary layer 
separation has been demonstrated both 
experimentally and numerically. The most 
appealing argument in utilizing MHD principles 
for aerospace engineering applications is the 
potential reduction in the skin friction 
coefficient and heat transfer. This can be 
obtained by applying a magnetic field 
perpendicular to the surface. This property was 
shown by Neuringer et al. [3] and McIlroy et al. 
[4] in 1958.  

MHD phenomena are described by a 
system of partial differential equations. They are 
obtained by combining the Navier-Stokes 
equations (governing the motion of the fluid) 
and the Maxwell’s equations (governing the 
electromagnetic field). The resulting set of 
equations is composed of eight equations (five 
for the Navier-Stokes equations and three for 
the magnetic induction equations). However, 
flows associated with aerospace engineering 
applications are generally characterized by a 
low electrical conductivity. Under this 
condition, the governing equations can be 
simplified. The resulting formulation is known 
as the low magnetic Reynolds number 
formulation. In this formulation, the magnetic 
field is considered as a given quantity and is not 
perturbed by the mean flow. The MHD effects 
are modeled by the introduction of source terms 
into the Navier-Stokes equations, representing 
the Lorentz force and Joule’s heating. 

Over the years, MHD research activities 
have been limited, and discontinued in time. In 
particular, there is a lack of experimental data, 
and most available experiments have been 
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conducted for liquid metal flows. It is possible 
to obtain some analytical solutions for simple 
cases, such as laminar flows over a flat plate 
under the influence of a magnetic field. 
Analytical solution for such flows is available 
from Rossow [5]. He obtained the equations 
representing an incompressible MHD boundary 
layer and subsequently derived expressions for 
the velocity profiles. 

Inclusion of turbulence is essential to fully 
represent MHD flows. The first technique to 
model turbulence is called the Reynolds-
Averaged approach. Turbulence is represented 
by a turbulent viscosity, which is added to the 
molecular viscosity. Turbulence models [6-8] 
are required to determine the turbulent viscosity 
from the mean flow quantities. The Reynolds-
Averaged approach has been widely utilized due 
to its ease of implementation and numerical 
efficiency. However, numerical simulations of 
turbulent flows suffer from the inability of 
conventional turbulence models to deal with the 
large anisotropies of length scales associated 
with turbulence. Moreover, existing turbulence 
models are not designed for MHD flows and 
need to be modified and calibrated to account 
for the presence of electromagnetic fields. The 
lack of available experimental data renders this 
task challenging. The difficulty in developing a 
turbulence model for MHD flows lies in the fact 
that turbulence models are by nature non-
universal.  

The second approach for turbulent flow 
computation is the Large Eddy Simulation [9-
10] (LES). Large scales are numerically 
computed, whereas the small scales are modeled 
by eddy viscosity models, known as Sub Grid 
Scale models (SGS). Algebraic models are 
sufficient, because the imperfections of these 
models should not greatly affect the solution. 
SGS models are assumed to be more 
homogeneous and less affected by the boundary 
conditions. 

Several investigators have studied the 
influence of an electromagnetic field on the 
flow separation and the application of the 
Lorentz force to control a turbulent boundary 
layer. Crawford et al. [11] performed some 
numerical experimentations of turbulent channel 

flow of electrically conductive liquids subject to 
electromagnetic forces. Their configuration was 
such that the Lorentz force was acting in the 
streamwise direction, leading to an acceleration 
of the flow and an increase in drag. A typical 
arrangement of magnets and electrodes that 
generates a streamwise Lorentz force is 
illustrated in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Magnets and electrodes arrangement 
generating a streamwise Lorentz force. 

 
Other experimental studies on the influence 

of a streamwise Lorentz force on the flow over a 
flat plate in salt water were conducted by Weier 
et al. [12]. A strong acceleration of the fluid was 
achieved near the wall, delaying the stall of an 
inclined flat plate and a hydrofoil. All of these 
investigations were conducted for low Reynolds 
number and low magnetic Reynolds number 
flows, when the electrical conductivity of the 
fluid is small. However, low magnetic Reynolds 
number flows can also be encountered for high 
speed flows, even in supersonic regime. 
Gaitonde et al. [13] studied a supersonic flat 
plate boundary layer flow in presence of a non-
uniform magnetic field and no electric field, 
which leads to a deceleration of the flow in the 
boundary layer and a decrease in the skin 
friction coefficient. 

Most of the research combining the effect 
of turbulence with magnetohydrodynamics has 
been conducted for flows of liquid metals in 
simple geometries or in astrophysical 
applications, where the length scales are very 
large. Basic observations tend to show that the 
presence of a magnetic field would inhibit 
turbulence [14-15]. The interaction between 
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magnetic, electric and flow fields can be used to 
generate a Lorentz force that would decrease the 
level of velocity fluctuations, which is one of 
the characteristics of turbulent flows. The 
presence of the magnetic field provides another 
form of energy and new means of energy 
transfer within the flow field [16-17]. When the 
effect of the magnetic field has been 
incorporated in the turbulence models, it has 
usually resulted in the addition of a negative 
turbulent viscosity [18-19]. A process of 
relaminarization has also been identified to be a 
feature of turbulent MHD flows [20]. 

MHD flow control provides a prospective 
method that could be used in many industrial 
applications, ranging from power generation, 
propulsion systems to hypersonic vehicles and 
atmospheric reentry vehicles. The objective of 
this study is to investigate the possibility of 
controlling a boundary layer by means of 
electromagnetic forces. Some assumptions are 
imposed to simplify the implementation of the 
numerical schemes. The fluid is assumed to 
have a low electrical conductivity, such that the 
low magnetic Reynolds number formulation can 
be employed. The Reynolds-Averaged approach 
is used for compressible flows due to its ease of 
implementation and numerical efficiency. 
However, existing turbulence models are not 
designed for MHD flows and need to be 
modified and calibrated to account for the 
presence of electromagnetic fields. Such 
modifications are included in the current 
investigation. Several turbulence models are 
compared and the effect of the magnetic field on 
the skin friction coefficient is investigated. 
Large Eddy Simulation with Smagorinsky Sub 
Grid Scale model is employed for 
incompressible flow fields. The commercial 
finite volume CFD code FLUENT is used as the 
incompressible Navier-Stokes solver. The MHD 
source terms are added through user-defined 
functions. The computation of a flow field over 
a square cylinder is considered. When no 
magnetic field is present, a pair of shedding 
vortices is generated and convected in the wake 
of the cylinder. The possibility of reducing the 
vortex shedding by adding an electromagnetic 
field is being addressed.  

2  Governing Equations  

The numerical simulation of MHD flows 
typically requires the solution of a system of 
eight equations: continuity, momentum (three 
components), energy, and magnetic field 
induction (three components). For magneto-
hydrodynamic flows that are characterized by a 
low electrical conductivity, the governing 
equations can be simplified. The validity of the 
simplification is monitored by a non-
dimensional number known as the magnetic 
Reynolds number, which represents the ratio of 
the magnetic convection to the magnetic 
diffusion. It is defined as LURe eem ∞µσ= , 
where eσ  is the electrical conductivity of the 
fluid, eµ  is the electrical permeability, ∞U  and 
L  are respectively the reference velocity and 
reference length. It can be shown that for small 
values of the magnetic Reynolds number 
( 1Re m <<∞ ), the induced magnetic field is 
negligible compared to the applied magnetic 
field. Therefore, when this assumption is valid, 
the magnetic induction equations do not need to 
be solved. This is especially appealing since the 
resolution of these equations is the source of 
numerical difficulties. When the full system of 
MHD equations is solved, it has been 
experienced to be very difficult for the magnetic 
field to remain divergence-free at all time levels. 
Numerical techniques have been proposed [21] 
to alleviate this problem, but generally result in 
more complex equations or additional steps in 
the numerical procedure. The other source of 
difficulty is that the MHD equations become 
stiffer as the magnetic Reynolds number 
decreases. In the low magnetic Reynolds 
number approach, the magnetic field 
automatically satisfies the zero-divergence 
constrain, provided its initial distribution is 
divergence free (since it is given and remains 
constant through the computation). The current 
density is determined directly from the Ohm’s 
law and the MHD effect is modeled by the 
introduction of source terms in the Navier-
Stokes equations. Under the assumption of 
small magnetic Reynolds number, the governing 
equations are: 
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Continuity equation: 
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The current density can be evaluated from the 
Ohm’s law 
  ( )BUEJ e

����
×+σ=  (4) 

The equations are solved by a modified fourth-
order Runge-Kutta scheme augmented with a 
second order TVD scheme. Details of the 
numerical scheme can be found in Ref. 22. This 
explicit scheme has been demonstrated to be 
very robust, especially for problems involving 
shock waves [23-27]. RAMHD2D is the finite 
difference compressible code developed for this 
study. It provides several turbulence models 
based on the Reynolds-averaged equations of 
motion, ranging from algebraic model 
(Baldwin-Lomax), one-equation turbulence 
models (Baldwin-Barth and Spalart-Allmaras) 
and two-equation models (k-� and k-� / k-� 
models). 
The finite volume computer code FLUENT is 
used to solve the incompressible equations. A 
complete description of the available numerical 
schemes can be obtained from FLUENT user 
guide [28]. Mass conservation is enforced by 
using a relation between velocity and pressure 
correction (SIMPLE algorithm). Momentum 
equations are approximated by second-order 
central-differencing discretization scheme. For 
the LES, the standard Smagorinsky Sub-Grid-
Scale model has been used with a value of 

1.0C s =  for the Smagorinsky constant. 
 
 
 
 

3 Results  

3.1 Flow over a Flat Plate  

The objective of this section is to investigate the 
effect of the magnetic field on the skin friction 
coefficient for a supersonic turbulent flow over 
a flat plate. The freestream conditions are 
summarized in Table 1. The length of the flat 
plate is m 08.0  and the transition is triggered at 

m 04.0x = . The magnetic Reynolds number 
based on the length of the flat plate is 

058.0Rem = , which can be considered 
negligible compared to one. A schematic of a 
typical flow is illustrated in Fig. 2.  

 
Property Symbol Value 
Mach number ∞M  0.2  
Pressure ∞p  atm .01  
Temperature ∞T  K 0.300  
Reynolds number ∞Re  61075.3 ×  
Electrical 
conductivity ∞σ e  m/mho 800  

Table 1. Flow properties over the flat plate. 
 
 
 

 
 
 
 
 
 

Figure 2. Schematic of the flow over a flat 
plate. 

 
The grid system consists of 100 grid points 

in the −x direction and 50 in the −y direction. 
Grid point clustering has been implemented 
near the leading edge to capture the weak 
leading edge shock wave and near the solid 
surface to resolve the boundary layer. The plate 
is considered to be an adiabatic wall.  

The magnetic field is applied in the 
−y direction, ranging from zero to T 4.1 . The 

strength of the magnetic field can be represented 
either by the magnitude of the applied magnetic 
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field yB , or by the parameter m  (interaction 
parameter per unit length). The relation between 

yB  and m  is provided in Equation (5). 

 
∞∞

∞

ρ
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U
B

m
2
ye  (5) 

First, all the turbulence models are 
compared in the non-magnetic case. Figure 3 
illustrates the skin friction coefficient along the 
flat plate. Transition from laminar to turbulent 
flow is triggered at m 04.0x = . In the turbulent 
region, all turbulence models provide a skin 
friction coefficient that falls between the 
analytical solution and the pseudo empirical 
method of Spalding and Chi [29].  
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Figure 3. Comparison of all turbulence models. 

Next, the magnetic field is turned on in the 
−y direction. Figure 4 shows the skin friction 

coefficient obtained by the Baldwin-Lomax 
model for different values of the magnetic field. 
The skin friction coefficient is decreased in the 
laminar region as the magnetic field is 
increased. The same effect can be observed in 
the turbulent region.  
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Figure 4. Skin friction coefficients 
(Baldwin-Lomax model). 

Figure 5 illustrates the turbulent velocity profile 
obtained by the Baldwin-Lomax turbulence 
model, at m 06.0x = . In the turbulent case, it is 
possible to increase the magnetic field up to 

81.1m = , after which a massive separation 
occurs. The separation occurs for a higher 
magnetic field compared to the laminar case 
because the turbulent layer can sustain stronger 
Lorentz force. This is similar to the comparison 
between laminar and turbulent boundary layers 
subject to adverse pressure gradient. The 
separation is delayed when the boundary layer is 
turbulent.  
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Figure 5. Turbulent velocity profiles at 

m 06.0x = (Baldwin-Lomax model). 

Similar results are obtained with the other 
turbulence models. For all turbulence models, a 
separation consistently occurred when m  was 
greater than 81.1 . Figure 6 illustrates the 
turbulent velocity profiles obtained by all 
turbulence models in the non-magnetic case. A 
good consistency between the turbulence 
models can be observed. For a magnetic field 
corresponding to 33.1m =  (Fig. 7), all 
turbulence models provide similar velocity 
profiles. It should be noted that the freestream 
velocity is reduced by about 12% when the 
magnetic field is turned on. 
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Figure 6. Comparison of turbulent velocity 

profiles at 00.0m = . 
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Figure 7. Comparison of turbulent velocity 

profiles at 33.1m = . 

Figure 8 presents a comparison of all 
turbulence models at 33.1m = . The models are 
consistent with each other, except in the region 
immediately beyond the transition point. Figure 
9 shows the skin friction coefficients at a given 
location ( m 06.0x = ), when it is normalized 
with its non-magnetic counterpart. In the 
laminar case, the reduction of the skin friction 
coefficient is larger than in the turbulent case. A 
substantial reduction is achieved, which leads to 
the separation of the flow (negative value of the 
skin friction coefficient). In the turbulent case, a 
reduction of up to about 20% is achieved with 

all turbulence models, at the highest value of 
magnetic field. For high conductivity fluids, a 
relaminarization process was observed [30], 
where the turbulent skin friction coefficient 
could be substantially reduced, reaching the 
same value as the laminar skin friction 
coefficient. Here, a complete relaminarization of 
the flow cannot be achieved because the effect 
of the magnetic field on the mean flow is more 
significant than the effect on the small scales of 
motion. A flow separation occurs before the 
relaminarization of the flow is achieved. 
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Figure 8. Comparison of all turbulence models 

at 33.1m = . 
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Figure 9. Skin friction coefficient ratio obtained 
by all turbulence models. 

3.2  Flow over a square cylinder  

The turbulent flow over a square cylinder is 
investigated in this section. The geometry of the 
problem is illustrated in Fig. 10. The diameter 
of the cylinder is m 04.0D = . The incoming 
velocity is sec/m 535.0U = . The fluid is salt 
water. The Reynolds number based on the 
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incoming velocity and cylinder diameter is 
400,21Re = . Experimental data is available 

based on experiments by Lyn and Rodi [31]. A 
summary of experimental results is provided in 
Table 2. 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 10. Geometry for the turbulent flow over 
a square cylinder. 

 
 

Quantity Experimental 
data 

Numerical 
value 

Strouhal Number 130.0  131.0  
Mean reattachment 

length 1.38D 1.20D 

Mean drag coefficient 0.19 to 0.21 0.18 
Lift coefficient rms 0.6 to 1.4 0.9 

Table 2. Summary of experimental and 
numerical results for the turbulent flow over a 

square cylinder. 
 

Initially, the computation was carried out 
without the application of any magnetic field. 
This condition corresponds to the experimental 
set up. A first grid, consisting of 204,000 nodes 
and 368,000 wedge cells did not provide 
satisfactory results and was refined several 
times. The finest grid consisted of 968,000 
nodes and 1.8 million wedge cells. Second order 
central differencing was used with the standard 
Smagorinsky model with 1.0C s = . A free 
stream turbulence intensity of 2% was imposed 
at the inflow. Symmetry is imposed along the 
lateral boundaries. The mesh was stretched at 
the cylinder surface with a minimum wall 
spacing of about 140/D  in the normal 
direction.  

The computation was carried out for at 
least 40 shedding cycles to obtain sensible 
averages. The time step was reduced until the 
Strouhal number matched the experimental data. 
For the smallest time step sec002.0t =∆ , the 
numerical simulation provided a Strouhal 
number of 0.131, which is in good agreement 
with the experimental value 13.0St = . Other 
average quantities are summarized in Table 2. 
Fairly good agreement is achieved between the 
numerical and experimental data. Figure 11 
illustrates an iso-surface of the vorticity, colored 
by static pressure (x-y plane). 

 

 
 
Figure 11. Isosurface of vorticity, colored 

by static pressure (x-y plane). 

Next, the effect of the magnetic field is 
investigated. The magnetic field is applied 
perpendicularly to the cylinder walls. The 
magnitude of the magnetic field decreases 
exponentially away from the walls of the 
cylinder. Since the magnetic field is essentially 
zero a few diameters away from the cylinder, it 
does not influence the boundary conditions. The 
electrical conductivity of the salt water is 

m/mho 100e =σ . The corresponding magnetic 
Reynolds number is 6107.2 −× , and the low 
magnetic Reynolds number formulation is valid 
to describe the flow. 

The application of a magnetic field has a 
direct influence on the flow pattern as depicted 
in Fig. 12. As the strength of the magnetic field 
increases, the shedding vortices move towards 
the cylinder. The corresponding reattachment 
length decreases and is illustrated in Fig. 13a. 
This corresponds to an increase in the average 
drag (Fig. 13b). However, the frequency of the 
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shedding vortices starts to increase for moderate 
magnetic field (Fig. 13c), and subsequently 
decreases for a large value of the magnetic field 
( T 15B0 = ). The lift coefficient fluctuation 
substantially increases for large magnetic fields 
(Fig. 13d). In all cases, the average lift 
coefficient remained zero. 

No electric field was imposed in any of 
these calculations. Therefore, the Lorentz force 
always acts in the opposite direction of the 
velocity, and tends to slow down the flow. This 
usually results in a decrease in the skin friction 
coefficient along the wall. However, for a 
complex flow with large separation regions, the 
skin friction drag represents only a fraction of 
the total drag. Therefore, the benefit obtained 
from the application of a magnetic field is not 
sufficient to reduce the total drag. Moreover, the 
standard Smagorinsky model was implemented, 
with the assumption that the magnetic field does 
not affect the Sub-Grid-Scale model. 
Modification to account for the presence of a 
magnetic field could result in different 
conclusions. The introduction of damping terms 
into the SGS models, and modification of the 
Smagorinsky constant are currently under 
consideration. 

4 Conclusions  

The possibility of controlling the boundary layer 
by means of electromagnetic forces has been 
numerically investigated. The low electrical 
conductivity of the fluid results in a 
simplification of the equations, where the MHD 
contribution is modeled by additional source 
terms in the Navier-Stokes equations. A 
reduction of up to 20% in the turbulent skin 
friction coefficient can be achieved by applying 
a magnetic field over a supersonic flat plate, 
before a separation of the flow field occurs. For 
the flow over a square cylinder, the application 
of a magnetic field resulted in an increase in the 
drag and decrease in the reattachment length. 
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Figure 12. Streamline pattern for several values 

of the applied magnetic field. 
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(a) Mean reattachment length. 
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(b) Mean drag coefficient. 
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(c) Strouhal number. 
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(d) Lift coefficient rms fluctuations. 

 
Figure 13. Effects of the applied magnetic field. 
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