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Abstract

The flight dynamics models have many important
applications in aircraft development which imply
that their reliability must be high. To fulfill this
objective, AIRBUS has developped for years an
identification process but new requirements like
building more accurate models in a shorter time
lead to revisit this process. In this context, an op-
timization methodology of the flight test proto-
cols based on the Genetic Algorithms (GA) tech-
nique has been developed. After a presentation
of the current identification process at AIRBUS,
this paper describes this new methodology and
shows with some examples that it constitutes a
viable alternative to the current procedure.

1 Introduction

For each new civil aircraft program, a model of
the flight dynamics is built and applied to:

• analyze the handling qualities of the new
aircraft;

• design, validate and integrate systems (es-
pecially the flight control laws);

• assess the predicted load calculations;

• allow crew training on simulators in airline
companies (see fig.1).

The growing development of numerical sim-
ulation in aviation industry has increased the con-
straint on the reliability of the flight dynamics
model. For any application, the flight dynamics

Fig. 1 A380 flight simulator.

model must be the most representative of the real
aircraft on its whole flight envelope.

This paper firstly describes the identification
process applied today in AIRBUS to flight dy-
namics model identification. As the require-
ment for building an accurate aircraft model in
a shorter time is permanent with a view to simu-
lator certification, the issue of an optimization of
the flight test protocols used to excite the aircraft
is also tackled in a second part.

2 Aircraft identification process in AIRBUS

The aircraft identification process follows a
schedule whose milestones are given by figure 2.
Several phases can be distinguished in this
timetable. The process starts by building a
preflight model of the flight dynamics. Then,
flight test protocols are performed on the real air-
craft and the aerodynamic model is adjusted on
the basis of the collected flight data. The type
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certification deadline (tc) puts an end to this pro-
cess. At that time, the aerodynamic parameter
adjustments are frozen and the flight dynamics
model is validated. Consequently, it can be used
for pilot training simulation.

MODEL
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Fig. 2 Modelling, identification and certification
timetable: from preflight model to certified simu-
lator.

2.1 Flight dynamics modelling

Flight dynamics modelling is based on the non-
linear equations of the flight mechanics. The
external forces and moments for aerodynam-
ics, propulsion and gravity are considered. The
aerodynamic force and moment coefficients are
parametrized as nonlinear functions of the atti-
tude angles, angular velocities, control surfaces
deflections and flight conditions (Mach number
(M) or Angle of Attack (AoA), dynamic pressure,
aircraft slats/flaps configuration. . . ). They are
calculated from look-up tables defined at several
points of the flight domain. The parameters of the
model correspond to the usual aerodynamic sta-
bility and control derivatives. Longitudinal and
lateral dynamics as well as ground effects are
modeled. Computational Fluid Dynamics (CFD)
and wind-tunnel test data give a first estimation
of the aerodynamic effects and allow to build a
preflight model (see fig.3). However to reach
an acceptable level of accuracy in simulation, the
coefficients of the model must be adjusted on the

basis of flight test data obtained through a cam-
paign of several flight tests.

Fig. 3 CFD and wind-tunnel test data allow to
build a correct preflight model and to gather a
priori knowledge.

2.2 Experimental protocol and flight tests
description

Flight test protocols are designed and flown for
some relevant and operational points in the flight
envelope of the aircraft. Then, interpolations be-
tween these points allow to build an accurate
model over the whole flight domain of the air-
craft. The nonlinearities and the complexity of
the aerodynamic model lead to estimate up to 100
parameters for each flight test point of the air-
craft flight envelope. As a result, between 1000
to 1500 ground and flight tests are performed to
identify all the parameters.

Each flight test can be described as follows:
after an aircraft trim phase at the selected flight
condition, a computer generated pulse signal for
a given deflection level is directly sent to one
control surface (ailerons, spoilers or rudder for
the lateral flight - elevator for the longitudinal
flight) and the free response of the aircraft is
recorded for about thirty seconds. Then, the pi-
lot who has no direct action during these initial
steps, recovers the aircraft to stabilize it again
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at the flight test point. Several deflection ampli-
tudes are done to identify the nonlinear effective-
nesses. After that, the pilot stabilizes the aircraft
at the next flight domain condition and the whole
procedure is performed again.

In the case of the lateral flight, these tests are
typically:

• roll and yaw rate responses through input
signals sent to ailerons, spoilers and rud-
der;

• steady state sideslip. This kind of test al-
lows to estimate accurately ratios between
stability and control derivatives (see fig.5
and 6);

• more piloted flight tests such as: dynamic
engine failure, engine out trim and mini-
mum aircraft control speed (maximum rud-
der deflection) which allow to estimate par-
ticular nonlinearities.

SPOILERS INPUT ROLL RATE RESPONSE

Fig. 4 Dutch Roll flight test through a spoilers
pulse input.

They bring relevant information for the
identification of the aerodynamic parameters and
are based on the experience of our specialists.
The simplicity of the input signals in the cur-
rent flight tests allows to keep the aircraft re-
sponses readable by our experts. Natural modes
of the aircraft such as dutch roll (see fig.4), spi-
ral stability and roll response for the lateral flight
and phugoïd and short period for the longitudi-
nal flight are observed on the data and provide,

through the analyzis of the specialists, a first
qualitative idea of the adjustments required in the
model. However, combined with the complex-
ity of the model, it can lead to design exhaustive
experimental protocols. Consequently, the total
flight test time allocated to the identification pro-
cess can be huge.

2.3 Identification methodology

Aircraft flight dynamics identification is carried
out according two methodologies based on dif-
ferent principles:

• the first one determines the aerodynamic
forces and moments applied to the aircraft
and uses an equation error approach to an-
alyze the steady state sideslip flight tests.
This allows to estimate some nonlineari-
ties;

• the second one deals with the application
of the output error approach (OEA) and al-
lows to estimate more precisely the aerody-
namic parameters from all the maneuvers
sent to the aircraft.

The identification process is based on the in-
formation available in the specific steady state
sideslip experiments (see fig.5 and 6). Some
states of the aircraft are piloted to be kept near
zero during this type of flight test while the air-
craft is stabilized at a given sideslip amplitude.
Several sideslip levels are swept. This allows to
determine the dependence of some coefficients
towards the sideslip effect. By a comparison with
the real aircraft, some relations can be established
and ratios are estimated between particular state
and control derivatives. The sideslip nonlineari-
ties can be identified as well as nonlinear effec-
tivenesses (see fig.6).

Parameter estimation is then completed by
the application of the Output Error Approach
(OEA) (see fig.7) to the data collected during the
flight test campaign. It allows to estimate more
precisely the corrections of the aerodynamic pa-
rameters to be applied. State derivatives and
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Fig. 5 Steady state sideslip data processing. Se-
lection of the stabilized sideslip phases.

ny = f(ββββ)roll control = f(ββββ)

rudder effectiveness = f(ββββ)

Fig. 6 Analyzis of the stabilized points. Sideslip
dependency of some variables.

deflection effects as well as particular nonlin-
earities are estimated. They allow to refine the
global and stationary effects in the flight dynam-
ics model.

As the experts have a preflight model of
high quality at their disposal, this identification
methodology which is based on the minimiza-
tion of an output error criterion computed from
the measurements and the simulated outputs, ap-
pears well adapted for the nonlinear estimation of
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Fig. 7 The OEA methodology

the aerodynamic parameters. It reproduces with a
good quality the global aircraft behaviour in sim-
ulation while it is more difficult and it requires
more time of analyzis to distribute precisely the
adjustments between all the aerodynamic effects.
Thus, some difficulties subsist: for example, the
processing of the information through test data
does not allow to separate some aerodynamic ef-
fects accurately. Single input excitations gener-
ally provide a good estimation of the control sur-
face effectivenesses while it is more difficult to
sort the aerodynamic effects corresponding to the
state variables (sideslip, roll and yaw rates for the
lateral flight). A higher level of accuracy is pos-
sible by modifying the identification process and
especially the flight test protocol.

3 New requirements

Even if flight dynamics modelling and
identification methodology have reached a
high level of maturity at AIRBUS, the accuracy
improvement of the estimated parameters and
the reduction of the total flight test time are
permanent concerns. The schedule for aircraft
simulator certification becomes shorter and
shorter (see fig.2) and the constraint on the
reliability of the flight dynamics model for
simulation increases. Combined with a reduction
of the flight test campaign costs, these factors
raise a need for optimizing the flight test proto-
cols. Moreover, the application of new control
law strategies (new designs, management of
structural loads and passenger comfort, handling
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qualities performance. . . ) involves the design
of more accurate flight dynamics models. Con-
sequently, a thought about an optimization of
the current experimental protocols dedicated to
flight dynamics model identification has started.
It aims at improving the accuracy of the model
in simulation while reducing the flight test
campaign costs.

As the aerodynamic parameter estimation
process is dependent on the quality of the inputs
sent to the aircraft, a new optimization method-
ology has been developed in order to design
more informative flight test protocols. It uses the
principles of the Genetic Algorithms (GA) opti-
mization technique. It is capable of generating
through an evolutive process an optimal set of
several input signals constituting a flight test pro-
tocol.

4 Experimental protocol optimization

4.1 Problem formulation

The state of the art in the field of Optimal
Input Design (OID) points out as a reference
the methodology developed by E. A. Morelli
and V. Klein ([2] and [5]) which applies the
principles of Dynamic Programming (DP). This
method builds dynamically an optimal input to-
wards a mathematical criterion. Due to some lim-
itations of the DP optimization technique (dis-
cretization, CPU time. . . ), we have developed a
new algorithm which applies the principles of the
Genetic Algorithms (GA) optimization technique
for solving OID problems. It is able to solve a
large panel of optimization problems:

• Single Flight Test with Single Input
(SFTSI);

• Multiple Flight Tests with Single Input
(MFTSI);

• Single Flight Test with Multiple Inputs
(SFTMI);

• Multiple Flight Tests with Multiple Inputs
(MFTMI).

The MFTSI framework corresponds to the
closest formulation for optimizing the current
flight test protocols. This optimization method-
ology builds an optimal set of n (n ≥ 1) input
signal(s) towards an optimization criterion which
is significant of the global accuracy of the esti-
mation. The most common criteria used for op-
timization are based on the fisher’s information
matrix F:

• trF: represents the amount of information
available through the set of flight tests but
does not take into account the possible cor-
relations between the effects;

• log(detF): is indicative of the global sen-
sitivities collected for a given set of flight
tests. Inputs which maximize this scalar
norm are called D-optimal;

• trF−1: is equal to the sum of the variances
of the parameter estimation errors. F−1 is
known as the dispersion matrix. The inputs
which minimize this criterion are called A-
optimal;

• λmax of F−1: is equal to the maximum ra-
dius of the uncertainty ellipsoïd.

We have chosen to minimize the trace of the
dispersion matrix. The optimization is subject
to some constraints: the designed input signals
must be feasible and their use in flight test condi-
tion must respect safety constraints. Moreover, as
the identification is made for one flight condition
of the aircraft envelope1, input and output limita-
tions must be introduced to avoid any departure
of the aircraft from this point. The candidate in-
put signals chosen for each flight test are mul-
tistep signals whose amplitudes can be chosen
among the break points of the look-up tables. An-
other input forms are possible (ramp, sinus. . . ).
By combining several deflection amplitudes in an

1so that the experimental conditions can be considered
stationary over the whole flight tests composing the exper-
imental protocol
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only single flight test a significant gain in the to-
tal flight test time can be made thanks to this op-
timization algorithm.

For improving the overall level of accuracy,
research works have shown that it was valuable
to add closed-loop flight tests in order to sepa-
rate strongly correlated aerodynamic effects [7].
In this case, only a reference input signal sent to
a control law has to be optimized. An alternative
solution will consist in sending a set of correlated
inputs to the dynamic system so that system out-
puts will be decorrelated. These two approaches
have their own advantages:

• the synthesis of correlated inputs in open-
loop in a OID framework can be highly
parametrized and offers numerous degrees
of freedom;

• the closed-loop framework is potentially
more robust towards model uncertainties;

• the flight test constraints of the optimiza-
tion problem can be managed more eas-
ily in the closed-loop framework because
some states of the aircraft are commanded
by a control law;

• existing control laws can be used at first to
realize the closed-loop solution, especially
the decoupling control laws.

and their own drawbacks:

• constraints may be difficult to manage in
the open-loop case;

• fewer degrees of freedom are avalaible for
the closed-loop optimization;

• the closed-loop framework is a new op-
timization problem in which little experi-
ence has been accumulated.

Using closed-loop experiments together with
more classical open-loop tests appears as a
new idea in the identification domain which
brings new perspectives for the field of Optimal
Experiment Design (OED). The optimization
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Individuals mutations
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Best individual = Optimum

NO
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Fig. 8 Principle of the GA optimization technique.

tool developed to tackle OID problems is able to
optimize flight test protocols composed of open-
loop and closed-loop experiments. The latter fea-
ture is essential to optimize a global information
in a MFTSI framework which mixes open-loop
input signals and closed-loop reference inputs.
Thus, optimization results and conclusions can
be made in order to analyze the relevance of the
closed-loop information contains in experimental
protocols.

4.2 Basic principles of the GA optimization
methodology

As the optimization problem formulation is
global and complex (with a high combinatory),
the use of a global and evolutionary optimization
technique such as GA appears well adapted. The
resulting algorithm follows the usual steps of the
GA technique described in the theory [1]. The
basic principle of such an iterative optimization
methodology is summarized by the figure 8.

An important point in our optimization al-
gorithm concerns the choice of a relevant
parametrization for handling in an easy way the
elementary input signals through the iterations.
Each elementary input signal can be completely
described by: the shape of a basic signal (in our
study, the steps); and by the coordinates of each
switching instant in the two-dimension subspace
E = (time,amplitude) (see fig.9). The time and
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amplitude parameters will be optimized in the
procedure.
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Fig. 9 Elementary input signal parametrization

As GA corresponds to a global optimization
technique, an initialization is needed. A first ran-
dom population of N (N ∈ N

∗) experimental pro-
tocol(s) is built. Each individual of the popula-
tion must be admissible towards the constraints.

Then, in the main loop of the algorithm, a
search for an optimal solution is accomplished
thanks to the stochastic operators of the GA op-
timization technique. These stochastic opera-
tors operate as a function of the fitness associ-
ated to each individual of the current popula-
tion. This fitness notion is based on the criterion
value of one individual and can be interpreted as
a mean to characterize the quality of this indi-
vidual. Through the iterations, the mathematical
parameters evolve and reach the optimum values.
The quality of the optimum value (local/global) is
dependent on the size of the population N, on the
homogeneousity of the initial random population
and on some parameters proper to the stochastic
operators of the GA technique.

4.3 Comparison with Dynamic Program-
ming

This new optimization approach has been com-
pared with the reference methodology using DP.
Table 1 shows a qualitative comparison of the
advantages and drawbacks of the two methods.
The main advantage of the DP solver is its ability
to manage easily the constraints of the problem

Table 1 Comparison between the DP and GA
solvers.

DP GA

PRINCIPLE

Builds dynamically an optimal Builds globally a set of

input signal - Bellman input signals - GA

principle optimization technique

CPU TIME

polynomial linear

ADVANTAGE(S)

- easy computation; - easy computation;

- easy constraint management. - global optimization;

- search for a global optimum;

- linear CPU time;

- flexible optimization.

DRAWBACK(S)

- space discretization; - dependent on initialization;

- CPU time prohibitive for - dependent on population size;

high combinatory; - highly parametrized;

- not very suitable for high complex - stochastic method.

OID problems.

while the use of the GA algorithm implies that
the constraints are checked a posteriori for every
individual created. Nevertheless, GA offers the
possibility to optimize complex flight test pro-
tocols composed of several experiments. Com-
bined with a linear CPU time when optimization
complexity increases, the solver using GA is a
viable alternative to the DP algorithm.

4.4 Discussion

The experimental protocol optimization raises
some important questions that must be addressed
in order to enhance the performances of any opti-
mization methodology in this field (see also [3]).
In comparison with the usual flight tests, the
design of optimal inputs for flight experiments
can lead to a loss of readibility in the data col-
lected during the flight test campaigns. This is
an important point since the application of pa-
rameter estimation is strongly based on the ex-
perience and the know-how of the specialists at
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AIRBUS. However, the use of softwares which
apply some theoretical estimation methodologies
justifies such an optimization. Consequently,
the experimental protocols tends to become in a
short-range forecast a mix of usual and optimized
tests. The use of a global optimization technique
such as GA for solving OID problems raises the
issue of the interest to have a global optimum at
our disposal for parameter estimation. Since we
know that the search for a global optimum can
be time consuming, attention must be paid to the
fact that suboptimal solutions exist and could be
used without losing the overall performances of
the parameter estimation in terms of accuracy,
flight test time and practical implementation of
the inputs. Actually, the choice of a global op-
timization technique is mainly justified by the
ability that global methodologies have to tackle
high dimension optimization problems. Because
of the global characteristic of the experimental
protocol optimization formulation, this latter fea-
ture is a key factor for the choice of a mathe-
matical optimization method. Besides, as any
experimental protocol optimization is made over
a preflight model, the optimal set of inputs de-
signed must be robust with respect to potential
uncertainties and undermodellings. Indeed, if the
flight test time performance can be guaranteed
through the mathematical formulation of the op-
timization problem, the performances in terms of
accuracy can only be obtained in flight under the
hypothesis that the preflight model corresponds
exactly to the real aircraft that is practically never
the case. This last point constitutes the main
limitation and the paradox of the optimal exper-
iment and input design fields. Some interesting
research works by E. Walter and L. Pronzato [4]
dealing with robust optimization can potentially
help us in our application of optimal experiment
and input design for aircraft parameter estimation
and can provide a theoretical support to enhance
the performances of our optimization algorithm.

5 Results

The case of the lateral flight is considered. The
standard protocol is composed of eleven flight

tests with a pulse input. 34 parameters are to be
estimated:

• sideslip, roll and yaw rates effects over the
three aircraft axis for the lateral flight (9
parameters);

• 5 deflection level effects for ailerons and
spoilers (22 parameters);

• global rudder effect (3 parameters).

In this example, the objective of the opti-
mized protocol is to reach an equivalent level of
estimation accuracy with a reduced number of
flight tests and a reduced flight test time. Three
optimized flight tests were selected:

• optimized ailerons input signal;

• optimized spoilers input signal;

• optimized rudder input signal.

The numerical results of this optimization are
given in table 2. They show that a significant gain
in the flight test time can be made by optimizing
the input signals of a current protocol design and
by concatening pulses with different amplitudes
for a given control surface into an only single op-
timized input sequence. The number of experi-
ments is divided by 4 while the level of accuracy
is only 22 percent over its initial value.

Table 2 Comparison of standard and optimized
fight test protocols.

PROTOCOL CURRENT OPTIMIZED

NUMBER OF EXP. 11 3

CRITERION 0.0718 0.0876 (+22%)

FLIGHT TEST TIME (FTT) 352 secs 96 secs (−73%)

FTT PER EXPERIMENT 32 secs 32 secs

As the input signals are optimized over the
total flight test time of each flight test, we can
arbitrarily add for these optimized experiments
a free response of the aircraft since the gain in
the global flight test time is significant (−73%)

8



On Flight Dynamics Model Identification and Optimal Flight Test Protocol Design

0 10 20 30 40 50 60
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Aircraft free response (sec.)

C
ri

te
ri

o
n

(w
u

)

0 10 20 30 40 50 60
50

100

150

200

250

300

350

400

Aircraft free response (sec.)

P
ro

to
co

l
fl

ig
h
t

te
st

ti
m

e
(s

ec
.)

Current Design Protocol
Optimized Protocol

Current Design Protocol
Optimized Protocol

Fig. 10 Potential gain in flight test time through
optimized input signals. Effect of the record of
an aircraft free response in the optimized data.

and allows us to proceed this way. Thus, as a
quantity of information is added through free air-
craft responses, we can look for a gain in the
level of accuracy provided by the optimized pro-
tocol design. Figure 10 shows the effects both
on the accuracy of parameter estimation and the
total flight test time of an additive free aircraft
response. A significant gain in estimation ac-
curacy can be made without penalizing the total
flight test time since optimized input signals are
designed. The reference values for the current
protocol design are given by the red lines.

OED and OID results are now entered in a
phase of validation in flight. A flight test cam-
paign has been flown in order to validate the the-
oretical results obtained in simulation. The aim
is to demonstrate that this kind of new input sig-
nals is able to provide at least the same level
of accuracy for parameter estimation as in the
usual flight test protocols while it is able to re-
duce significantly the total flight test time. Fig-
ures 11 and 12 show two examples of optimized
input signal sent to one control surface of a large
transport civil aircraft.

6 Conclusion

The optimization methodology applying GA pre-
sented in this paper has provided promising the-
oretical results. A better quality of the estimation
and a reduction of the total flight test time can
be obtained. Similarly, the idea to mix closed-
loop information with usual open-loop informa-
tion seems interesting to separate some aerody-
namic effects. A first flight campaign including
both optimized and closed-loop flight tests has
been performed on a large transport civil aircraft
to evaluate this method. In the future, we can
expect that optimized tests realized in open or
closed-loop will constitute an informative com-
plement of the standard flight tests used today to
identify the flight dynamics models.
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Fig. 11 Example of optimized ailerons flight test.
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Fig. 12 Example of optimized spoilers flight test.

10


