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Abstract 
 

In the design process of complex systems, the 
designer has to solve an optimisation 
problem, which involves coupled disciplines 
and where all design criteria have to be 
optimised (traded-off) simultaneously.  This 
problem is known as vector optimisation. 
Many numerical methods exist for obtaining 
solutions but in general, the solution is not 
unique. In such a case, the solution set is 
represented by a Pareto surface in the space 
of the objective functions. Regarding 
industrial applications, the multi-disciplinary 
optimisation problem is usually very time-
consuming and the Pareto set rarely can be 
described analytically.  The description of a 
Pareto surface is often reduced to a set of 
points lying onto the surface. Therefore, in 
the real design the set of Pareto solution is 
never exhaustively explored. Once a Pareto 
point is obtained, it may be very useful for 
the decision-maker to be able to perform a 
quick local approximation in order to obtain 
other approximate optimal solutions. In this 
paper, a local Pareto analyser is proposed. 
This concept is based on a local sensitivity 
analysis, which provides the relation between 
variations of the different objective functions 
under constraints. A method for obtaining a 
linear and quadratic local approximation of 
the Pareto surface is then derived. 
Application of the local Pareto analyser 
concept is demonstrated through the study of 
a few test cases.  

1. Introduction 
In the process of designing complex systems, 
contributions and interactions of multiple 

disciplines are taken into account to achieve 
a consistent design. The problem is made 
worse due to the fact that in a real industrial 
design setting, the decision maker (DM) has 
to take into account many different and often 
conflicting criteria. In fact, during the 
optimisation process, the DM often has to 
make compromises and look for trade-off 
solutions rather than a global optimum, 
which almost always does not exist. 

Multi-disciplinary design has existed in 
the mind of designers for several decades but 
it is only with the emergence of new 
numerical methods and the development of 
computer power that this area has recently 
been recognised as a field of study: Multi-
disciplinary Design Optimisation (MDO). 
MDO embodies a set of methodologies, 
which provide means of coordinating efforts 
and performing the optimisation of a 
complex system. Two fundamental issues 
associated with the MDO concept are the 
complexity of the problem (large number of 
variables, constraints and objectives) and the 
difficulty to explore the whole design space. 
Thus in practice the DM would benefit from 
obtaining information about the model 
without the need to run it extensively.  
 
 MDO analysis implies solving a non-
linear vector optimisation problem. In 
general the solution of such a problem is not 
unique. In this respect a feasible solution, i.e. 
solutions satisfying all constraints, which 
cannot be optimised further with regard to 
any criteria without compromising at least 
one of the others leads to a Pareto optimal 
solution [1]. Every Pareto point is a solution 
of the multi-objective optimisation problem. 
Ultimately a designer has to select the final 
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design solution among the Pareto set; the 
decision can be based on additional 
requirements that were not taken into account 
in the mathematical formulation of the vector 
optimisation problem. In a real MDO 
problem, the Pareto front cannot often be 
described analytically and it is therefore 
desirable to have a sufficiently large number 
of Pareto points to obtain a good 
approximation for a quick local analysis. It is 
also important that the Pareto set be evenly 
distributed to ensure the representation of the 
Pareto surface is sufficient. 
 In spite of the existence of many 
numerical methods for non-linear vector 
optimisation, there are few methods suitable 
for real-design industrial applications, 
especially for preliminary design. In many 
applications, the design cycle includes time-
consuming and expensive computations of 
each discipline. This is particularly true in 
the aerospace industry where many coupled 
disciplines such as aerodynamics and stress 
analysis are taken into account in the design 
process.   

The objective of this work has been to 
develop a method for local Pareto analysis 
and approximation. The following section 
formally states the multi-objective 
optimisation problem. Section 3 describes the 
Pareto approximation concept for locally 
smooth Pareto surface while section 4 
describes the analysis developed to identify 
non-differentiable Pareto points. The method 
is evaluated in section 5 with a few test 
cases. Finally conclusions are drawn and 
future work outlined in section 6. 

2. Multi-objective optimisation problem  
It is assumed that an optimisation problem is 
described in terms of a design variable vector 

 in the design 

space
1 2 Nx , x ,..., x Tx ( )=

⊂X NR . A function ∈ Mf R  
evaluates the quality of a solution by 
assigning it to an objective vector  
 

1 2 My , y ,..., y Ty ( )=  

 
i iy = ( )xf ,  in 

the objective space
if : , i 1,2, ...,M→ =N 1R R

⊂Y MR . Thus,  is 
mapped onto Y  by 

X
: X | Y→f . A multi-

objective optimisation problem may be 
formulated in the following form: 
 

Minimize [y                (2.1)               (x)]
 

Subject to the K inequality constraints 
 

ig ( ) 0x ≤               (2.2)            i = 1,...,K
 
which may also include equality constraints.  
 The feasible design space  is defined 
as the set 

*X
ig ( ) 0, j = 1,2,...,K{x | x }≤ . A 

feasible design point is a point that does not 
violate any constraint. The feasible criterion 
(objective) space is defined as the 
set

*Y
*{Y(x) | x X }∈ . 

 A design vector  ( ) is called a 
Pareto optimum iff it does not exist any 

such that ,  i  
and there exists at least one 1 j such 
that: 

a *a X∈

*b X∈ i iy ( ) y ( )b a≤ = 1,..., M
M≤ ≤

j jy ( ) y ( )b a< . 

3. Pareto approximation 
The local approximation is derived at a given 
Pareto point with account of active 
constraints. Constraints are active at some 
point of the design space X if strict equality 
is valid at this point. It is assumed that 
constraints that are active at this particular 
point remain active in its vicinity. Thus, the 
sensitivity predicted at the given Pareto point 
is valid until the set of active constrains 
remains unchanged [2, 7].  
 Let us note the set of active constraints 
as G. At a given point x* of the design 
feasible space X* that means: 
 

                     (3.1) *G(x ) 0=
 

Without violation of generality, we assume 
that the first  constraints are active and the P
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first  of those correspond to inequalities 
.   

Q
( )Q P K≤ ≤

 We assume that in the vicinity of the 
same set of constraints remains active. 
Locally the constraints can be written in a 
linear form: 

*x

 
*J(x x ) 0− =                    (3.2) 

 
where  is the Jacobian of the active 
constraint set at x

J
* :  J G= ∇

 
If all gradients of the active constraints are 
linearly independent at a point, then this 
point is called a regular point [1]. We will 
say that a point * *∈x X  is regular if 

.   rank( ) P=J
 The values of the gradient of any 
differentiable function  at point xF * under 
constraints are defined by the reduced 
gradient formula (see, e.g. [8]): 
 

                    (3.3) | PSF∇ = ∇F

=

  
where S is the surface defined by: 
 

S { ( ) 0}= *x | J x - x              (3.4) 
 

and P  is projection matrix onto this surface : 
 

1( )P I J JJ JT T −= −               (3.5) 
 

Directional derivatives in the objective 
function space are given by: 
 

|

x
x Si i

dF dF d
df d df

=                    (3.6) 

 
The last derivative can be represented via the 
gradients in the design space  as follows. 
 Assume that matrix  has 

X
∇P f fn M<  

linearly independent columns. Without 
violation of generality, we can suppose that 
the first fn objective functions originate the 
linear independent columns of . Then, 
let us introduce vector 

∇P f

1( ,..., )
f

T
nf f≡f% . It is 

possible to show that 
 

1[( ) ]x A P f P f P f
f

% % %
%

Td
d

−= ≡ ∇ ∇ ∇       (3.7) 
 

Then, for any fi n≤ , from (3.3), (3.6) and 
(3.7) we obtain 

T
i

i

dF F
df

= ∇A P                  (3.8) 

where  
1 2( , ,..., )

fn=A A A A  
Hence 

A Pj T
i

i

df
jf

df
= ∇                  (3.9) 

 
In this case fj is considered as a dependable 
variable and not included in . ∇P f%

It is important to note that only if all 
vectors in ∇P f% are orthogonal, (3.9) 
coincides with the appropriate formula 
obtained in [3]:  

( ,
( ,

j i

i i

df f f
df f f

∇ ∇
=

∇ ∇

P P
P P

)
)

j

i

         (3.10) 

In the general case formula (3.10) only gives 
some approximation of the derivative. 

Similarly, it is possible to obtain the 
reduced Hessian as follows: 
 

(
2

T T
i j

i j

d F F
df df

= ∇ ∇A P A P )      (3.11) 

 
If F = fj, then we obtain the sensitivity of an 
objective fj along the feasible descent 
direction of an objective fi. 
 Assuming that in the objective space Y 
the Pareto surface is given by: 
 

( ) 0yS =                  (3.12) 
 

and at point y* = f(x*) function  
Then, the Pareto surface can be locally 
represented as either a linear hyperplane: 

2.S C⊂

 

1
0

fn

i
i i

dS f
df=

∆ =∑               (3.13) 

 
or a quadratic surface: 
 

3  
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2

1 , 1

1 0
2

f fn n

i j
i j ki j k

dS d Sf f
df df df= =

∆ + ∆ ∆ =∑ ∑ kf   (3.14) 

 
where ∆f = f – f*.   
 
 Approximations (3.13) and (3.14) can be 
rewritten with respect to the trade-off relation 
between the objective functions as follows: 
 

*

1
 

fn
p

p p i
i i

df
f f

df=

= + ∆∑ f              (3.15) 

and  
 

*

1 , 1

1
2

f fn n
p p

p p i jk j
i j ki

df ( )
kf f f H

df= =

= + ∆ + ∆ ∆∑ ∑ f f   

(3.16) 
for ( 1,  ..., )fp n M= +  

where 
2

( ) pp
jk

j k

d f
H

df df
= . 

4. Pareto front analysis 
In the SA, due to a perturbation δfj and the 
appropriate displacement δx some constraints 
which are inactive at point x* can become 
either violated or active. The exact 
verification of the constraints validation may 
be time consuming. In [6], it was suggested 
to perform local linear analysis of the degree 
of the inactive constraint violation.  
 In order to fulfil the SA let us consider 
small perturbations of the objective functions 
in some direction tangential to the Pareto 
surface. At this direction we choose the 
descent direction SΨ of some test function Ψ:  
 

{Ψ = Ψ(f), ( ) 0,   1,2,...,p
i

i
f

∂Ψ
≥ =

∂
x P

)

} which  

 
is determined by: 
   

(S J µ PT
Ψ = −∇Ψ − = −∇Ψ        (4.1) 

 
where 

1( )µ JJ JT −= − ∇Ψ                 (4.2) 
 

 Assume that the gradient ∇Ψ is directed 
from the point P into the feasible direction e 
[9]. Further, we will consider only normal 
(hence regular) Pareto points [9]. 

Suppose that the SΨ is a null-vector. If 
the first Q Lagrange multipliers µ are non-
negative ( ,P Q∈Ωµ ), then no descent 
direction exists and the test function Ψ 
reaches the minimum at the Pareto point as 
well as the AOF. This follows immediately 
from the KKT theorem (see, e.g., [8]), at 
least under some additional general 
assumptions such as the convexity of the 
Pareto frontier.  
 If some of the first Q multipliers are 
negative ( ,P Q∉Ωµ ), then the appropriate 
inequality constraints become inactive in the 
direction SΨ which is treated as the direction 
of a perturbation. In other words, these 
constraints become inactive in the case of 
further reduction of Ψ. The Pareto solution 
can correspond to a non-differentiable point 
of the Pareto frontier. In [5, 6], where only 
inequality constraints are considered, it is 
suggested to remove the constraints 
corresponding to negative components of λ 
and repeat the analysis reconsidering active 
constraints. The analysis is performed with 
respect to the weighted-sum representation of 
Ψ. A similar analysis can be done in 
application to the AOF. Let us consider now 
the requirements for the test function Ψ. This 
question was not addressed in [5, 6].  
 The vector SΨ is represented by a linear 
combination of the vectors normal to the 
hyperplanes of the active constraints: 
 

i
1

g
P

i
i
µ

=

∇Ψ = − ∇∑              (4.3) 

  
Then, the gradient ∇Ψ belongs to the constraint 
cone K, [9]: 

 

,
1

{ | ,ig  
P

M
i P

i
K R µ

=

= ∈ = − ∇ ∈Ω∑y y µ }Q  

(4.4) 
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Meanwhile, for any normal point the tangent 
cone T coincides with the cone K* polar to K: 

, [9]. The polar cone K*K T= * is defined by: 
  

* 0{ |   yTM KK R ≥ ∀ ∈= ∈ yz z }     (4.5) 
 

 On the other hand, if the function Ψ 
reaches a minimum then for any 
vector  the following condition must 
be valid: 

:  T∈e e

0eT∇Ψ ≥                    (4.6) 
 

 
This fact means the gradient∇Ψ belongs to 
the convex cone T* which is the positive 
polar cone to the cone T.  
 Let us analyse now mutual location of 
the cones K and K* = T. Assume that 

. If , and 
there is a direction along which the function 
Ψ can be further diminished. Let us assume 
that µ

*K K T⊂ =   \T K∇Ψ ∈ ,  µ P Q∉ Ω

q < 0 (q ≤ Q). By removing the q-th 
active constraint we obtain the reduced 
matrix Jr. Then, the descent vector ΨS%  is 
defined by the rest active constraints as 
follows: 

S% T
r rΨ = −∇Ψ − J µ

gµ

              (4.7) 
 

 Vector defines a feasible direction 
along which the q-th constraint becomes 
inactive. Along this direction in the vicinity 
of the point P we have: 

ΨS%

 

i
1,

( )
P

q q i
i i q

gµ
= ≠

∇ Ψ + = − ∇∑        (4.8) 

 

All coefficients iµ  at the right-hand side are 
positive. Thus, the necessary condition for 
the minimum of the function 

is valid. In the objective 
space, the normal direction to the Pareto 
surface coincides with the gradient  

*
q qgµΨ = Ψ +

*.f∇ Ψ
 If several Lagrange multipliers are 
negative in (3.3), the approach is similar. In 
this case, we have: 
 

*

( )

,

0   , 0   

q q i i
q Q i Q

q q
q Q

i q

g g

g

if i Q if q Q

µ µ

µ

µ µ

− +

−

− +

∈ ∈

−

∈

+ −

∇ Ψ + = − ∇

Ψ = Ψ +

> ∈ < ∈

∑ ∑

∑  (4.9) 

 

where +∑ corresponds to the sum of all 
positive Lagrange multipliers while all 
negative multipliers are included in the sum 

−∑ . 
 
 The descent direction is determined by  
 

S J µ% T
r r q q

q
gµ−Ψ = −∇Ψ − = ∇∑     (4.10) 

Here, the reduced matrix and the vector µrJ r 
are obtained by removing all rows 
corresponding to the negative Lagrange 
multipliers. The direction is feasible if the 
following inequalities are valid: 

ΨS%

 

0

,

S%T T
j q j

q Q
g g

j q Q

µ
−

−
Ψ

∈

−

qg∇ = ∇ ∇∑

∈

<
 (4.11) 

 
In order to prove inequality (4.11), let us 
consider the convex cone generated by the 
vectors ( )jg j Q−∇ ∈ : 
 

{ | , y yM
q q q

q Q
E gα α

−

−

∈
0}= ∈ = ∇ ≥∑C  (4.12) 

 
Inequality (4.11) is equivalent to the 
requirement that  belongs to the 
positive polar cone C

(jg j Q−∇ ∈ )
*. This follows 

immediately from our assumption that the 
tangent cone K includes the polar cone K* 
and the Polar theorem: .  * *( )K K=
 Thus, to verify the differentiability of a 
Pareto point it is necessary to choose a 
function Ψ such that: 

  

{ , \ , ( ) 0,  1,..., }P
p

i

R T K x i P
f

∂Ψ
∇Ψ∈ ∇Ψ∈ ≥ =

∂
(4.13) 

5  
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It is to be noted that such a vector does not 
always exist. 
 It is worth noting that the equality 
constraints effect on the matrix J but do not 
effect on the SA related with the recognition 
of non-differentiable points. This follows 
from the fact that for the equality constraints 
the signs of the Lagrange multipliers are 
determined and the feasible direction is 
limited by equalities. On the other hand, if 
the polar cone K includes the tangent cone K* 
( ), then a Pareto point can be non-
differentiable while the appropriate 
vector . This means that although all 
first Lagrange multipliers are positive for any 
differentiable function Ψ:  the 
Pareto point is non-differentiable. With 
regard to the described analysis, it is 
important to be able to determine the polar 
cone K

T K⊂

,P Q∈Ωµ

{ 0}Ψ =S

*. It can be obtained using Tamura 
method [10]. 
  

5. Test cases 
The approach described above is illustrated 
using a few test cases related to vector 
optimisation.  
 The first example is related to a smooth 
local approximation of the Pareto surface. 
 
Example 1:   
 
Minimise:   1 2 3F(x) {f (x),f (x),f (x)}=

Subject to:   2 2 2
1 2 3g(x) 12 x x x 0= − − − ≥

   x 0≥
 

and the objective functions are given by: 
 

3 2 3 3
1 1 1 2 3 2 3f 25 (x x (1 x x ) x x ) 10= − + + + + +

3 3 2 3
2 1 2 2 1 3 3f 35 (x 2x x (1 x x ) x ) 10= − + + + + +

3 3 3 2
3 1 2 3 3 1 2f 50 (x x 3x x (1 x x ) ) 10= − + + + + + +  

 
 
In this 3D test case, the Pareto frontier is 
concave. The linear and quadratic 
approximations obtained by the analysis 

derived in section 3 are given in Figure 1 and 
Figure 2 respectively. 
 

 
Figure 1: Linear Approximation 

 
Figure 2: Quadratic approximation 

 
 

Figure 3: Error in predicting  3f

As expected, Figure 3 shows that a much 
better estimate of the Pareto surface in the 
vicinity of the Pareto point under 
investigation is obtained with the quadratic 
approximation.  
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 In the next examples only non-
differentiable Pareto surfaces are considered. 
The Pareto analysis is used to detect non-
differentiable Pareto points and its limits are 
discussed.  
 
Example 2: 
 
The linear bi-criteria test case taken from [6] 
is considered. 
 

1

2

3

4

min( , )                            

( ) 1 0,
4 4

( ) 1 0,
3 6

( ) 0,
( ) 0

x y
x yg

x yg

g x
g y

= − − + ≤

= − − + ≤

= − ≤
= − ≤

X

X

X
X

 

 
A particularity of this example is that the 
variables are minimised, therefore the design 
space coincide with the objective space. For 
this test case, each point of the Pareto set is a 
point of the design space for which at least a 
constraint is active.  

 
Figure 4: Example 2 – Design space / Pareto set 

In Figure 5, the tangent cone and its 
polar cone are shown. . 

*T K=
K *K K⊂

 
Figure 5: Example 2 - Relative position of the 

tangent cone and its polar at a non-differentiable 
Pareto point 

 
As illustrated in Figure 5, it is obvious that a 
function Ψ  that satisfies (4.13) can be 
obtained. Therefore, according to the analysis 
given in the previous section, the Pareto 
point under study is non-differentiable.  
 
Example 3: 
 
In this example, the quadratic bi-criteria test 
case under linear constraints described as 
follows is considered: 
 

1 2

1

2

min( , )                            
( ) 2 1 0,

1( ) 0
2 2

f f
g y x

xg y

= − + ≤

= − + + ≤

X

X

 

with  
2

1

2

2

3 1( )
2 2

2 1( )
3 2

f y x

f y x

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

X

X

 

 
A representation of the feasible space of the 
optimisation problem is given in Figure 6. 

7  
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Figure 6: Example 3 – Design space / Pareto set 

 
Only the two contour lines corresponding to 
the minimum value of the objectives are 
represented in the design space. For each 
objective, isovalue contour lines are parallel 
to the minimum value contour line. The 
consequence of the difference between the 
slope of the minimum value contour lines 
and the slope of the borders of the feasible 
space is that under constraints, both 
objectives cannot be minimised together. It 
results that the solution set of the 
optimisation problem is a Pareto set as given 
in Figure 7.  

 
Figure 7: Example 3 – Objective space / Pareto set 

 
The Pareto point obtained when both 
constraints  and are active (i.e.1g 2g 1 0g =  
and ) is clearly a non-differentiable 
point in the objective space. Moving away 

from this point along the Pareto surface, the 
set of active constraints is changed.  

2 0g =

 
The tangent cone and its polar 
cone are built in the design space as shown 
in Figure 8. 

*T K=
K

 

 
Figure 8: Example 3 - Relative position of the 

tangent cone and its polar at a non-differentiable 
Pareto point 

 
In this test case, . It is therefore 
impossible to find a function  that satisfies 
(4.13). From the analysis described 
previously, it results that no conclusion on 
the differentiability of the Pareto point can be 
drawn. 

*K K⊂
Ψ

 

6. Conclusion 
A method for local approximation of the 
Pareto frontier is presented. The formulas for 
the first and the second order approximations 
have been derived. Both the linear and 
quadratic approximations are based on the 
Taylor approximation analysis. An approach 
is suggested to evaluate the vicinity of the 
Pareto solution where the local analysis is 
valid. The cases of non-differentiable Pareto 
points are also considered. The technique 
based on the gradient-projection method is 
applied and analysed in detail. The limits of 
this technique are also discussed. The 
developed concept of the Local Pareto 
Analyser allows the decision maker to 
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perform a local analysis of the Pareto 
solutions and trade-off between different 
objectives. Future work will concentrate on 
testing and application of the method to 
complex MDO industrial test cases.  
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