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Abstract 
Kalman filter is extensively using in integrated 
navigation system-GPS/SINS. The main factor 
in determining the computation time of Kalman 
filter is the dimension n of the model state 
vector. Krylov subspace methods based on the 
moment matching is efficiently way to reduce 
order of the system. The paper presents the 
methodology to model order reduction of the 
state formulas of the GPS/INS using the Krylov 
subspace methods. Result shows it is an exciting 
way to economize the computational time of the 
Kalman Filter.    

 
1 Introduction 

 
Numerical simulation of dynamical systems 

is a powerful tool for the analysis of complex 
phenomena. However many systems are very 
complex, and therefore hard to analyze 
numerically, as this involves computation and 
storage matrices. If the complexity exceeds a 
certain amount, the computations become hard, 
due to time and memory limitations, and error 
propagation in computation. 

This is where model reduction comes into 
play. Model reduction consists of replacing the 
original system with one of a much smaller 
dimension. The goal of model reduction is to 
obtain an approximate model of much lower 

complexity of the physical system to be 
analyzed. This approximate model should have 
the following desirable properties[4]: 
• The reduced system must be an accurate 
epresentation of the original one for the analysis 
performed. 
• The cost of generating the reduced model must 
be much smaller than the cost of performing the 
analysis using the original model. 

Kalman filter is extensively using in 
integrated navigation system, such as Global 
Positioning System and Strapdown Inertial 
Navigation System, for short GPS/SINS. The 
main factor in determining the computation time 
of Kalman filter is the dimension n of the model 
state vector. The number of computations per 
iteration is on the order of n3. Any reduction in 
the number of states will significantly decrease 
the computation time. The paper first presents 
the GPS/SINS integrated navigation system, 
then presents the reduced-order model--- a 
moment matching model reduction 
methodology based on projection on Krylov 
subspaces is presented.. Through the simulation 
the reduced-order model also can provide batter 
parameters. 

 
2 GPS/SINS model 
 

SINS and GPS have different model based 
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on the different requires. Here, GPS and SINS 
are integrated with velocity and position. The 
difference between the velocity and position of 
the GPS and SINS is as observation, which is 
used to estimate the SINS error by Kalman filter 
an to revise the error of SINS. The integrated 
model of GPS/SINS has different types. The 
integrated model are as the 
follows.

 
Fig.1 open loop GPS/SINS system 

 
 
 
 

 
 
     
 
 

Fig.2 Closed loop GPS/SINS system 
 

2.1 System States Formulas 
 

To the SINS, navigation reference frame is 
East, North and Up geography coordinate 
system.GPS/SINS integrated navigation high 
order dynamic model as follows: 

( ) ( ) ( ) ( ) ( )X t F t X t G t W t= +   (2..1.1) 
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n
bC  is the attitude conversion matrix form 

the carrier coordinate to the navigation 
coordinate. 

 
2.2 System Measuring Formulas  
 
SINS position signals are as follows: 

I t

I tL L L
λ λ δλ

δ
= +
= +

              (2.2.1) 

GPS position signals are as follows: 
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SINS velocity signals are as follows: 
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GPS velocity signals are as follows: 
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           (2.2.4) GN N N

GE E E

V V M
V V M

= −
= −

Combined the formulas of (2.2.1)～(2.2.4), we 
can get the position and velocity measuring 
formula of the GPS/SINS. 
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(2.2.5) 
 

3 Krylov Subspace Model Reduction 
 

Depending on the properties of the original 
system that are retained in the reduced model, 
there are different model reduction 
methodologies. Hence, there are techniques 
based in directly identifying and preserving 
certain modes of interest or based on the 
singular value decomposition (SVD), such as 
balanced truncation [7], Hankel norm 
approximation [4], etc., focusing on the 
observability and controllability properties of 
the system. Another family of model reduction 
techniques, on which this paper builds on, is the 
moment matching methods [1], [5], [6]. The 
property of interest here is the leading 
coefficients of a power series expansion of the 
transfer function of the reduced system around a 
user-defined point that have to match those of 
the original system transfer function. 

 
3.1 Krylov Subspace 
 

Krylov subspace: a jth  dimensional Krylov 
subspace corresponding to some matrix G and 
vector g is denoted κj (G,g) and is defined as  
κj (G,g)=span{g,Gg,G2g,…,Gj-1g} . 

    IF V is a orthogonal matrix and is 

transformed from Krylov subspace 
κm(A-1E,A-1B), the m-order moment of model 
reduction transfer function of the GPS/SINS 
integrated navigation through V is matching of 
the original transfer function. The V can 
generate through Arnoldi algorithm. 

 Arnoldi algorithm: 
   Input: A,b,q 
    Output: V, vq+1 ,H 
   [V, vq+1 ,H]=arnoldi(A,b,q) 
   { 

v1=b/||b|| 
for I=1:j 
  { 

hij = wTvi        
w=w-hijvi   

hj+1,j=||w|| 
if(hj+1,j≠0)vj+1=w/hj+1,j} 

} 
  
3.2 GPS/SINS Reduction Model  
 

Using the Krylov subspace methods, the 
GPS/SINS integrated formulas (2.1.1) and 
(2.1.5) reduction model is as follows. The 
dimensions of the GPS/SINS are from 15 
reduction to 9. 

     ( ) ( ) ( ) ( ) ( )X t F t X t G t W t= +  
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4 Simulation  
 
   Using the Krylov subspace methods, about 
the attitude angular error and velocity error of 
the model reduction of GPS/SINS Integrated 
Navigation system are as Fig.3 and Fig.4. 
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fig.3 attitude angular error 

 
fig.4  velocity error 

  
5 Conclusion 
 

In this paper, an approach to model 
reduction in GPS/SINS based on Krylov 
subspace has been presented. Through the 
Krylov subspace methods, the model reduction 
model can provide the be up to the mustard 
navigation precision. The computational time of 
the kalman filter is reduced form  to the . 
Time reduced approximately 21%. This is an 
exciting result to the application. 
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