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Abstract  

A new method, Collaborative Allocation 
(CA), is proposed to solve large-scale optimum 
allocation problem in aircraft conceptual design. 
According to the characteristic of optimum 
allocation in aircraft conceptual design. the 
principle and mathematical model of CA is 
established. The optimum allocation problem is 
decomposed into one main optimization 
problem and several sub-optimization problems. 
A group of design requirements for subsystems 
are provided by the main system respectively, 
and the subsystems execute their own 
optimizations or further provide detailed design 
requirements to bottom components of aircraft, 
such as spars, ribs and skins, etc. The 
subsystems minimize the discrepancy between 
their own local variables and corresponding 
allocated value, and then return optimization 
results to main optimization. Main optimization 
is performed to reallocate design requirements 
for improving integration performance and 
progressing toward compatibility between 
subsystems. CA provides general optimum 
allocation architecture and is easy to be carried 
out. Furthermore concurrent computation can 
also be realized. Two numerical examples of 
optimum reliability allocation are used to 
describe the implementation procedure of CA 
for two-level allocation and three-level 
allocation respectively, and to preliminarily 
validate its correctness and effectiveness. Then 
an engineering problem further proves our 
method is applicable for engineering design. It 
is shown that the developed method can be 
successfully used in optimum allocation of 
design requirements. Then taking weight 

requirement allocation as example, the 
mathematical model and solution procedure for 
collaborative allocation of design requirement 
in aircraft conceptual design is briefly depicted. 

1  Introduction 
Optimum allocation of design requirements 

(reliability, weight, cost, etc.) has been and is an 
important problem in aircraft conceptual design. 
A good allocation of design requirements can 
shorten design cycle, improve performance and 
reduce cost, etc. Since optimum allocation is to 
acquire best integration performance by 
allocating design requirements reasonably, it is 
an optimization problem in essence. Optimum 
allocation in aircraft conceptual design is a 
complicated large-scale problem. Apparently 
the conventional allocation depending on 
experience and statistics can hardly provides the 
best design results. Direct Method (DM) [1,2] and 
Decomposition Coordination Method (DCM) 

[3,4] are two conventional methods for optimum 
allocation. DM is problem dependent and 
cannot reflect comparatively independence of 
subsystems [3]. DCM is frequently used for 
large-scale engineering optimization. It 
transforms an all-at-once optimum allocation 
problem into many small-scale optimization 
problems in multi-level nested optimization 
architecture. Each sub-optimization shares in 
the duty of optimizing original objective 
function by minimizing or maximizing part of it. 
Father optimization requires optimum 
sensitivity provided by its daughter optimization. 
More levels the system is decomposed, more 
complicated the nested optimization of DCM 
goes and worse convergence appears. It is 
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proven by practice that DCM is very sensitive to 
step size, which indicates it is not so well in 
robustness. In addition, like DM, DCM cannot 
also provide a general allocation framework. 
For disadvantages mentioned above, DCM is 
still not so appropriate for aircraft conceptual 
design. This study is motivated by developing a 
new method with general allocation framework, 
better robustness and easy to be carried out, 
which is appropriate for large-scale optimum 
allocation problem in aircraft conceptual design. 

According to our experience [5-8], it is found 
that Collaborative Optimization (CO) has a few 
features that are applicable to optimum allocation. 
Firstly, CO is designed for multidisciplinary 
complex problems. Secondly, CO provides a 
general optimization framework. Thirdly, system 
level providing disciplinary level with targets of 
variables is similar to allocation of design 
requirements, which deserves attention mostly. 
And lastly, coordination for variables of different 
disciplinary can easily be associated with repeated 
coordination for design requirements allocation. 

In this study, a new method, Collaborative 
Allocation (CA), is proposed to solve large-scale 
optimum allocation problem in aircraft conceptual 
design. CA is of similar solution procedure with 
CO. CA provides general optimum allocation 
architecture and is easy to be carried out. And 
concurrent computation can also be realized. Two 
numerical examples of reliability optimum 
allocation are used to describe the implementation 
procedure of CA for two-level allocation and 
three-level optimum allocation, respectively, and 
to preliminarily validate its correctness and 
effectiveness. Then an engineering problem is to 
further prove our method is applicable for 
engineering design. And in last part of this paper, 
weight requirement allocation is taken as example 
to briefly describe the mathematical model and 
solution procedure for collaborative allocation of 
design requirement in aircraft conceptual design. 

2  Optimum Allocation in Aircraft 
Conceptual Design 

In aircraft design process, before detail 
design begins, design requirements must be 

assured to indicate some design constraints, 
such as reliability and weight constraints for 
each part of aircraft. The problem, which is how 
to allocate design requirements can make the 
system (such as an aircraft) achieving best 
integration performance, is defined as optimum 
allocation of design requirements or optimum 
allocation as abbreviation. For aircraft design, 
conventional design requirements need to be 
defined include reliability, cost and weight 
requirements. They are usually allocated 
according to topology structure of aircraft, 
which is characteristic of hierarchy and 
decomposition. Aircraft can be hierarchically 
decomposed into wing, fuselage, horizontal tail 
and vertical tail, etc, or further decomposed into 
spars, ribs, skins and frames, etc, as shown in 
Fig.1. In this way, design requirements may be 
allocated to large-scale parts (such as wing and 
fuselage), or to medium-scale components (such 
as wing box and spar) in more detail. It is 
apparent that the former belongs to two-level 
allocation problem and the latter belongs to 
three-level one. Ref.9 suggests that the bottom 
level of decomposed aircraft had better be 
medium-scale components. It can be concluded 
that the approach of three-level allocation 
architecture is sufficient for optimum allocation 
problem in aircraft conceptual design. 

............

...

Aircraf t Structure
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Vertical
 Tail Fuselage Landing

 Gear

Wing Box Spar

...

Rib
 

Fig. 1 Hierarchical decomposition framework of aircraft 

3  The Principle and Mathematical Model of 
Collaborative Allocation 

3.1 Principle of CA 
For CA, the optimum allocation problem is 

decomposed into one main optimization problem 
and several sub-optimization problems. Main 
optimization provides subsystems with design 
requirements. Sub-optimization is to minimize 
the discrepancy between allocation value and its 
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own corresponding variables. Sub-optimization 
optimizes its local variables, such as structure 
size, or provides bottom components, such as 
wing box, with detailed design requirements. The 
results of sub-optimization are returned to main 
optimization to construct compatibility 
constraints. Then main optimization is performed 
to reallocate design requirements for improving 
integration performance and progressing toward 
compatibility between subsystems. 

CA is of two-level optimization 
architecture, as shown in Fig.2. Compared with 
DCM, CA owns general allocation framework 
and really realizes separating main optimization 
from sub-optimization. The allocation procedure 
of CA is almost same as optimization procedure 
of CO. Therefore most CO algorithms [5-8], such 
as response surface based CO [6], Subspace 
Optimization Algorithm (SAO)[7], can be 
applied in CA. 

Rule for terminating
sub-optimization

Rule for terminating
main optimization

 System iteration

Main optimization

Sub-optimization

Rule for terminating
system optimization

 
Fig. 2 Optimization architecture of CA 

The allocation framework of CA is 
illustrated in Fig.3. Where, N  is the number of 
subsystems, i  is the number of components in 
subsystem , 

M
i X is design requirement, and 

subscript ‘ ’, ‘ i ’ (S N,,2,1 L=i ) and ‘ ij ’ 
( i ) indicates corresponding value of 
system, subsystem i  and component  in 
subsystem , respectively. For case 1 in Fig.3, 
main system provides subsystems with design 
requirements and subsystems optimize their 
local variables. And for case 2 in Fig.3, main 
system provides subsystems in medium level 
with design requirements and subsystems gives 
detailed design requirements for components in 
bottom level and optimizes local variables of 
components. Accordingly, in the aspect of 
allocation architecture, our method is 
appropriate for conventional optimum allocation 
problem in aircraft conceptual design. 

Mj ,,2,1 L=
j

i

...

SX

1X 2X NX

Main System Level

Subystem Level    
(1) Framework of two-level allocation 

...

...

SX

1X 2X NX

...

Main System Level

Subystem Level

Component  Level11X 12X
1M1X  

(2) Framework of three-level allocation 

Fig. 3 Allocation framework of CA 

3.2 Mathematical Model of CA 
According to the principle defined in 

section 2.1, mathematical model of CA is 
established in Eq.1 and Eq.2. 
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Eq.1 is sub-optimization model. Where,  and 
, are design requirement and auxiliary 

variables for subsystem i  provided by main 
system, respectively. iX  and i , as variables in 
subsystem , correspond to allocated value above. 
If the system is decomposed in two-level,  are 
local variables in subsystem level, by which  
and i  can be calculated. And for three-level 
decomposition, i  are local variables in 
component level. In this condition,  is acquired 
through calculation of design requirements of 
components in subsystem i , and  can be gotten 
in the similar way. Eq.2 is main-optimization 
model. 

sys
1iP

sys
2iP

Y
i

iT

iX
Y

T

iX

iY

P  are design variables. The first inequality 
constraint shows that the prescribed design 
requirement cannot be exceeded. (a)-(b) are 
compatibility constraints, which indicates 
compatibility between allocation value prescribed 
by main system and expected value for subsystem. 
Superscript ‘ ’ and ‘ ’ indicates allocated value 
and expected value, respectively. 

sys *
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4 Applications of CA in Reliability Optimum 
Allocation 

4.1 A Numerical Example of Two-level 
Allocation Architecture 

Reliability optimum allocation problem in 
Eq.3 is used to explain how to apply CA for 
two-level optimum allocation and preliminarily 
validate it. 
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Where,  is reliability requirement and C  is cost. 
Subscript ‘ ’ and ‘ i ’ indicates corresponding value 
of main system and subsystem i , respectively. 

R

S

According to CA, Sub-optimization in Eq.4 
and 5 and main optimization in Eq.6 is 
established.  
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Where,  is compatibility constraint 
corresponding to subsystem i , superscript ‘ ’ 
indicates value allocated by main system. 

iCon
sys

SAO [7] is transplanted into CA to solve this 
problem, the flowchart of which is shown in 
Fig.4. Initial allocation is provided experientially. 
Auxiliary variables including cost of subsystems 
are introduced to calculate total cost. Sub-
optimization is to minimize the discrepancy 
between allocation value and corresponding 

value in subsystems. After that linear 
approximation constraints representing sub-
optimization are established and return to main 
optimization to replace initial compatibility 
constraints. Then main optimization is carried 
out with reliability and cost of subsystems as 
design variables, the results of which are 
reallocated to subsystems. As the iteration going 
on, the linear approximation constrains provided 
by subsystems are continuously appended in 
main optimization. All these linear constraints 
gradually approach initial constraints, until 
convergence is achieved. 
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2
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1 ,RR
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Fig. 4 Flowchart of optimum allocation in Eq.3 using CA 

DM and CA are both used to solve problem 
in Eq.3 and results are listed in Table 1 for 
comparison. And iteration histories for main 
optimization and sub-optimizations using CA are 
shown in Fig.5 and 6, respectively. Table 1 
shows that, with constraint of , 9.0S ≥R 1.11 ≤C  
and 0.12 ≤C , the lowest cost of 1.9973 and 
1.9974 is acquired using CA and DM, 
respectively, which preliminarily validate our 
method. Fig.5 and 6 indicates that CA is of better 
convergence performance, and compatibility 
constraints finally achieve ideal value zero. 
Table 1  Two-level reliability optimum allocation results using 

DM and CA 

Subsystem 1 Subsystem 2 Main System  

R1 C1 R2 C2 RS CS

IA 0.94 0.85 0.96 0.9   

DM 0.9497 1.0392 0.9477 0.9582 0.9000 1.9974

CA 0.9510 1.0413 0.9464 0.9560 0.9000 1.9973
IA=Initial Allocation 
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Fig. 5 Iteration history of main optimization 
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Fig. 6 Iteration history of sub-optimization 

4.2  A Numerical Example of Three-level 
Allocation Architecture 

The reliability optimum allocation problem 
in Eq.7 is used to validate CA for three-level 
optimum allocation. Through Fig.7 it is 
apparent that system is composed of five 
subsystems and each subsystem encompasses 
two components. 
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R11 R12 R21 R22 R31

R32R41

R42
R51

R52  
Fig. 7 Topology of system 

Where,  is reliability requirement and C  is cost. 
Subscript ‘ ’, ‘ i ’ and ‘ ’indicates corresponding 
value of main system, subsystem i  and 
component  in subsystem , respectively. 

R

S ij

j i
According to CA, sub-optimization in Eq.8, 

Eq.9 and main optimization in Eq.10 is 
established. Eq.8 is the optimization model for 
subsystem 1 and 2, while Eq.9 shows that for 
subsystem 3-5. Main optimization takes the duty 
of allocating reliability requirements for 
subsystems, and sub-optimization defines those 
for components. Auxiliary variables, 

, are also transmitted to subsystems 
in addition to reliability requirements to 
calculate total cost. 
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Where,  is compatibility constraint 
corresponding to subsystem i , superscript ‘ ’ 
indicates value allocated by main system. 

iCon
sys

Response surface based collaborative 
optimization [6] is transplanted into CA to solve 
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this problem, the flowchart of which is shown in 
Fig.8. 
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Fig. 8 Flowchart of CA solving allocation problem in Eq.7 

DM, DCM and CA are all adopted to solve 
optimum allocation problem in Eq.7 and results 
are listed in Table 2 for comparison. Where, Sij 
( , ) represents component  in 
subsystem . And Fig.5 and 6 shows iteration 
histories for main optimization and sub- 
optimizations of CA, respectively. Table 2 
shows that, with constraint satisfaction, DM, 
DCM and CA provide best allocation of the 
lowest cost of 1.1266, 1.1533 and 1.1397. The 
solution of DM is a little better than that of CA, 
which is due to compatibility constraints in 
main optimization of CA are approximated by 
quadratic response surface method. 

Nevertheless, for problem of multiple variables 
and complicated analysis, such as aircraft 
conceptual design, CA is easier to be realized. 
While compare to DCM, the solution of CA is 
better, which may be caused by DCM being 
sensitive to step size. And Fig.5 and 6 shows 
CA’s better convergence performance. 
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Fig. 9 Iteration history of main optimization 
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Fig. 10 Iteration history of sub-optimization 

 
Table 2  Three-level reliability optimum allocation results using DM, DCM and CA 

 
Subsystem (S1) Subsystem (S2) Subsystem (S3) Subsystem (S4) Subsystem (S5)  
S11 S12 S21 S22 S31 S32 S41 S42 S51 S52

Rij 0.8093 0.6607 0.7815 0.6398 0.3536 0.2687 0.7746 0.6082 0.9792 0.9040
Cij 0.2183 0.2183 0.2036 0.2046 0.0019 0.0016 0.0222 0.0146 0.1499 0.0915
Ri 0.5348 0.5000 0.5273 0.9117 0.9980 DM 

RS = 0.9990      CS = 1.1266
Rij 0.8472 0.6917 0.7826 0.6389 0.5572 0.3870 0.6159 0.4363 0.9795 0.9027
Cij 0.2392 0.2392 0.2042 0.2041 0.0066 0.0040 0.0092 0.0055 0.1510 0.0904
Ri 0.5860 0.5000 0.7286 0.7835 0.9980 DCM 

RS = 0.9990      CS = 1.1533
Rij 0.8102 0.6608 0.7830 0.6386 0.3757 0.2001 0.8465 0.2039 0.9900 0.8000
Cij 0.2188 0.2183 0.2044 0.2039 0.0022 0.0008 0.0351 0.0009 0.2121 0.0432
Ri 0.5354 0.5000 0.5006 0.8778 0.998 

CA 

RS = 0.9990      CS = 1.1397
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4.3 Reliability Optimum Allocation for An 
Engineering Truss System 

In this section, CA is applied in the 
reliability optimum allocation problem for an 
engineering truss in Fig.11. We aim to define 
reliability requirement for each bar in it. 
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Fig.11 Topology of the engineering truss 

The dimension and applied force of the truss is 
listed in Table 3. The material attributes are 
listed in Table 4. 

Table 3  Data of dimension and applied force 

Parameter/Unit 1D /m 
2D /m 

3D /m 
4D /m 

5D /m L /kN
Value 3 2 8 8 0.5 200 

Table 4  The material attributes 

Parameter / Unit Symbol Value 
Density / kg/m3 ρ  2.68×103

Admissible pulling stress / GN/m2 ]S[ d
 0.1724 

Admissible crushing stress/ GN/m2 ]S[ c
 0.1724 

Modulus of elasticity / GPa E 69 
Intensity variability RV  0.1 

Load variability LV  0.2 

Because  is much larger than D , 
the displacement at node 3 or 4 must be much 
smaller than that at node 7 or 8. That is to say, 
comparing with the displacement at node 7 and 
8, the displacement at node 3 and 4 is near to 
zero. Therefore, the truss in Fig.11 can be 
approximately treated as a system composed of 
two subsystems in Fig.12.  

43 DD + 2

1 3

2 4

1

2

3

4

5

xF3

yF3

xF4

yF4  
(1)  Topology of subsystem 1 
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(2)  Topology of subsystem 2 

Fig.12  Topology of subsystems 

The reliability optimum allocation problem 
is defined in Eq.11. This problem is carried out 
to allocate appropriate reliability requirement to 

each bar, on condition that the reliability 
requirement for system and subsystems no less 
than prescribed value. 
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Where, ,  and  is reliability requirement 
for engineering truss system in Fig.11 and 
subsystems in Fig.12, respectively.  and  is 
reliability requirement and weight of No.  bar, 
respectively, 

SR S1R S2R

iR iW
i

13,,2,1 L=i . 
According to failure rule, multiplied by S1R

( )12 SSR  is . Because the lower limit of  is 
much larger than that of  and is near to 1,  
can be approximately calculated through 
multiplying  directly by . That is to say, 
two subsystems in the engineering truss system 
are supposing to be series-wound. And due to 

SR S1R

S2R SR

S1R S2R

)|( 121S2S1S SSRRRR ⋅≤⋅ , if  is no less 
than 0.99, 

2S1S RR ⋅

)|( 121S SSRR ⋅  must also satisfy this 
constraint. In this condition, the supposition of 
subsystems being series-wound is credible. 

CA is used to solve the reliability optimum 
allocation problem in Eq.11. Sub-optimization 
in Eq.12, Eq.13 and main optimization in Eq.14 
is established. 
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Where, for No. i  bar,  is section area and ix iσ  
is pulling stress or crushing stress.  and  
is probability of failure for subsystem 1 and 2, 
respectively. W  is weight of subsystem k , and  

 is compatibility constraint corresponding 
to subsystem , . Superscript ‘ sys ’ and ‘*’ 
indicates value allocated by main system and 
expected value of subsystem, respectively. In 
order to calculate total weight, auxiliary 
variables,  and , are also transmitted to 
subsystems in addition to reliability 
requirements. 

1fP 2fP

kS

kCon
k 2,1=k

sys
S1W sys

S2W

Response surface based collaborative 
optimization [6] is transplanted into CA to solve 
this problem. In subsystem level, structural 
reliability optimization is carried out, using 
O.Ditlevsen’s Narrow Reliability Bounds for 
Structural System[10]. The results are listed in 
Table 5. The results using DM are also listed in 
it for comparison. Table 5 shows that, with 
constraints satisfaction, DM and CA provide 
best allocation of the lowest weight of 1119.4 
and 1119.6, which is almost equal. It indicates 
that CA is effective for reliability optimum 
allocation of engineering design. And the 
iteration history of main optimization in Fig.13 
shows CA’s better convergence performance. 

Table 5  Results using DM and CA for the reliability optimum 
allocation problem in Eq.11 

Variable DM CA 
1SR  0.9999 0.9999 

Subsystem 1 
1SW /kg 213.9947 210.0000 

2
 

SR 0.9901 0.9901 
Subsystem 2 

2SW /kg 905.3687 909.5588 

SR  0.9900 0.9900 
Main System 

SW /kg 1119.4 1119.6 

1
/mx 2

0.0005 0.0005 

2x /m2
0.0152 0.0149 

3
/mx

2
0.0024 0.0027 

4
/mx 2

0.0020 0.0025 

5
/mx

2
0.0147 0.0143 

6
/mx

2
0.0093 0.0093 

7x /m2
0.0003 0.0002 

8
/mx

2
0.0107 0.0106 

9
/mx

2
0.0093 0.0094 

10x /m2
0.0007 0.0007 

11x /m2
0.0023 0.0024 

12x /m2
0.0017 0.0018 

Optimal section 
area of bar 

13x /m2
0.0090 0.0093 

2 4 6 8 1

1100

1200

1300

1400

1500

0

W
ei

gh
t /

 k
g

Iterations  
Fig.13  Iteration history of main optimization 

5  Design Requirement Collaborative 
Allocation in Aircraft Conceptual Design 

In aircraft conceptual design, designers 
care much about how to allocate weight 
requirements. In this section, how CA can be 
applied in this problem is briefly depicted. 
According to decomposition framework of 
aircraft in Fig.1, weight requirement is allocated, 
the allocation architecture of which is shown in 
Fig.14. Where, W  is weight,  is reliability, 
subscript ‘ S ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’, ‘ ’ and ‘ ’ 
indicates corresponding value of aircraft, wing, 
fuselage, wing box, spar, frame and crossbeam. 
Aircraft is composed of a great deal of large-
scale parts and medium-scale components, most 
of which are omitted in Fig.14 for simplification. 

R

w f wb ws ff fs

Main System Level

Subsystem Level

Component Level

Aircraft

Wing Fuselage

Wing Box Spar Frame Crossbeam

wW fW

wbW wsW ffW fsW
wbR wsR ffR fsR

wR fR

... ...

...

 
Fig. 14  Simplified weight requirement allocation 

 architecture for aircraft structure 

Here, total weight of aircraft, , need to 
be reasonably allocated for components to 
achieve highest integration reliability , with 
constraint that  is no more than prescribed 
weight requirement . Mathematical models 
for weight requirement allocation problem in 
Fig.14 are listed in Fig.15. Where, 

SW

SR

SW

0W

X  are local 
design variables in sub-optimization (such as 
structure size), by which reliability and weight 
of components can be expressed (such as 

( )wbwbwb XRR = ). Since optimum allocation must 
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be finished in aircraft conceptual design, 
calculation of reliability and weight may rely on 
simplified analysis model. In Fig.15, constraints 
at last row in sub-optimization model are side 
constraints for local design variables, side 
constraints for reliability and weight of 
medium-scale components (such as wing box), 
and side constraints for reliability and weight of 
large- scale part (such as wing). Constraints at 
last row in main optimization model are side 
constraints for reliability and weight of large-
scale part, and side constraints for integration 
reliability and total weight. According to 
mathematical model in Fig.15, and appropriate 
CA algorithm is adopted, it is expected that 
design requirement can be saved and integration 
performance can be improved. 

Main Optimization (MP)
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Fig. 15 Mathematical model of weight requirement collaborative 

allocation according to Fig.14 

According to CA, weight optimum 
allocation problem above can be solved in steps 
below: 
(1) Initial weight requirement allocation is 

provided experientially: . 
Auxiliary variables are also initialized 
experientially: → . 

*
f

*
w ,, WWW L→

R *
f

*
w ,, RR L

(2) Concurrent sub-optimization is performed: SP-W 
is to provide expected value for wing 
subsystem: ; SP-F is to provide those for 
fuselage subsystem: 。 

exp
w

exp
w , RW

exp
f

exp
f , RW

(3) Main optimization is carried out to provide a new 
allocation: W → , →  . *

f
*

w ,, WW L R ,,*
w LR *

fR

(4) If ε≤− − n
s

1n
s

n
s RRR , go to step 5. If not, back to 

step 2. Where,  is integration reliability in n 
iteration, 

n
sR

ε  is a user-defined small positive value. 
Optimization is finished. The best weight 

requirements for components are  
. 

L,, *
ws

*
wb WW

*
fs

*
ff ,, WW

6 Conclusion 
A new method named Collaborative 

Allocation is developed for optimum allocation 
of design requirements in aircraft conceptual 
design. CA is preliminarily validated and it still 
needs to be further studied. Through our study, 
it is shown that: 

Compare to DM and DCM, CA is of more 
general optimization architecture. For different 
allocation problem, main program may keep 
unchanged except little modification of 
optimization model. So CA is better in program 
inheritance. 
(1) Compare to DM, the dimension of design 

variables is reduced through decomposition 
of optimization in CA. In this way, 
complicated analysis of subsystem may be 
performed inside its respective sub-
optimization. So optimization is easier and 
concurrent computation can be realized. 

(2) Compare to DCM, main optimization is 
really departed from sub-optimization in 
CA. Sub-optimization need not to be 
performed in the process of main 
optimization. Accordingly optimization is 
easier and robust is better. 
The main difficulty in CA is how to 

construct compatibility constraint can make 
main optimization easier to be solved. 
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