25th Congress of International Council of the Aeronautical Sciences, 3 - 8 September 2006, Hamburg, Germany
Paper ICAS 2006-5.3.4


STAGNATION-POINT REVERSE FLOW COMBUSTOR PERFORMANCE WITH LIQUID FUEL INJECTION

J. Crane, Y. Neumeier, J. Jagoda, J. Seitzman, B. T. Zin
Georgia Institute of Technology, USA

Keywords: SPRF, ultra-low, NOx, CO, Jet-A

This paper describes an investigation of the performance of the recently developed ultra low emissions, Stagnation-Point Reverse-Flow (SPRF) Combustor when burning liquid fuels (Jet-A and heptane). This study has been undertaken because of the need to burn liquid fuels with low emissions in gas turbines that are used, for example, in aircraft engines, landbased power generation, and marine applications. In contrast with state of the art combustors, in which the reactants and products enter and leave the combustor through opposite ends of the combustor, the reactants and products enter and leave the SPRF combustor through the same plane opposite a closed end. The design of the SPRF combustor allows mixing of reactants with hot combustion products and radicals within the combustor, prior to combustion. Thus, no external premixing of fuel and air is required. Additionally, since the air and fuel enter opposite the closed end of the combustor, they must stagnate near the closed end, thus establishing a region of low velocity just upstream of the closed end that helps stabilize the combustion process. This apparently produces a low-temperature, stable, distributed reaction zone. Previous studies with the SPRF combustor investigated its performance while burning natural gas. This paper presents the results of SPRF combustor studies using liquid fuels, both heptane and Jet-A. The performance of the combustor was investigated using an airblast fuel injector, which is suitable for the low fuel flow rates used in laboratory experiments. To reduce pressure losses across the injector, a diffuser was incorporated into an airblast injector. It was found that stable combustor operation was achieved burning Jet- A with emissions of less than 1 ppm NOx and 5 ppm CO, pressure losses less than 5 percent, and a power density on the order of 10 MW/m3 in atmospheric pressure. This power density would linearly scale to 300 MW/m3 in a combustor at a pressure of 30 atmospheres.


view full paper