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Abstract 
The overset field-panel method presented in this 
paper solves the integral equation of the time-
linearized transonic small disturbance equation by 
an overset field-panel scheme for rapid transonic 
aeroelastic applications of complex configurations. 
A block-tridiagonal approximation technique is 
developed to greatly improve the computational 
efficiency to solve the large size volume-cell 
influence coefficient matrix.  Using the high-fidelity 
computational Fluid Dynamics solution as the 
steady background flow, the present method shows 
that simple theories based on the small disturbance 
approach can yield accurate unsteady transonic 
flow predictions. The aerodynamic influence 
coefficient matrix generated by the present method 
can be repeatedly used in a structural design loop; 
rendering the present method as an ideal tool for 
multi-disciplinary optimization. 

 

Introduction 
The unsteady panel methods such as the 
Doublet Lattice Method1 (DLM), ZONA62 for 
subsonic unsteady aerodynamics and ZONA73 
for supersonic unsteady aerodynamics have 
been well accepted by the aerospace industry 
for many years as the primary tools for routine 
aeroelastic applications.  The unsteady panel 
methods can handle complex configurations 
without an extensive model-generation effort, 
provides expedient and accurate unsteady 
aerodynamic predictions, and most importantly, 
generates the Aerodynamic Influence 
Coefficient (AIC) matrices that directly relate 
the downwash to the unsteady pressure 
coefficients, i.e.,  

{ } [ ] { }pC AIC W∆ =  (1) 

where pC∆ is the unsteady pressure jumps 
 and W is the downwash due to the 

structural oscillations 
 

The AIC matrix is considered as one of the key 
elements in the industrial aeroelastic design 

process because it is independent of the 
structural characteristics, therefore it needs to 
be computed only once and can be repeatedly 
used in a structural design loop. 
 

However, it is generally believed that the 
unsteady panel methods are not applicable in 
the transonic region because of the lack of the 
transonic shock effects.  On the other hand, the 
Computational Fluid Dynamic (CFD) 
methodology provides accurate transonic 
solutions by solving the Euler�s or Navier-
Stokes� equations, but it does not generate the 
AIC matrix and cannot be effectively used for 
routine aeroelastic applications nor for an 
extensive structural design/optimization.  
Therefore, there is a great demand from the 
aerospace industry to have an unsteady 
transonic aerodynamic method with an AIC 
matrix generation capability.  In fact, such an 
unsteady transonic aerodynamic method can be 
developed using the unsteady field-panel 
method. 
 

Integral Equations of the Unsteady Field-
Panel Methods 

Over the past two decades, great progress has 
been made in the development of the field-
panel method for unsteady transonic flow 
computations.  In 1985, Voss4 proposed an 
AIC-based unsteady field panel method using a 
velocity potential approach.  Later on, this 
method was improved by Lu and Voss5 using a 
Transonic Doublet Lattice Method (TDLM) to 
eliminate the wake modeling in the velocity 
potential approach.  The TDLM solves the so-
called Time-Linearized Transonic Small 
Disturbance (TLTSD) equation that reads 

( )
2 2 2
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where φ  is the perturbed unsteady velocity 
potential,  k is the reduced frequency,  ∞M  is 
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the freestream Mach number, 21 Mβ ∞= − ,  

xoxv K φφσ = .  
( )

2

21

β
γ ∞+

=
MK , and γ is the 

specific heat ratio. 
 

Eq. (2) is obtained by linearizing the nonlinear 
transonic small disturbance equation with 
respect to the structural oscillating amplitude 
which is assumed to be small.  The term oxφ  in 
the right hand side (RHS) of equation (2) is the 
steady perturbation velocity component along 
the freestream direction, defined here as the 
�steady background flow,� which contains the 
steady nonlinear transonic shock effects in 
transonic flows.  This is to say that the solution 
of equation (2) is linearly varying with the 
structural oscillating amplitude but it contains 
the nonlinear transonic shock effects embedded 
in the steady background flow.  It should be  
also noted that 
equation (2) can lead 
to an AIC matrix 
because of its linear 
characteristics with 
respect to the 
structural oscillating 
amplitude, i.e., the 
downwash in the 
RHS of equation (1). 

 
Fig. 1  Integration domain 

of the integral solution 

Assuming ( )vx
σ

∂
∂  in the RHS of equation (2) 

to be a volume source, the integral solution of 
the TLTSD equation at a point (xo, yo, zo) 
shown in Fig. 1 consists of three parts: 

( )o o o s v shockx , y ,zφ φ φ φ= + +
 (3) 

In equation (3), sφ  represents the influence of 
the velocity potential from the surface 
singularities which can be written as  
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where pC∆ and 
n∂

∂φ  are the unsteady pressure 

jump and unsteady source distributed on the 
lifting surfaces and bodies, respectively. 

 K  is the acceleration potential kernel, 
whose detailed expression can be found in 
Ref. 2. 
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source kernel. 

 and 222 ζηξ ++=R , xxo −=ξ , 
yyo −=η , and zzo −=ζ . 

 

In fact, equation (4) is the integral solution of 
the linear unsteady potential equation and is the 
equation solved by ZONA6 for the wing-body 
configurations.  It should be noted that the 
TDLM is formulated for the lifting surface 
only, i.e. the unsteady source integral for 
bodies is absent.  Here, we adopt the ZONA6 
formulation to handle complex configurations 
such as the wing-body combinations.  In the 
ZONA6 paneling scheme, the configuration 
surfaces are descritized into many small boxes, 
called the surface boxes, leading to a matrix 
that relates the surface singularity strength to 
the normal velocity on each box. 
 

The second and third terms on the RHS of 
equation (2) read 

( )∫∫∫ ∂
∂−=

V
vv GdV

x
σ

π
φ

4
1  (5) 

∫∫∆−=
shock

vshock GdSσ
π

φ
4
1  (6) 

In equations (5) and (6), vφ  is the influence of 
the velocity potential from the volume source 
and shockφ  is the influence of the velocity 
potential from the shock surface on which vσ∆  
represents the jump of the volume source 
strength across the shock surface.  Note that 

shockφ  automatically vanishes if the transonic 
shock is absent because vσ∆ = 0.  In addition, 
in the presence of shock, shockφ  can be 
eliminated by performing integration by parts 
for the volume integral of vφ  such that 
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where xs represents the shock location and ε 
represents an infinitesimal thickness of the 
shock surface. 
 

Combining equations (8) and (6) yields 

∫∫∫=+
V

xvvshock dVGσ
π

φφ
4
1  (9) 

Equation (9) can be recast into a matrix 
equation by first defining a volume block 
surrounding the lifting surfaces or bodies and 
then descritizing the volume block into many 
small volume cells.  A typical volume-cell 
modeling for lifting surfaces and bodies is 
shown in Fig. 2.  

       
(a) Lifting Surfaces  (b) Bodies 

Fig. 2  Typical volume cell modeling for lifting 
surfaces and bodies 

 

Unlike the CFD methodology whose volume 
mesh must be extended far away from the 
surface mesh, the domain of the volume block 
for the field-panel method needs only to 
contain the nonlinear flow region in which the 
volume source strength, vσ , is significant.  
This is because outside the domain of the 
volume block the solution is dominated by 
equation (4), thereby the contribution from 
equation (9) can be ignored. 
 

At points located on the surface boxes, the 
normal perturbation velocity reads 

{ } { } [ ] [ ]{ }v
p

B
n

C
AWn σφφ +
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At points located in the volume cells, the 
velocity potential reads 

{ } [ ] [ ]{ }v
p
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C σφφ +
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where φ∇⋅
!!n  represents the normal 

perturbation velocity on the surface boxes, 
 matrices [A] and [C] contain the influence 

coefficients from the surface singularities to 
the points on the surface boxes and in the 
volume cells, respectively, 

 and matrices [B] and [D] contain the 
influence coefficients from the volume 
sources to the points on the surface boxes 
and in the volume cells, respectively. 

 

Equation (10) can be linked to equation (11) by 
relating vσ  to φ  through a finite difference 
operator [T] such that 
{ } [ ]{ }φσ Tv =  (12) 
Voss4 suggested that such a finite difference 
operator can be formulated using the Murman�s 
scheme6 that reads. 

( )1 1 1 1 1v i vi i vi i xi i xiσ µ σ µ σ µ φ µ φ= − + + −− − − − (13) 
where  µi =0 for Mi <1 and µi =1 for Mi ≥ 1, Mi 

is the local Mach number in the ith 
volume cell, and i is the index of the 
volume cells along the freestream 
direction. 

 

The Murman�s scheme is a conservative finite 
difference operator and guarantees the correct 
mathematical shock jumps.  It automatically 
switches from the central differencing in the 
subsonic flows to the backward differencing in 
the supersonic flows, thereby, introduces the 
directional bias to the integral equations of 
TLTSD for handling the mixed flow problems 
of the transonic flow.  The detailed expression 
of the matrix [T] using the Murman�s scheme 
can be found in Ref. 7. 
 

Substituting equation (12) into equations (10) 
and (11) and combining the resulting equations 
yields 

{ } [ ]












∂
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=

n

C
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φ  (14) 

where  
[ ] [ ] [ ][ ][ ] [ ]CETBAA 1−+=  (15) 
and 
[ ] [ ] [ ][ ]TDIE −=  (16) 
Inverting the matrix [ ]A  gives the AIC matrix 
such as the one shown in equation (1).  Note 
that the size of the AIC matrix is only the 
number of surface boxes and the form of the 
AIC matrix is identical to that of the DLM, 
ZONA6, and ZONA7.  This is a very attractive 
feature for industrial aeroelastic applications, 
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because once the AIC matrix is obtained, all 
downstream AIC-based aeroelastic solution 
procedures for flutter, aeroservoelastic and 
dynamic loads analyses remain unchanged. 
 

However, the unsteady field-panel method does 
have several technical issues that need to be 
resolved before it can be adopted as an 
industrial tool for expedient unsteady 
aerodynamic computations. 
 

Block-Tridiagonal Approximation of the [E] 
Matrix 

The matrix [E] in equation (16) is a complex 
and fully populated matrix whose size is the 
number of volume cells.  To model a general 
three-dimensional problem may require more 
than 10,000 volume cells and this number 
increases rapidly as the complexity of the 
configurations increases.  Therefore, to invert 
(or decompose) such a large matrix is 
impractical for routine aeroelastic applications.  
In the present method, a block-tridiagonal 
approximation technique is employed to 
circumvent this technical issue. 
 

The idea behind the block-tridiagonal 
approximation technique is a simple one.  First, 
the volume cells are grouped into many sub-
blocks.  For instance, the volume blocks on the 
top and bottom of the lifting surface can be 
divided into several sub-blocks and the volume 
cells within the same sub-block are grouped 
together.  In so doing, the matrix [E] can be 
written as 
[E] = [EB] + [Eε] (17) 
where [EB] is a block-tridiagonal matrix whose 

tridiagonal blocks contain the influence 
coefficients from the self-block and the 
adjacent sub-blocks.   

 [Eε] contains zeros in the tridiagonal blocks 
and the influence coefficients from the non-
adjacent blocks in the off-tridiagonal blocks. 

 

Next, by comparing the order of magnitude of 
the coefficients in the matrix [Eε] to the matrix 
[EB], it can be seen that all coefficients of [Eε] 
are small.  This is because the integrand in the 
integral equation shown in equation (5) 
contains a 1/R function that decays rapidly 

when the point (xo, yo, zo) is away from the non-
adjacent sub-blocks.  Therefore, the inverse of 
the matrix [E] can be solved approximately by 
the following equation: 
[E]-1 ≈ [EB]-1 - [EB]-1 [Eε] [EB]-1 (18) 
Finally, because [EB] is block-tridiagonal, [EB]-1 
can be computed efficiently using a block-
tridiagonal matrix solver.  In addition, because 
the block-tridiagonal matrix solver only needs 
to hold three block matrices in the computer 
memory at a time, a large amount of computer 
memory for solving [E]-1 can be saved.   
 

Overset Field-Panel Scheme for Complex 
Configurations 
The objective of the overset field-panel scheme 
is to minimize the volume-cell generation effort 
for complex configurations.  For a simple 
lifting surface or body shown in Fig. 2, the 
generation of volume cells can be automated; 
simply specifying the height and number of 
layers of the volume block.  However, to 
generate a set of conformal volume cells over a 
complex configuration such as a wing with 
underwing stores requires an extensive volume-
cell generation (or grid generation) effort.  

 
Fig. 3 Overset field-panel scheme for a wing with an 

underwing missile 
 

The overset field-panel scheme allows the 
volume cells to be generated independently on 
each component of the complex configuration.  
For instance, a wing with a underwing missile, 
a pylon and fins shown in Fig. 3 can be 
separated into multiple components; wing, 
pylon, missile body, and fins.  On each 
component, a volume block is defined 
independently which can be automatically 
divided into volume cells.  Therefore, among 
all volume blocks volume cells of different 
volume blocks may intersect each other.  The 
overset field-panel scheme constructs the 
influence coefficient matrices of such an 
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overset volume-cell model based on the 
following procedure: 

(a) Volume cells in different volume blocks 
do not influence each other. 

(b) Volume cells in the same volume block 
influence only their associated surface 
boxes. 

(c) All surface boxes influence all volume 
cells. 

    
(a) One Block Modeling (b) Overset Modeling 

Fig. 4  One-block modeling and overset modeling of a 
T-tail configuration 

 

The above overset field-panel scheme is 
formulated with the realization that the 
interference between volume blocks can be 
transmitted through the integral equations 
shown in equation (3).  Unlike the overset CFD 
methodology where the interpolation of the 
flow solutions in the overset region is required, 
the overset field-panel scheme does not need 
such an interpolation.  Therefore there is no 
need to compute the topology of the 
intersection among cells; greatly simplifying 
the volume-cell generation effort for complex 
configurations.  To verify this scheme, let us 
consider a T-tail configuration consisting of a 
horizontal tail and a vertical fin.  This T-tail 
configuration can be modeled by a single 
rectangular volume block whose volume cells 
are conformed to the surfaces of the tail and the 
fin.  This one-block modeling is shown in Fig. 
4.a. and its influence coefficient matrix 
equations read: 

[ ] [ ] ( ){ }
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(19) 

where the subscript S, ST and SF denote the 
surface boxes of the tail and of the fin, 
respectively. 

 The subscript V denotes the volume cells of 
the one volume block 

 And ( )
TVS  is the influence from V to ST, 

( )
FVS  is the influence from V to SF, ( )

VT
S

 is 

the influence from ST to V, ( )
VF

S
 is the 

influence from SF to V, ( )VV  is the influence 
from V to V 

 

Equation (19) can be considered as �exact� 
because of the one-block modeling.  The same 
T-tail configuration can be also modeled by 
two volume blocks, one for the tail and one for 
the fin which are depicted by the solid box and 
the dashed box in Fig. 4.b, respectively.  Fig. 
4.b also shows that the width of the volume 
block of the fin is shorter than that of the tail by 
�2a�.  Apparently, the volume cells of the fin 
are all embedded in those of the tail; rendering 
a overset field-panel model.  The influence 
coefficient matrix equations of this overset 
field-panel model can be written as: 

[ ]

( )
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( )
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F F F

pS

S p

v vTvT
v vFvF
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∆       = +    ∆         
    

   
      

 (20) 

where the subscript VT and VF denotes the 
volume cells of the tail and fin, respectively. 
 

When �a� = 0, because the domain of the tail 
volume block is identical to that of the fin, it is 
obvious that ,CCC VSVSVS TTTFT ==  

,CCC VSVSVS FFFTF ==  

FFFTTT VSSVVSSV BBBB ===  and 

VVSVSV DDD FFTT == , therefore 

VVV FT φφφ ==  and 

( ) ( ) ( )vvvvvv FT
σσσ == .  Thus, the solution 

of the one-block modeling and the overset 
field-panel model is identical if �a� = 0. 
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When �a� ≠ 0, the overset field-panel modeling 
becomes an approximation of the one-block 
modeling.  However, because the domain of 
�a� is far away from the fin, its contribution of 
the influence to the fin is small and can be 
ignored as long as �a� is not very large. 
 

The overset field-panel scheme can also greatly 
reduce the computer memory and CPU time for 
solving the [E] matrix.  As shown in equation 
20, because the volume cells in different 
volume blocks do not influence each other, the 
[D] matrix becomes block diagonal; leading to 
a block diagonal [E] matrix that can be inverted 
based on a block-by-block procedure.  
Furthermore, the block-tridiagonal 
approximation technique can be applied to 
invert each diagonal block matrix to further 
increase the computational efficiency.   
 

Steady Background Flow From the High-
Fidelity CFD Codes 

It is well-known that the transonic small 
disturbance theory may not provide accurate 
solutions for strong transonic shock cases 
because it cannot correctly model the entropy 
gradients from strong shock nor convert the 
vorticity.  However, this is not to say that the 
transonic small disturbance theory is not 
suitable for the prediction of unsteady flows 
due to small aeroelastic deformations if the 
total unsteady flow is decomposed into a steady 
background flow and an unsteady of small 
disturbances.  As demonstrated by Liu et al.8, 
simplified theories based on the small 
disturbance approach which can yield accurate 
unsteady flow predictions provided that the 
steady background flow on which the unsteady 
disturbance propagate is accurately accounted 
for.  This suggests that, if the steady 
background flow in the TLTSD equation is 
externally provided by a high-fidelity CFD 
steady solution, accurate unsteady flow 
predictions can be ensured.  This is also evident 
by examining the Murman�s scheme shown in 
equation 13 where the switching scheme from 
the central differencing to the backward 
differencing is based on the local Mach 
numbers of the steady background flow.  Thus, 
the unsteady shock location is dominated by 

the steady shock location in the small 
amplitude sense; implying that accurate steady 
shock structures can ensure the accuracy of the 
unsteady shock structures.   
 

To date, many high-fidelity CFD codes for the 
accurate prediction of steady flow over realistic 
aircraft configurations for transonic flight 
conditions are available.  Thus, the steady 
background flow of the present method can be 
directly imported from these CFD codes.  In 
addition, because the CFD mesh is usually 
much more refined than the volume cells of the 
field-panel method, to import the CFD steady 
flow solutions can be easily achieved by a 
simple interpolation of the CFD steady solution 
from the CFD mesh to the volume cells. 
 

Validation of the Unsteady Pressure 
Distribution 
Four test cases are selected to validate the 
unsteady pressure coefficients with the 
experimental data.  The steady background 
flow of all four test cases are computed by the 
CFL3D Navier-Stokes solver9 and interpolated 
to the volume cells.   
 

F-5 wing pitching about 50% root chord at M∞ 
=0.9 and k = 0.275 
Fig. 5 depicts the field-panel model and the 
CFL3D surface mesh of a F-5 wing.  The field-
panel model consists of 20x10 surface boxes 
and 25x12x12 volume cells whereas the 
CFL3D mesh contains 181x77x71 grid points 
for the Navier-Stokes computation.  The 
CFL3D steady pressure coefficients (Cp) at M∞ 
=0.9 and angle of attack = 0º (α=0º) are first 
compared to the wind-tunnel measurements10 
and are shown in Fig. 6 for three span stations 
at y/2b = 51.5%, and = 97.7%.  Excellent 
agreement is obtained except at y/2b = 97.7% 
where CFL3D slightly underpredicts the shock 
strength on the upper surface. 

   
Fig. 5 Field-Panel Model & CFL3D Surface Mesh of 

F-5 Wing 
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Fig. 6 Comparison of Steady Cp between CFL3D & 

Wind-Tunnel Results on a F-5 Wing, M∞=0.9 & α=0º  

 
Fig. 7  Unsteady ∆Cp on a F-5 Wing due to a Pitch 
Oscillation about 50% chord at M∞=0.9 & k=0.275 

 

Using the CFL3D solution as the steady 
background flow, the unsteady ∆Cp along the 
same three span stations computed by the 
present method at M∞ =0.9 and k = 0.275 due 
to a pitch oscillation about the 50% root chord 
is shown in Fig. 7.  By comparing the present 
method to the wind-tunnel measurements, it 
can be seen that a good correlation is obtained 
except at y/2b = 97.7% where the present 
method underpredicts the unsteady shock 
strength.  This is probably caused by the 
underprediction of the CFL3D steady shock 
strength y/2b = 97.7%.  Also shown in Fig. 7 
by the dashed line is the linear results 
computed by ZONA6 which fails to predict the 
unsteady shock effects, as expected. 

 

LANN Wing in Pitch Mode About 62% Root 
Chord at M∞ = 0.822 and k = 0.105 
As discussed earlier, it is generally believed 
that the small disturbance theories cannot give 
accurate aerodynamic predictions on the 
supercritical wings in the presence of strong 
shock.  To show that this is not the case for the 
unsteady flow predictions using the present 
method, the unsteady pressure measurement on 
the LANN wing12 is selected for validation.  
The LANN wing is a supercritical wing with an 
aspect ration = 7.92 and a 25º swept angle 
along ¼ chord whose field-panel model and the 

CFL3D surface mesh are depicted in Fig. 13.  
The field-panel model of the LANN wing 
consists of 20x14 surface boxes and 24x16x16 
volume cells whereas the CFL3D mesh 
contains a 269x131x71 viscous grid. 
 

The CFL3D steady Cp at M∞ = 0.822 and α = 
0.6º and at three span stations; y/2b = 47.5%, 
and 82.5% are compared with the wind-tunnel 
measured results and are shown in Fig. 14.  It 
can be seen that the steady shock location and 
strength are well captured by CFL3D except at 
y/2b = 82.5% where the shock location on the 
upper surface is slightly underpredicted. 

 
Fig. 13  Field-Panel Model and CFL3D Surface Mesh 

of a LANN Wing 

 
Fig. 14  Steady Cp on a LANN Wing at M∞=0.822 & 

α=0.6º 

 
Fig 15.  Unsteady ∆Cp on a LANN Wing due to Pitch 

Oscillation about 62% Root Chord, M∞=0.822 & 
k=0.105 

The unsteady ∆Cp obtained by the present 
method, wind-tunnel testing, and ZONA6 on 
the LANN wing due to a pitch oscillation about 
62% root chord at M∞ = 0.822 and k = 0.105 
are presented in Fig. 15.  Good agreement with 
the wind-tunnel results at y/2b = 47.5% is 
obtained by the present method.  At y/2b = 
82.5% the present method underestimates the 
unsteady shock location; again, probably due to 
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the underpredicted steady shock location by 
CFL3D.  It should be noted that for this LANN 
wing case the ZONA6 results (dashed lines in 
Fig. 15) are totally unacceptable; indicating 
that the linear aerodynamic theories have little 
applicability to supercritical wings in transonic 
Mach numbers. 

 

Validation of the Block-Tridiagonal 
Approximation Technique 

The F-5 Wing at M∞ = 0.9 and k = 0.275 case 
is selected to validate the block-tridiagonal 
approximation technique.  The one-block field-
panel model shown in Fig. 5 is divided into six 
sub-blocks along the span.  Since there are 12 
strips of surface boxes, each sub-block evenly 
occupies two strips of the surface boxes; 
rendering 25x12x2 volume cells in each sub- 
 

 
Fig. 16 Validation of the Block-Tridiagonal 

Approximation Technique on a F-5 Wing at M∞=0.9 
& k=0.275 

 

block.  The result of the six-sub-block model is 
computed using the block-tridiagonal 
approximation technique and compared to that 
of the one-block model.  As seen in Fig. 16, 
nearly identical results between those two sets 
of results are obtained; showing the validity of 
the block-tridiagonal approximation technique.  
Note that the six-sub-block model gives an 
approximately 50% reduction in CPU time over 
that of the one-block model.  It is believed that 
more significant computing time can be saved 
by the block-tridiagonal approximation 
technique for more complex configurations. 

 

Validation of the Overset Field-Panel 
Scheme 

The validation of the overset field-panel 
scheme can be performed by comparing the 
results between the overset modeling and the 

one-block modeling.  Again, we select the F-5 
wing at M∞ = 0.9 and k = 0.275 as the test case 
where the F-5 wing is first separated into two 
pieces of lifting surface (denoted as the �root 
section� shown in Fig. 17.a and the �tip 
section� shown in Fig. 17.b) along y/2b = 
62.9%.  Next, two volume blocks both have the 
full span of the F-5 wing; i.e. two identical 
volume blocks sharing the same three-
dimensional domain, are defined for the root 
section and the tip section, respectively.  Fig. 
17.c depicts that, when joining the root section 
and the tip section together, an overset field-
panel model of the F-5 wing is generated.  
According to the overset field-panel scheme, 
these two blocks do not influence each other 
and the interference between them is through 
the influence from the surface boxes.  Because 
the domain of the two volume blocks is 
identical, there is no approximation of the 
overset field-panel scheme and identical result 
between the two-block model and the one-
block model is expected. 

 

+

  

=

  
(a) Root Section (b) Tip Section (c) Overset Field- 
 Panels  

Fig. 17  Overset Field-Panel Model of a F-5 Wing 
with Two Volume Blocks 

 

Indeed, as shown in Fig. 18, the result of the 
two-block overset model of the F-5 wing is 
nearly identical to that of the one-block model; 
verifying the mathematical �correctness� of the 
overset field-panel scheme. 

 
Fig. 18  Validation of the Overset Field-Panel Scheme 

on a F-5 Wing at M∞ = 0.9 and k = 0.275 
 



 

9  

An Overset Field-Panel Method for Unsteady Transonic Aerodynamic Influence Coefficient Matrix 

Validation of Flutter Boundary Predictions 
Three test cases are selected to validate the 
flutter boundary prediction of the present 
method with the wind-tunnel measurements.  
Again, the steady background flows of all cases 
are computed using the CFL3D Navier-Stokes 
solver. 
 

AGARD 445.6 Wing Flutter Boundary 
The AGARD 445.6 wing13 has two types of 
stiffness; the weakened wing and the solid 
wing; and both wings have the same 
aerodynamic geometry; giving an ideal case to 
demonstrate the AIC capability of the present 
method.  Because the AIC matrix only depends 
on the aerodynamic geometry and is 
independent of the structural characteristics, the 
AIC matrix of the weakened wing can be saved 
and reused for the solid wing.  Four AIC 
matrices of the weakened wing at M∞ = 0.678,  
0.9, 0.95, and 0.98 
are first generated, 
whose matching 
flutter speed 
indexes (U

bs αω µ ) 

and flutter 
frequencies ( )αω ω  
are shown in Fig. 
19.  It shows that 
the transonic flutter 
dip of a weakened 
wing is well 
predicted by the  

 

 
Fig. 19 Flutter Boundary of 

the AGARD 445.6 
Weakened Wing 

present method. Mean-while, the linear results 
computed by ZONA6 give a large discrepancy 
in the transonic region, as expected. 
 

Fig. 20 presents 
the flutter 
boundary of the 
solid wing 
predicted by the 
present method 
but using the AIC 
matrices of the 
weakened wing.  
Again, good 
correlation with 
the wind-tunnel  

 
Fig. 20  Flutter Boundary of 

the AGARD 445.6 Solid Wing 

measurements is seen.  Note that the CPU time 
of computing the AIC matrices of six reduced 
frequencies at one Mach number for the 
weakened wing is about 3.4 hours on a 2.4 Ghz 
computer.  Using the AIC matrices of the 
weakened wing, the flutter computation at four 
Mach numbers of the solid only takes 71secs. 

 

Flutter Boundary of the PAPA Wing 
The PAPA (Pitch And Plunge Apparatus) wing 
has a camber supercritical airfoil with 
maximum thickness of 12% and a rectangular 
Planform with chord of 16 inches and semi-
span of 32 inches14.  The wind-tunnel flutter 
test of the PAPA wing was performed in 
NASA/Langley�s Transonic Dynamic Tunnel 
(TDT).  The structural support of the PAPA 
wing provides only two modes; a plunge mode 
(3.43 Hz) and a pitch mode (5.44 Hz).  Because 
of the simple structural arrangement and the 
complex aerodynamics due to the supercritical 
wing characteristics, the objective of the wind-
tunnel test was to provide experimental data for 
the validation of aeroelastic CFD codes.  
However, it turns out that only a few CFD 
results of the PAPA wing could be found in the 
open literatures.  This might be caused by the 
low-aerodynamic-damping characteristics of 
the PAPA wing which requires a very long 
computational time to determine the accurate 
flutter boundary using the time-marching 
procedure of the CFD codes15 for transonic 
flutter predictions.  However, this low-
aerodynamic-damping characteristics is not a 
technical issue for the present method for 
flutter predictions since it is formulated in the 
frequency domain whose unsteady 
aerodynamics can be directly adopted by a 
frequency-domain flutter solution procedure 
such as the g-method16. 
 

Fig. 21 presents a field-panel model and a 
CFL3D surface mesh of the PAPA wing.  The 
steady background flows are provided by the 
CFL3D Navier-Stokes solver at Mach numbers 
ranging from 0.5 to 0.85 and at α =1º and -2º.  
The CFL3D results show that at α =1º the 
transonic shock starts appearing on the upper 
surface at M∞ = 0.7 and moves to 
approximately 40% chord at M∞ = 0.8.  At α = 
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-2º, the transonic shock appears on the lower 
surface at M∞ = 0.7 and moves to 40% chord at 
M∞ = 0.8.  These CFL3D results indicate the 
strong transonic effects on the PAPA wing due 
to its supercritical wing characteristic and 
present challenge to the accuracy of the flutter 
predictions. 

   
Fig. 21 Field-Panel Model and CFL3D Surface Mesh 

of the PAPA Wing 

 
Fig. 22 Flutter Boundaries of PAPA Wing,   

α =1º(left) & -2º(right) 
 

The flutter boundaries at α =1º and -2º obtained 
by the present method, the wind-tunnel test, 
and the linear method (ZONA6) are presented 
in Fig. 22.  It can be seen that the transonic 
flutter dips are well predicted by the present 
method; verifying that the present method can 
deal with the strong shock cases on the 
supercritical wings provided the steady 
background flow is accurately predicted by the 
high-fidelity CFD code such as CFL3D.  
Results also show that the flutter boundary of 
the PAPA wing in the transonic region is angle-
of attack dependent.  Clearly, this angle-of-
attack effect on flutter boundary cannot be 
accounted for by the linear methods such as 
ZONA6.  The CPU time of the present method 
for this case is approximately 3 hours per Mach 
number in a 2.4 Ghz computer. 

 

Conclusions 
An Overset field-panel method has been 
developed for the transonic AIC matrix 
generation and aeroelastic applications.  The 
present method can be considered as a 

transonic counterpart of ZONA6/DLM because 
the surface boxes of the field-panel model can 
adopt those of ZONA6 or DLM.  To generate 
the volume cells on lifting surfaces or bodies 
requires only a few additional input parameters 
such as the height and number of layers of the 
volume block.  The overset field-panel scheme 
can minimize the volume cell generation efforts 
on complex configurations and automatically 
transmit the interference between overset 
blocks.  In addition, a block-tridiagonal 
approximation technique is incorporated in the 
present method to greatly improve the 
computational efficiency of solving the 
volume-cell influence coefficient matrix that is 
a complex, fully populated and normally very 
large size matrix. 
 

The transonic AIC matrix generated by the 
present method has the same form as that of the 
linear panel methods and can be readily 
plugged into any existing AIC-based 
aeroelastic design processes for rapid flutter, 
aeroservoelastic, and dynamic loads analyses.  
To generate an AIC matrix for a lifting surface 
configuration at one reduced frequency takes 
about a half hour of CPU time.  But once 
generated, it can be repeatedly used in a 
structural design loop; rendering the present 
method as an ideal tool for the multi-
disciplinary optimizations. 
 

The present method also shows that simple 
theories based on the small disturbance 
approach can yield accurate unsteady transonic 
flow predictions if accurate steady background 
flow is given.  This is demonstrated by the 
good correlation with the experimental data of 
the present results using the high-fidelity 
CFL3D Navier-Stokes solutions on the F-5 
wing, the Lessing wing, the LANN wing, the 
AGARD 445.6 wing, and the PAPA wing.   
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