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Nomenclature
α0 , α1 = mean value and amplitude of
              angle of attack
ρ = density
τ   = shear stress, computational time
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ρ
ρθ  = kinetic energy thickness

γ  = ratio of heat capacity
ξ,, η, ζ  = computational coordinate directions
φ = potential of disturbance velocity
ωh , ωα = natural frequency in heave and pitch
b = semi chord
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1 τ
ρ

 = dissipation coefficient

Cl = lift coefficient
Cp = pressure coefficient
c, cr = chord, root chord length
e = total energy
H  = δ*/θ  = displacement shape factor
Hk = kinematic shape factor
H* = θ*/θ  = energy shape factor
H** = δ**/ θ  = density shape factor
k = ωc/U∞ ,reduced frequency
m = mass
M, Re =  Mach and Reynolds number
s = semi span
t = time
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u, v, w = velocity components in x, y, z
U   = tangential velocity component
V* = flutter speed index
x, y, z = Cartesian coordinate directions
xp = pitching axis

Subscripts
e       = edge of boundary layer
le , te = leading and trailing edge
t       = time derivative
∞     = undisturbed flow condition
ξ , η, ζ = derivatives w.r.t. computational

  coordinates
x , y, z = derivatives w.r.t. Cartesian coordinates

Superscripts
+ , - = upper and lower surface
n     = time level

1. Introduction
Nowadays, the use of flow solver based on

the Navier-Stokes equations is often suggested
in the design phase of a new aircraft in order to
know its aerodynamic characteristics accurately
[1]. However this is to be expensive and time
consumptive for a daily application, especially
when involving parametric studies with many
design variables. This situation is more crucial
for aeroelastic calculations such as flutter
calculation with coupling between the structural
dynamics and aerodynamic forces. There is a
need for comprehensive calculation of unsteady
aerodynamic forces.

Another approach to calculate the flow with
its viscous influence, which is called viscous –
inviscid interaction (VII) method, seems to be
more economical and suitable for industry
application [2]. In this approach the flow field is
divided into a thin viscous flow field near the
body surface covered by an inviscid flow field,
which interact vice versa.

In the present analysis the viscous flow is
modeled by the integral boundary layer
equations and the inviscid flow by either the
transonic small disturbance (TSD) equation or
the Euler equations. The direct interaction
between the viscous and inviscid flow model is
implemented using the transpiration boundary
condition in the inviscid model.

This viscous – inviscid interaction method
then is coupled with the structural dynamics of
the airfoil or wing to calculate its aeroelastic

response. The aero-structure coupling is carried
out using the state – space equation which will
be solved using a state transition matrix
technique.

2. Viscous Aerodynamic Model
2.1. The integral boundary layer equations

The integral momentum boundary layer and
the kinetic energy shape parameter equations
from Drela and Giles [2] will be used as viscous
model to calculate the boundary layer
parameter.
These equations can be written as follows [2]:
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These equations will be closed using several
closure equations such as [2]:
   Cf = Cf(Hk,θ) Cd = Cd(Hk,H*,θ)
    H = H(Hk)  H*= H*(Hk)  H** = H**(Hk)     (3)
and will be solved using a 4th order Runge -
Kutta method with unknowns H* and θ  and
inputs from the inviscid model: velocity Ue and
Mach number Me. The turbulent boundary layer
values calculated using power 1/7 law [3] will
be used as initial values to start the integration.
For the boundary layer calculation around a
wing the strip theory is used, i.e. the boundary
layer along spanwise direction is assumed to be
two dimensional.

3. Inviscid Aerodynamic Models
3.1. TSD equation

The TSD equation can be written as: [4]
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where the fluxes are defined as:
( )xt BAf φφ +−=0 (5a)

22
1 yxx GFEf φφφ ++= (5b)

yxy Hf φφφ +=2 (5c)

zf φ=3         (5d)
The coefficients A, B, E, F, G and H are:
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Equation (4) can be written simply as:
( ) 01 =+nR φ (7)

where � is a differential operator.
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3.1.1. Solution of the TSD equation
The potential of the disturbance velocity φ

at a specified time level n+1 will be stated as:
φφφ ∆+= ∗+1n (8)

with φ* is an assumed value of φn+1.
By applying the 1st order Taylor series
approximation in the equation (7), one obtains:
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The LHS of Eq.(9) is approximately factorized
into a product of independent operators Lξ , L η
and Lζ  as [4]:

LξLηLζ  ∆φ = R(φ*,φn,φn-1,φn-2) (10)
with:
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The time derivative is discretized using 2nd

order backward difference and the space
derivatives are dicretized using 1st order
backward or 2nd order central difference for
local supersonic or subsonic flow, respectively.
The computational coordinates are simply
related to the physical coordinates as follows:

r
le czsy
yc

yxx /,/,
)(

)( ==−= ζηξ          (12)

The solution procedure of Eq. (10) involves
three sweeping processes in the stream ξ, span
η and vertical ς direction, as follows:
ξ sweep:      ( )21* ,,, −−=∆ nnnRL φφφφφ ξ

ξ    (13)
where   ∆φξ = LηLζ  ∆φ
η sweep: Lη ∆φη = ∆φξ            (14)
where   ∆φη = Lζ  ∆φ
ς sweep: Lζ  ∆φ =∆φη           (15)

The solution φn+1 can be calculated using eq.
(8). This sweeping procedure must be carried
out until a converged value is achieved.

An entropy correction introduced by
Fuglsang [5] due to the discontinuity of pressure
across a shock wave is also implemented in this
TSD equation and its influence will be used to
update the velocity field behind a shock [4].

3.1.2. Boundary Conditions
The TSD equation must be solved subjected

to the tangential boundary condition on the
surface as follows:

±±± += *
xxz f δφ (16)

where f is the ordinate of the surface and δ* is
the displacement thickness due to boundary
layer on the surface.

3.2. The Euler Equations
The Euler equations can be written in

computational coordinates as follows [6]:

0}{}{}{}{ =
∂

∂+
∂

∂+
∂

∂+
∂

∂
ςηξτ
HGFQ (17)

where the vector {Q} and fluxes {F},{G},{H}
are: }{}{ qJQ =
       }{}{}{}{}{ hJgJfJqJF zyxt ξξξξ +++=

}{}{}{}{}{

}{}{}{}{}{

hJgJfJqJH

hJgJfJqJG

zyxt

zyxt

ςςςς
ηηηη

+++=

+++=
(18)

The vector {q} and fluxes {f},{g},{h} are:
[ ]Tewvuq ,,,,}{ ρρρρ= (19a)
[ ]Tupeuwuvpuuuf )(,,,,}{ ++= ρρρρ (19b)
[ ]Tvpevwpvvvuvg )(,,,,}{ ++= ρρρρ (19c)
[ ]Twpepwwwvwuwh )(,,,,}{ ++= ρρρρ (19d)

and the Jacobian is:
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To close the problem the pressure relation will
be chosen as the closure equation:
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3.2.1. Solution of the Euler Equations
To solve the Euler equations (17)

numerically the finite volume method will be
used. These equations will be discretized in
space as:
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The indices k, l, m define the cells number in the
computational coordinates ξ, η, ζ respectively.
Fig. 1. shows the scheme of the discretization in
ξ direction.

      Q cell face

         k+1
    k cell center
        k-1

              k-3/2   k-1/2   k+1/2   k+3/2
Fig. 1. Scheme of the discretization

The Riemann Problem at the cell face will
be approximated using a flux difference
splitting technique which is purposed by Roe [7]
The time integration of the Eq. (22) will be
carried out by implicit LU-SSOR (Lower Upper
Symmetric Successive Over Relaxation) which
is introduced by Yoon and Jameson [8].
The equation (22) will be discretized in time as:

τ∆−=−=∆ ++ 11 nnn RQQQ        (24)
Performing the Taylor approximation in R as:
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Eq.(24) becomes to:
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The LHS term of Eq. (26) will be approximated
as a summation of three matrices D (Diagonal),
U (Upper) and L (Lower) as follows:

[ ] n
mlkRQLUD ,,−=∆++ (27)

which is then further approximated into:
[ ] [ ] n

mlkRQUDDLD ,,
1 )( −=∆++ − (28)

The expression of the matrices D, L and U can
be found in Ref. [8].
The solution of Eq. (28) is involving two steps
sweeping:

1st step: [ ] n
mlkRQLD ,,

* −=∆+            (29)
 2nd step:

[ ] *1 )( QQUDD ∆=∆+−    

[ ] *QDQUD ∆=∆+ (30)
The value of vector Q at the new time step is:

QQQ nn ∆+=+1 (31)
This procedure will be carried out until
convergence.

For the unsteady problem, a pseudo time
step is used to obtain the solution with respect to
the new position of the body, but the sweeping
procedure remains the same [8].

3.2.2. Boundary Condition
  The Euler equations must be solved subjected

to the tangential boundary condition as follows:
                  n�

          V
�

without boundary layer :  0=• nV �

�

(32a)
       n�

       vn            V
�

                δ*

           U

with boundary layer: 
dx

dUvnV n

*δ==• �

�

  (32b)

Fig. 2. Tangential boundary condition

4. Direct Viscous – Inviscid Interaction
The direct viscous-inviscid interaction can

be described by a functional diagram, Fig. 3.
The inviscid model generates the velocity
distribution Ue, which will be used as input for
viscous model. The output displacement
thickness δ*  from the viscous model will be
back used to update the tangential boundary
condition of the inviscid model. This process
will be repeated until convergence.

        Viscous Aero. Model

        Ue   δ*

         Inviscid Aero. Model

Fig. 3. Direct viscous-inviscid interaction

5. Fluid – Structure Coupling
5.1. Equation of Motion

The equation of motion of an aeroelastic
system is written in term of generalized
displacement {q}. For this purpose the physical
displacement {z} is assumed to be [9]:
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{ } [ ]{ }qz Φ= (33)
where [Φ] are the vibration mode shapes.
Then the equation of motion can be written as:
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     (34)

with [M], [C], [K] and {Q} are the generalized
mass, damping, stiffness and aerodynamic
forces matrix respectively.
The relations between generalized mass,
damping and stiffness can be written as [9]:

[ ] [ ]MK n
2ω= [ ] [ ][ ] [ ] 2/12/12 MKC ς=     (35)

with ωn and ζ are natural frequency and modal
damping coefficient respectively.

5.2. Solution of the Equation of Motion
     The equation of motion (34) can be
formulated as a state space equation as follows:
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which can be recasted as follows:

[ ]{ } [ ]{ }uBXAX +=
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(37)

Solution of the state space equation (37) at the
next time step n+1 is:

{ } nhh
n LLX +=+1  (38)

with the homogeneous solution:
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hh XnXAL ψττ =∆∆= )(exp  (39)
where the State Transition Matrix [ψh] is [10]:
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The non homogeneous solution is as follows:
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with the State Transition Matrix [ψnh] :
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which can be formulated as follows:
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The aerodynamic vector {u} for the next time
step is assumed as a linear function from
previous time steps [11]:

{ } { } { } { }[ ]11 −+ −+≅ nnnn uuuu (44)
The non homogeneous solution now can be
written in the following expression:

[ ] { } { }( ) 2/3][ 1−−= nn
nhnh uuBL ψ (45)

Finally the response of the system for the next
time step can be calculated as follows:
{ } [ ]{ } [ ][ ] { } { }( ) 2/3 11 −+ −+= nn

nh
n

h
n uuBXX ψψ  (46)

5.3. Boundary Conditions
       The coupling between structural response
and aerodynamic forces occurs in the boundary
condition. Using the inviscid TSD equation, the
tangential boundary condition can be written as:

[ ] ±∗±±±± +++= xUstFtxStRxz fff δφ || (47)
where f and δ* are the ordinate of the surface
and the displacement thickness respectively.
The first term is the steady rigid body term and
the second term is the unsteady flexible body
term due to the vibration modes as follows:

[ ] [ ]{ } [ ]
�
�
�

�
�
�Φ+Φ=+

•

∞

±± q
U

qff xUstFtx
1|      (48)

where [ ]xΦ  is the slope of vibration modes.

6. Results
6. 1. Aerodynamic Results

An unsteady pitching motion case of an
NACA 0012 airfoil with the following data:
M=0.755, Re=5.5E+06, α0=0.016o, α1=2.51o,
k=0.1628, xp=0.25c is calculated using the TSD
equation as inviscid model. The time histories
of lift and moment coefficient is depicted in Fig.
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4. The experimental results from Landon [12]
and the Navier-Stokes solutions using the
Baldwin-Lomax turbulence model (NS-BL)
from Cvrlje [13] are used for comparison. The
present method shows an excellent agreement
with the Navier-Stokes solutions especially for
the lift coefficient.

As the second case, a pitching motion of a
NACA 64A010 airfoil with the following data:
M=0.796, Re=1.2E+07, α0=0, α1=1.02,
k=0.404, xp=0.25c will be simulated using the
TSD equation as inviscid model. Fig. 5 shows
comparison of the time histories of lift and
moment coefficient between experimental
results from Davis [14] and numerical results
using the present method. A good agreement
with experiment can be observed for this case.
The influence of boundary layer in the inviscid
results seems to be small.

As the third case, an unsteady pitching
motion case of a NLR 7301 airfoil is calculated
using the TSD equation as the inviscid model.
The flow and motion data are: M=0.7,
Re=2.14E+06, α0=2.0, α1=0.5, k=0.384,
xp=0.4c. Fig. 6. shows the zero and first
harmonic of the pressure distribution. The result
is compared with the experimental result from
Zwaan [15] and the steady solution obtained
with the FLM Navier-Stokes Code from Institut
of Fluid Mechanics Technical Universität
München using the Baldwin-Lomax turbulence
model (NS-BL). The shock position from
Navier-Stokes solution seems to be too early
compared to the VII result. The present results
have good agreement with the experimental
results.

For three dimensional case, the steady cases
CT5 and CT9 of the LANN Wing (see AGARD
[16]) with the following parameters:

CT5: M=0.82, Re=7.34E+06, α0=0.6
CT9: M=0.82, Re=7.17E+06, α0=2.2

are simulated using Euler equations as inviscid
model (FLMEu Code). The Reynolds number is
based on the root chord.
Figures 7 and 8 show the steady pressure
distribution for both cases along three spanwise
stations η = y/s = 0.20, 0.475 and 0.825.
Results from the FLM Navier-Stokes Code
using the Spalart – Almaras turbulence model
(NS-SA) and from experiment conducted by

Zwaan [16] are used for comparison. The
influence of the boundary layer for these cases
can not be neglected, which is showed by the
different shock position calculated with and
without boundary layer. At lower angle of
attack (CT5) there is a good agreement between
VII, Navier-Stokes and experimental results, but
for higher angle of attack (CT9) there is a major
difference in the shock position at outer section
of the wing. The shock position from Navier-
Stokes result seems to be too early compared to
the VII and experimental results.

6. 2. Aeroelastic Results
6. 2. 1. Isogai Model

The transonic dip of the Isogais 2D model
will be simulated using inviscid aerodynamic
model in order to validate the aeroelastic
routine. The structural data of this model are as
follows [17]:

rα = 1.865, xα = 1.8, a  = -2, ωh = 100 s-1,
ωα = 100 s-1, µ = m/(πρ∞b2) = 60

where rα , xα , µ and a  are radius of gyration,
static unbalance, mass ratio and elastic axis
position, respectively. The airfoil NACA
64A010 is used with zero steady angle of attack.
From modal analysis, the vibration mode shapes
and the natural frequencies are found to be:
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The TSD equation is used to represent the
inviscid model at the present analysis. The time
step for flutter calculation is ∆τ = 0.09786
which corresponds to the physical time ∆t =
9.786E-04 second. The initial disturbance is:
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The diagram of flutter speed index )/( µωαbVV f=∗

versus Mach number is presented in Fig. 9. The
results using TSD equation from Isogai [17],
using Euler equations from Alonso and Jameson
[18] and using linearized potential equation
Doublet Lattice Method (DLM) [19] are used as
comparison data.

The calculated flutter speed index shows a
dip at M=0.85 with V*=0.53. All methods show
good agreement in predicting this dip except the
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DLM, which did not show the appearance of
this dip. The flutter speed index increases after
the dip drastically. The present method shows
the rapid changing in flutter speed occurred at
Mach number 0.87, which seems to be earlier
compared to the result from Alonso and
Jameson. Isogai did not report the flutter
condition at the range from M=0.85 to M=0.9.

6.2.2. DLR Model
The transonic dip of the DLRs model is

simulated using inviscid and VII aerodynamic
model. The structural data of the DLRs model
are:

rα = 0.197, xα = 0.0484, a  = 0.25,
ωh = 206.6 s-1, ωα = 271.9 s-1, µ = 299.5

which are taken from the 2nd campaign in the
report from Schewe et. al. [20] neglecting the
modal damping coefficients.
From modal analysis, the vibration mode shapes
and the natural frequencies are found to be:
  

[ ]
�
�
�

�

�

�
�
�

�

� −
=Φ

11

0981.06851.0            
0675.1,7343.0

21

=�
�
�

�
�
�
�

�
=�

�
�

�
�
�
�

�

αα ω
ω

ω
ω

  
[ ]

�
�
�

�

�

�
�
�

�

�

=
0389.00

05745.0
M

           
[ ]

�
�
�

�

�

�
�
�

�

�

=
0443.00

03098.0
K

The airfoil NLR 7310 is used with 1.25
degree steady angle of attack (uncorrected). The
present calculation uses lower angle of attack,
i.e. –0.5 degree, in order to obtain comparable
lift coefficient with experimental result.
The steady lift coefficient for various Mach
number can be seen in Fig. 10. From M=0.5 up
to M=0.75 the lift coefficient obtained from the
numerical simulation increases monotonic
reaching its maximum value, at the other side
the experimental results are almost constant in
this range of Mach number. A possible
explanation is that the angle of attack has been
changed during the experiment. The
aerodynamic loads at the rear part of the airfoil
induces a pitching motion with nose down
direction because of the elasticity of the model.

The diagram of flutter speed index versus
Mach number is presented in Fig. 11. The time
step for this calculation is ∆τ=0.0327 which
corresponds to ∆t=1.203E-04 s. The initial
disturbances are the same as in the previous
case for the Isogai model.

The calculated flutter speed index shows
the transonic dip at M=0.8125, with V* = 0.152
and 0.164 for inviscid and viscid - inviscid
simulation, respectively. The experiment shows
the dip at around M=0.77.

6.2.3. AGARD Wing 445.6
The geometry of the AGARD wing 445.6

and its airfoil NACA 65A004 is depicted in Fig.
12. The structural data of this wing can be
obtained in Ref. [21]. Only the first two
normalized vibration mode shapes (bending:
ω1=9.6 Hz and torsion: ω2=38.2 Hz) have been
used for the flutter calculation purpose. The
TSD equation is used as inviscid model.

The diagram of flutter speed index versus
Mach number can be seen in Fig. 13. The
present result shows good agreement comparing
with the result from Lee-Rausch and Batina
using Euler and Navier - Stokes CFL3D Code
[22, 23] and experiment from Yates [21].

7. Conclusion
A viscous-inviscid interaction method using

two inviscid models - the TSD equation and the
Euler equations - and its application for
aeroelastic calculations has been presented.
Results are showed for several airfoils and
wings. The inclusion of the boundary layer can
improve the aerodynamic results of the inviscid
model significantly, but for the presented cases
only a little improvement in the aeroelastic
results is observed.
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